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Preface

Today, middleware is a key part of almost any application. Gone are the days
when middleware was only used in the IT industry for high-end applications.
Rather than middleware being part of the IT world, today IT applications rep-
resent only one aspect of middleware. With the increase in distribution, network
capacity, and widespread deployment of computing devices (in homes, automo-
biles, mobile phones, etc.), middleware has surpassed the importance of operat-
ing systems as the platform where application development and deployment take
place. This makes middleware very exciting as a research area but also a very
challenging one since it encompasses many different concepts and techniques
from a wide variety of fields: networking, distributed systems, software engineer-
ing, performance analysis, computer architecture, and data management.

Middleware 2005 in Grenoble, France, was the 6th edition of an increasingly
successful conference. The scope of the conference has been slowly widening with
every edition to accommodate new fields and applications. This year we made a
considerable effort to reach out to other communities who are also active in the
general area of middleware — sensor networks, networks in general, databases,
software engineering— a fact that is reflected in the variety of submissions.

The program this year was selected from over 112 submissions. From these,
the Program Committee selected 18 full papers and 6 short papers. Each paper
had at least four reviews and the selection was made based on technical merit,
relevance, originality of the contribution, and degree of innovation. Preference
was given to papers with new ideas or covering novel application areas. Among
the accepted papers, there was a fair number of PC papers. For the record, PC
papers had to be clearly above other papers to be considered for acceptance. In
this Call for Papers, we did not include work—in—progress papers. Instead, we
introduced short papers — selected from the regular submissions as papers that
had interesting ideas but were not ready for publication as full papers — and a
demo session with a separate Call for Papers — which should give a venue to
present systems-oriented research.

As in the past, the review process was highly selective and the source of many
interesting discussions on the nature of middleware and its general applicability.
The exciting program that was prepared reflects these discussions and created
the perfect background for similar discussions during the conference. Together
with the workshops that accompanied the conference, Middleware 2005 covered
a wide range of issues and topics related to all aspects of middleware, from
software engineering to low-level implementation details.

Finally, I would like to thank Richard van de Stadt, in charge of the confer-
ence review system, who was at all moments most helpful and made sure the
review process ran flawlessly. I would also like thank all the Program Commit-
tee members and external reviewers for their time and effort during the review
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process. Writing good, informative, and fair reviews is not easy and takes a con-
siderable amount of time. I am proud to say that this year’s PC has done an
excellent job with the reviews, thereby continuing the tradition of excellence in
the Middleware conferences. The result of their efforts is an excellent and very
interesting program that no doubt made the 2005 edition of the conference a
success.

April 2005 Gustavo Alonso
Middleware 2005 Program Chair
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Securing Publish/Subscribe for
Multi-domain Systems

Jean Bacon, David Eyers, Ken Moody, and Lauri Pesonen

University of Cambridge Computer Laboratory,
JJ Thomson Avenue, Cambridge, CB3 0FD, UK
firstname.lastname@cl.cam.ac.uk

Abstract. Two convincing paradigms have emerged for achieving scal-
ability in widely distributed systems: role-based, policy-driven control
of access to the system by applications and for system management pur-
poses; and publish/subscribe communication between loosely coupled
components. Publish/subscribe provides efficient support for mutually
anonymous, many-to-many communication between loosely coupled en-
tities. In this paper we focus on securing such a communication service
(1) by specifying and enforcing access control policy at the service API,
and (2) by enforcing the security and privacy aspects of these policies
within the service itself. We envisage independent but related admin-
istration domains that share a pub/sub communications infrastructure,
typical of public-sector systems. Roles are named within each domain
and role-related privileges for using the pub/sub service are specified.
Intra- and inter-domain, controlled interaction is supported by negoti-
ated policies. In a large-scale publish/subscribe service, domains are not
expected to trust all message brokers fully. Attribute encryption allows
a single publication to carry both confidential and public information
safely, even via untrusted message brokers across a vulnerable communi-
cations substrate. Our approach provides the application designer with
fine-grained expressiveness while, at the same time, improving system
fault tolerance by allowing a single shared messaging network to route
both public and confidential information. Early simulations show that
our approach reduces the overall traffic compared with a secure publish/
subscribe scheme that encrypts whole messages.

Keywords: publish/subscribe, loosely coupled applications, content-
based routing, role-based access control, attribute encryption, message
confidentiality, trust.

1 Introduction

We are concerned with how communication within and between large-scale, in-
dependent, widely distributed application domains should be supported and
managed. Two recently emerging paradigms for achieving scalability are asyn-
chronous, publish/subscribe-based communication and role-based access con-
trol (RBAC). In the EDSAC21 project we aim to extend and integrate these

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 1-20, 2005.
© IFIP International Federation for Information Processing 2005



2 J. Bacon et al.

paradigms to achieve a scalable, secure middleware capable of supporting fine-
grained control of communication within and between domains. In this paper
we present our multi-domain architecture and an interim evaluation based on
simulation.

We define a domain to be an independently administered unit in which a
domain manager has, or may delegate, responsibility for naming and policy spec-
ification. The following motivating scenarios have in common a communication
infrastructure shared by independently administered domains, some of which are
strongly related and have similarly named roles. The bulk of the communication
is likely to be within a domain but there is also a clear need for inter-domain com-
munication. (1) A global company has branches (e.g. sales) in California, London
and Tokyo. Some (sales) data and events should be shared between branches.
(2) A number of county-level police domains need support for intra- and inter-
domain messages. (3) A national health service’s communication infrastructure
is shared by many independent hospitals, clinics, primary-care practices etc. (4)
An “active city” has independent public services such as police, fire, ambulance,
hospital, and utilities. As well as communicating with similar services nationally
(e.g. police with police) the different services need to cooperate, especially in
emergencies. Examples are common in the public sector, where systems have
been particularly susceptible to expensive failure or curtailment.

The concept of role is well established for providing scalable security ad-
ministration. Role-based access control (RBAC) separates the administration of
people, and their association with roles, from the control of privileges for the
use of services (including service-managed data). Service developers need only
be concerned with specifying access policy in terms of roles, and not with in-
dividual users. Here we focus on securing the communication service. Domain
managers, or their delegates, specify communication policy in terms of message
types and roles; that is, which roles may create, advertise, send and receive which
types of message. Inter-domain communication is achieved through negotiated
agreements, expressed as access control policy, on which role(s) of one domain
may receive (which attributes of) which types of message of another.

Publish/subscribe [1] is emerging as an appropriate communication paradigm
for large-scale systems. It allows loose coupling between mutually anonymous
components and supports many-to-many communication. In this paper we fo-
cus on securing publish/subscribe within and between domains. For consistency
with other publish/subscribe systems we use event as synonymous with the
more general term message. The notion of role is ideally suited to a multicast
communication style. For example, the Cambridge police domain may define
a role sergeant-on-duty and message topics such as traffic-accident (attribute-
list). Authorisation policy will indicate which roles can advertise, subscribe to
and publish each topic. Inter-domain communication is supported, after human
negotiation, by indicating in policy that a specified role of some domain may
subscribe to certain (attributes of) topics published by some other domain.

Authentication into roles must be securely enforced to control the use of all
protected services. We have addressed this in earlier papers. For the communi-
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cation service, RBAC policy indicates the visibility (to roles, intra- and inter-
domain) of specified attributes of message types. The fact that advertisement
is required before messages can be published, and both are RBAC-controlled,
prevents the spam that pervades email communication between humans. With-
out such control denial-of-service through publication or subscription flooding
could degrade large-scale inter-software communication in the same way that it
consumes resources in email management. In our system a spammer could only
be an authorised, authenticated member of a role and therefore could be held
accountable.

If the network and message brokers could be guaranteed 100% secure and
trustworthy, then RBAC would achieve precisely the visibility specified by policy.
In practice, we have to protect confidential data on the wire and in the brokers
by means of encryption. We offer fine-grained security, in that message attributes
are encrypted selectively, with key management transparent to the client level.
We assume that some form of message encryption is always needed, since nodes
of a communication service are not likely to be trusted universally with all data
and the network is vulnerable to listeners. Encryption overhead per se does not
need to be justified, and our evaluation indicates that our approach incurs less
overhead than using whole-message encryption.

The contribution of this paper is to show how role-based access control, to-
gether with fine-grained data encryption and the associated key management,
can be integrated with publish /subscribe based communication to create a secure
middleware suitable for a wide range of large-scale, widely distributed applica-
tion domains. First, we set the scene by discussing related research on secured
publish/subscribe in Section 2. Section 3 gives background in publish/subscribe
systems and role-based access control, emphasising, without loss of generality,
the systems we have used for our implementation and evaluation, Hermes and
OASIS. We then outline how RBAC and publish/subscribe are integrated. Sec-
tion 4 presents our multi-domain architecture in more detail. Section 5 uses a
multi-domain, networked city as a case study and describes the scenarios evalu-
ated in Section 6. Section 7 presents our conclusions in the context of our ongoing
and future research.

2 Related Work

To our knowledge, the architecture we outlined in [2] was the first to consider
access control for a publish/subscribe service. There, we took a typical private-
sector application, a newsfeed service, comprising a single naming and protection
domain. We did not consider public-sector, multi-domain examples, where it
becomes natural for a message-broker substrate to be shared, and where different
levels of trust in brokers must be accommodated. This work did not address data
encryption and key management.

Some authors explicitly exclude security as being orthogonal to the design
issues of publish/subscribe [3]. Others have limited their work to the communi-
cations level [4]. Others have discussed how publish/subscribe systems might be
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secured but without explicit design details and evaluation. Wang et al. present
a number of considerations for publish/subscribe access control in [5] but with-
out proposing an architecture to solve the problems they raise. Similarly, in [6],
Miklés provides semantics defining a security ordering based on event attribute
values, but does not describe a practical test prototype. The approach of Miklés
is likely to be too restrictive in practice; it will not scale well due to the detailed
specifications required to define event security classes and how they interact.

Opyrchal and Prakash concentrate on the separate problem of providing con-
fidentiality for events during the last hop from the local broker to the event sub-
scriber in an efficient manner, with as few encryptions as possible [7]. Limiting
the number of last hop encryptions is valuable if the local brokers have poor re-
sources. We assume that the local brokers are powerful enough to deliver events
to their subscribers over TLS connections [8]. While more resource-intensive,
TLS provides us with strong client and server-side authentication and key man-
agement in addition to data encryption.

In sentient and ubiquitous computing environments privacy should be a ma-
jor concern, for example, when individuals can be recognised automatically and
tracked. This issue is not often considered. An exception is the Gaia project
where the approach is to guarantee anonymity [9]. [10] is also concerned with
anonymity in location systems. Publish/subscribe is based on mutual anonymity
at the client level. Parametrised RBAC gives the option of anonymity or iden-
tification. However, principals are not anonymous to the system when authenti-
cated into roles and the privileges of misbehaving principals can be withdrawn
promptly. Attribute-level policy expression controls the selective propagation of
identity attributes at a fine grain.

3 Background and Integration

Although our approach is generally applicable, our design and implementation
are based on Hermes publish/subscribe and OASIS RBAC. This section provides
a brief overview of publish/subscribe systems and role-based access control, de-
scribing the features specific to Hermes and OASIS. We then show how a publish/
subscribe system can be secured by RBAC.

3.1 Publish/Subscribe Systems

Large-scale, publish/subscribe messaging technology typically comprises a net-
work of brokers, which provide a communication service, and lightweight clients,
which use the service to advertise, subscribe to and publish messages [11,12].
Such systems are subject to failures of nodes and links, and their components
may join and leave dynamically. A communication service must be robust under
these conditions, fault-tolerant and dynamically reconfigurable. For this reason
the message brokers are often built above a peer-to-peer overlay network [13],
since peer-to-peer naming and protocols provide the necessary robustness.
Publish/subscribe systems are classified as type/topic- or content/attribute-
based. Hermes [13,14] is a distributed, content-based publish/subscribe archi-
tecture with an integrated programming model and strong message typing. It is
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built on a peer-to-peer routing substrate to provide scalable event dissemination
and fault tolerance.

A Hermes system consists of two kinds of component: event brokers and
event clients, the latter being publishers and subscribers. Event brokers form the
application-level overlay network that performs event propagation by means of
a content-based routing algorithm. Event clients publish, or subscribe to, events
in the system. An event client has to maintain a connection to a local event
broker, which then becomes publisher-hosting, subscriber-hosting, or both. An
event broker without connected clients is called an intermediate broker.

Hermes supports event typing: every published event (or publication) in Her-
mes is an instance of an event type. An event type has an event type owner, an
event type name and a list of typed event attributes so that, at runtime, publica-
tions and subscriptions can be type-checked by the system. Hermes event types
are organised into inheritance hierarchies, but our work does not depend on this.
We show later how inheritance can be used within domains when it is available.

Each event type defined within a domain is registered by its owner via a
local event broker. This causes encryption status and keys to be set up within
the domain and a rendezvous node to be selected for peer-to-peer routing. Before
a publisher can publish an event instance, it must submit an advertisement to its
local event broker, indicating the event type that it wishes to publish. Subscribers
express their interest in the form of subscriptions that specify the desired event
type and a conjunction of (content-based) filter expressions over the attributes
of this event type.

The rendezvous node for an event type is selected by hashing the type name
to a broker identifier — an operation that is supported by the peer-to-peer rout-
ing substrate [15]. Advertisements and subscriptions are routed towards the ren-
dezvous node, and brokers along the path set up filtering state for them.

Most publish/subscribe systems, including Hermes, optimise content-based
routing of events with a subscription coverage relation, that states which sub-
scriptions are subsumed by others [11]. This allows brokers to reduce the number
of events sent through the system by enabling them to filter non-matching events
as close as possible to the publisher; these filters become increasingly specific as
events approach subscribers.

For reliability reasons, rendezvous nodes are replicated for each event type
(for example, broker instances can be selected by concatenating a salt value to
the type name before hashing [16]). In Hermes, a rendezvous node keeps an au-
thoritative copy of the event type definition, which is cached at other brokers
throughout the system for type-checking advertisements, subscriptions, and pub-
lications. In our current work, authoritative, domain-specific type information is
stored within the originating domain and rendezvous nodes hold a copy.

3.2 Role-Based Access Control

Role-Based Access Control (RBAC) [17] is an established technique for sim-
plifying scalable security administration by introducing roles as an indirection
between principals (i.e. users and their agents) and privileges. Privileges, such
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as the right to use a service or to access an object managed by a service, are as-
signed to roles. Separately, principals are associated with roles. The motivation
is that users join, leave and change role in an organisation frequently, and the
policy of services is independent of such changes.

The Open Architecture for Secure Interworking Services (OASIS) [18,19],
provides a comprehensive rule-based means to check that users can only acquire
the privileges that authorise them to use services by activating appropriate roles.
A role activation policy comprises a set of rules, where a role activation rule for
a role r takes the form

T1y5Tn, A1, -+ Am, €1, -+, €] Fr

where r; are prerequisite roles, a; are appointment certificates (most often persis-
tent credentials) and e; are environmental constraints. The latter allow restric-
tions to be imposed on when and where roles can be activated (and privileges
exercised), for example at restricted times or from restricted computers. Any
predicate that must remain true for the principal to remain active in the role is
tagged as a role membership condition. Such predicates are monitored, and their
violation triggers revocation of the role and related privileges from the principal.
An authorisation rule for some privilege p takes the form

T, e1,..,€] l_p

An authorisation policy comprises a set of such rules. OASIS has no negative
rules, and satisfying any one rule indicates success.

OASIS roles and rules are parametrised. This allows fine-grained policy re-
quirements to be expressed and enforced, such as exclusion of individuals and
relationships between them, for example treating-doctor(doctor-ID, patient-ID).
Without parametrisation it becomes necessary to define an unmanageably large
number of roles for an organisation of any size.

3.3 Integration

In OASIS RBAC, the authorisation policy for any service specifies how it can
be used in terms of roles and environmental constraints. Here, we use OASIS to
protect the publish/subscribe service in this way at a local broker. The service’s
methods include define(message-type), advertise(message-type), publish(message-
type, attribute-values) and subscribe(message-type, filter-expression-on-attribute-
values). OASIS policy indicates, for each method, the role credentials, each with
associated environmental constraints, that authorise invocation. define is used to
register a message type with the service and specify its security requirements at
the granularity of attributes. On advertise, publish and subscribe these require-
ments are enforced. We can therefore support secure publish/subscribe within a
domain in which roles are named, activated and administered.

A domain-structured OASIS system is engineered with a per-domain, secure
OASIS server, as described in [18], and a per-domain policy store containing
all the role activation and service-specific authorisation policies. This avoids the
need for small services to perform authentication and secure role activation. The
domain’s OASIS server carries out all per-domain role activation and monitors
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the role membership rule conditions while the roles are active. This optimisation
concentrates role dependency maintenance within a single server and provides
a single, per-domain, secure service for managing inter-domain authorisation
policy specification and enforcement.

4 A Multi-domain Architecture

In this section we present an architecture for an RBAC-secured, multi-domain
publish/subscribe system based on a shared event-broker network. We assume
that domains are given unique names within the system as a whole and that
roles are named and managed within a domain. We assume that each domain
provides a management interface through which role activation policies and ser-
vices’ authorisation policies can be specified and maintained.

A group of domains may have a parent domain from which an initial set of
role names and policies is obtained. For example, county police domains may
agree to use a nationally defined set of police roles; health service domains may
start from an initial national role-set. The domain management interface al-
lows local additions and updates, for example, when government changes na-
tional policy. Parametrised roles allow domain-specific parameters, for example
sergeant(Cambridgeshire ). This avoids the role explosion when non-parametrised
RBAC is used on a large scale.

4.1 The Event-Broker Infrastructure

RBAC enforces authorisation policy at the level of clients of the publish /subscribe
service. At the service level we have to protect confidential data on the wire and
in the broker network. Publisher-hosting brokers must encrypt messages to se-
cure confidential information, first checking against policy that the publisher is
authorised to send the attribute values. Subscriber-hosting brokers must decrypt
messages and deliver to the subscriber the attributes that it is allowed by policy
to read. These policies are specified when the message type is defined.

We distinguish between trusted and untrusted brokers. For example, a na-
tional police service may comprise some tens of county-level domains, deploying
a (sub)network of brokers, trusted by all police domains. Statically, these bro-
kers are trusted by police to encrypt and decrypt police data. Dynamically, under
monitoring, some broker may come under suspicion and have trust withdrawn
from it. The police domains may choose to route data through the untrusted bro-
kers of other services, for example in rural regions. In general, police domains
may interoperate with other emergency service domains and with the media or
public via parts of the broker network that are untrusted.

A shared broker infrastructure may be built up when public sector domains
agree to interoperate. Alternatively, a broker infrastructure may be provided
commercially or as a public service, and independent, distributed applications
may use it to communicate intra- or inter-application. In both scenarios the
domains/applications will have different levels of trust in the various brokers.
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A shared event-broker infrastructure offers both direct and indirect benefits:
management overheads are reduced by operating only a single broker network in-
stead of a separate one for each domain, with federation via gateways (as in [20]).
Untrusted brokers can augment trusted brokers’ routing abilities, ensuring better
resilience to failures. These direct benefits are particularly significant when the
network has many domains, and/or the domains are small. The indirect benefits
of using a shared network are equally important: networks of trust can be estab-
lished and reconfigured more easily, since the privileges of brokers and clients
are controlled dynamically within a homogeneous access control scheme. Also,
encrypting attributes separately allows a single event to contain both public and
private information.

Key Management for Trust Groups. A broker network comprising multiple
trust groups must have a key manager for each group. Some domains’ OASIS
servers will maintain key-groups of trusted brokers and distribute keys to them,
transparently to the clients of the publish/subscribe service. A broker must be
provided with credentials that allow it to join a trust group. Intermediate trusted
brokers decrypt messages to achieve efficient content-based routing. Untrusted
brokers participate in routing at the message, rather than attribute, level; details
are given below. When a broker becomes untrusted, new keys must be distributed
to the remaining group members. We do not address malicious brokers with
byzantine behaviour that may corrupt routing state.

In Fig. 1 the brokers are annotated with the encryption keys to which they
have access; P for the police key, F for the fire key. The broker to which the
reporter is attached can deliver only unrestricted public data.

Suppose inter-domain communication is negotiated and an authorised sub-
scription is made from an external domain that has brokers in a different trust
group. The police and fire services of Fig. 1 are an example. Such a negotiated
agreement, that events of one domain may be subscribed to from another, im-
plies that the local brokers of publishers and subscribers are trusted to encrypt
and decrypt the authorised attributes, and have the appropriate keys.

police-

PF
officer2 .\f-\
P P P,F
police- /
officerl

@ broker trusted with key for X

RSy | publisher trusted for X
X—. subscriber trusted for X

e

® restriction on X

police-
duty-officer

reporter

Fig. 1. Illustration of Secure Publish/Subscribe
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4.2 Policy

Policy and enforcement mechanisms must be in place to support:

(i) Secure connection by a new broker in order to become part of a group of
trusted brokers.

(ii) Secure connection by a client to any trusted local broker.

(iii) Secure propagation of messages through the broker network with confiden-
tiality of attributes enforced as specified by policy.

(iv) RBAC-controlled use of the publish/subscribe service by clients.

For (i) and (ii), publishers, subscribers and brokers hold public key pairs,
bound to identity certificates (e.g. X.509 [21]), to connect to their local OASIS
service. Successful authentication will allow brokers to become part of a trusted
group for key management purposes, and will allow clients to proceed to re-
quest activation of the roles that authorise advertisements, subscriptions and
publications.

The authentication key pairs are also used in creating client and server-side
authenticated TLS connections between nodes. This prevents simple network
sniffing attacks by outsiders, thus helping to achieve data confidentiality and
integrity, contributing to (iii). For (iii) the key management service controls the
propagation of attribute decryption keys to trusted brokers.

(iv) was introduced in Section 3. The authorisation policy for the define(type)
operation specifies the credentials and constraints required for registering new
message types with the publish/subscribe service in a domain, and subsequently
for managing the registered types. It controls the ability to modify and remove
existing types and, in Hermes, to create sub-types. When a parent domain exists
it is likely that an initial set of message types will be used by all child domains,
similar to the use of nationally agreed role-names within related domains. A type-
specific read-write policy, if present, augments and refines the advertisement and
subscription policies. It defines, at the attribute level, the roles that can read
and/or write the various attributes of a type and can also restrict access by
attribute value, see below.

An advertisement policy defines which roles are allowed to advertise, and
then to publish, events of each given type. Environmental constraints may also
be included, see Section 3. Their actions may be subject to further restriction,
see below, as indicated by the type-specific read-write policy. A subscription pol-
icy defines the authorised receiver roles and conditions in a similar fashion. If
required, individual clients can be identified using role parameters.

Restriction. A publisher or subscriber role may be authorised by the pub-
lication or subscription policies, but restricted by the type-specific read-write
policy to a subset of the attributes of some event type that it requests, and/or
for a subset of the values of certain attributes. Rather than reject the request
outright, the local broker may allow the request after applying a restriction.

In the case of a publisher, any attribute value whose read-write policy does
not include write access is ignored. A simple approach is to omit the attribute



10 J. Bacon et al.

from the marshalled data, and supply a null value to subscribers. With a type
hierarchy it may be possible to restrict publications to a super-type of the re-
quested type, if advertisement policy allows that. In the case of a subscriber, the
natural restriction is to suppress the attribute value whenever the subscriber
does not have read access to an attribute under read-write policy.

Authorisation to advertise, publish or subscribe may also depend on condi-
tions such as event type or content, date, time or frequency of publication. Thus
a publisher may be restricted to publish certain events between 9am and 5pm.
OASIS environmental constraints can specify and enforce some of these condi-
tions, and publish/subscribe filtering may implement some forms of restriction
by attribute value. In general, specific predicates must be computed by the local
broker of the client to which the restrictions apply, see Section 5.

4.3 Attribute Encryption

Real-world occurrences often include confidential data that should be accessible
only to authorised subjects, e.g. the press should know about a car accident on
a highway, but the names of the victims should stay confidential to the police
and health services. This is achieved by RBAC policy and mechanism at appli-
cation level, and by encrypting attributes (in publications) and filter expressions
(in subscriptions) with symmetric keys at the message service level, as outlined
above. Although our approach introduces run-time overhead due to the cryp-
tographic operations on attributes of publications and subscriptions, it allows
the same publication to be disseminated to subscribers with different privileges,
thus using the event dissemination tree efficiently. Section 6 shows that attribute
encryption can decrease the overall cryptographic overheads.

Event Types with Attribute Encryption in Hermes. To indicate at-
tribute encryption within the Hermes type system, we annotate the event type
hierarchy with the keys that are used to encrypt specific attributes, reflecting
defined policy. Local brokers of publishers and subscribers implement this secu-
rity policy; clients are not concerned with encryption. Each attribute of an event
type is either public, indicated by the empty key (0), or it must be encrypted
using one or more keys. Fig. 2 shows annotated type hierarchies for Police and
Fire Service domains. The location attribute in a PoliceEvent may be en-
crypted using both police and fire keys. This would result in two instances of
the same attribute in a single event, each instance encrypted with a different
key.

The standard inheritance sub-typing relation between event types must still
hold: a subtype has to be more specific than its parent type. As a result, encryp-
tion keys can only be removed from inherited attributes but not added. This is
illustrated in Fig. 2 with the location attribute, whose access becomes more
restrictive as new event types are derived.

Coverage Relations with Encrypted Filters. In order to take advantage of
subscription coverage (described in Section 3), we extend this relation to handle
subscriptions that refer to encrypted attributes.
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Fig. 2. Per-Domain Event Type Hierarchies with Attribute Encryption

A filter expression encrypted under a particular key is covered by a previous
filter expression if this previous filter is the same or more general, and is encrypted
under the same key (including the case where neither expression is encrypted). A
subscription is then covered by another subscription if all its filter expressions are
covered. More formally, if s; and ss are two subscriptions with a conjunction of
filter expressions f* and g’ encrypted under the keys k; and [, respectively,

slzf,il/\flfz/\.../\f& (1)
So :glll /\glg2 AN (2)

then s1 covers (3) so is defined as follows:
S1 4 S9 <— Vlaj f]zl | glJJ N k'z = lj (3)

We assume above that each subscription includes empty filters encrypted with
all available keys by default.

The coverage relations between the example subscriptions s; to s4 are shown
in Fig. 3. Subscription s; is the most general because it does not specify any
filter expressions. It covers the second subscription s, which specifies a filter
f1 over the location attribute encrypted under the police key or the fire key.
Subscribers can only provide meaningful filters for encrypted attributes if they
have read access, and in addition the broker handling the sy subscription must

sl:PoliceEvent

covers

s2:PoliceEvent
f1(location (police, fire))

cove’r}/ \govers

s3:PoliceEvent
f1(location (police))

s4:BurglaryEvent
£1 (location (police, fire))

Fig. 3. Subscription Coverage with Attribute Encryption
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be trusted with both the police and fire keys. The filter expression in s3 does not
match events with location attributes encrypted under the fire key and there-
fore so covers sg strictly. According to the event type hierarchy BurglaryEvent
is a subtype of PoliceEvent, hence subscription s4 is also covered by ss, since
their filter expressions are the same.

Encryption Keys. We use symmetric keys to encrypt and decrypt attribute
values. These keys are distributed only to the brokers that are trusted with the
attribute values. The system will never deliver these keys to clients. This reduces
the number of nodes that are trusted with sensitive keys, and that take part in
key management protocols. Note that this does not affect security since local
brokers encrypt and decrypt attribute values on behalf of connected clients, and
deliver events to clients over secure links.

To support cryptographic properties such as key freshness, and forward and
backward secrecy [22], the system requires key management service(s). The most
suitable key management strategy depends on the broker-network architecture.
For EDSAC21 we assume a stable configuration with static, multi-hop, inter-
broker connections and are investigating a tree-based approach [22]. However,
the dynamic nature of a peer-to-peer routing layer presents special problems,
and we are also evaluating an alternative, ad-hoc network based approach [23].

Efficient group key management [24] is not the focus of this paper. Overall,
the efficiency of key distribution will have little impact on performance, since
symmetric keys are distributed only to brokers, as opposed to publishers and sub-
scribers. Relatively few entities are involved in key dissemination, and changes
will be infrequent. However, correct key management is essential for the security
of the system.

4.4 Security Overheads

When compared with basic publish/subscribe, our secured publish/subscribe in-
troduces three types of processing overhead: one-time only, per event, and key
management related. (1) One-time only overheads include node authentication
and authorisation when new nodes connect to the network, and subscription-
filter encryptions. (2) Per event overheads include those caused by encrypting
and decrypting attributes, and applying restriction predicates at local brokers.
One encryption is required for each instance of a secure attribute in a published
event (see Section 4.3), using the appropriate symmetric key; this happens only
once at the source, and intermediate brokers can pass the encrypted event to
the next node directly. Decryption is required on delivery, and possibly at each
routing step, too. The event dissemination tree structure ensures that each new
subscription adds no more than two decryptions: once en route at a filtering bro-
ker, and once on delivery at the subscriber’s local broker. (3) Finally, the cost
of key management depends on the frequency of key change and the dissemina-
tion method, as discussed above. This is likely to occur relatively infrequently,
as clients never have direct access to encryption keys, and key management is
handled at broker-level only.
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In addition to processing overheads, attribute encryption increases the size
of events in two ways: (1) a single attribute value encrypted with multiple keys
results in multiple instances of that value, each encrypted with a different key;
(2) encryption algorithm mechanisms dictate that the encrypted data must be at
least of some minimum length, depending on the encryption algorithm. Common
minimum lengths would be 64 bits and 128 bits. Thus, a single 8 bit attribute
value encrypted with three keys grows in size to 192 bits because of padding and
multiple attribute instances. This might be avoided by using a stream cipher,
which operates on a stream of data one bit at a time, rather than a block cipher.

5 Case Study: Public Services Within a City

We now illustrate our architecture for a city in which the publish/subscribe
systems of different emergency services interoperate securely and efficiently. We
use a break-in to a university building as an example. Fig. 4 shows the principals,
brokers and messages discussed below. We assume that equipment failure has left
the police network partititioned, and that broker b1l is connected only through
the fire network.

1) We focus on two police officers on night shift; part of their duty is to
respond to notifications of burglaries. We assume that the event-type Bur-
glaryEvent is already advertised when the officers come on duty. This means
that a rendezvous node b5 is assigned for the type and subscriptions can be
made. We shall see that further advertisements, and subsequent publications,
can be made as burglaries are detected in different areas.

We assume that both officers authenticate with their local OASIS service on
coming on duty and, assuming that their credentials are valid, acquire the role
with associated privilege to send subscription messages: s1 and s2 respectively.

police-
P.F I officer2
52 T e
== P )<_/E\<_ PF
— ———
e bl ST o\w2 /) s b3
police- e
officerl Szl l “‘k\
AN

@ broker trusted with key for X

police-
duty-officer

X .
—D publisher trusted for X BurglaryEvent

X . rendezvous node
—. subscriber trusted for X

® restriction on X

Fig. 4. Notifying two police officers of a BurglaryEvent
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Officer 1 is a probationary officer, who moves between different parts of the
city. Officer 2 is located in West Cambridge. Suppose that at the start of her shift
officer 2 subscribes to BurglaryEvent (location = ‘West Cambridge’). Since
this subscription requires filtering on the location attribute, and this attribute
is encrypted with the police key (recall the event type hierarchy shown in Fig. 2),
the officer knows that her local broker must be trusted with the police key, i.e.
a P broker.

Officer 1 tries to subscribe to all burglary events with a police code less than
4, BurglaryEvent (polCode < 4), but the request is only partially granted.
Instead, the subscription is restricted, as described in Section 4, to deliver only
those events that occur in the officer’s current location. This restriction, which
is based on a dynamically checked environmental constraint, is shown in Fig. 4,
attached to his broker connection.

2) Any broker through which s1 and/or s2 travel (towards their rendezvous
node and then along the reverse path of advertisements) will update its internal
routing state appropriately. Note that our security architecture augments stan-
dard Hermes subscription setup behaviour when we reach broker b2. Whilst s1
travels through this broker, the broker is not part of the police network, and
thus will not have access to the police key. Therefore this broker will be forced
to degrade routing efficiency by ignoring police officer 1’s filter on the polCode
attribute, which it cannot decrypt, and routing all events forward.

3) We show a duty-officer at a police station who must notify police of-
ficers of reported burglaries. Like officers 1 and 2, the duty-officer authenti-
cates himself with his local OASIS service, and acquires privileges to advertise
BurglaryEvents. Again, his local broker needs access to the police key. The con-
sequent advertisement message is shown as a in Fig. 4. This step could occur in
parallel with a subscription, see Step 1. If a broker notices that an existing sub-
scription matches a new advertisement, it will resend the subscription message
along the reverse path of the new advertisement towards the publisher.

All this occurs at the start of the officers’ sessions, a long time (in publish/
subscribe terms) before the actual burglary occurs.

4) Now suppose our example burglary is reported to the duty-officer. He
publishes an event e, in this case:

BurglaryEvent (location = ‘West Cambridge’, premises =
‘William Gates Building’, polCode = 3, ..., zone = ‘university’).

5) The event e leaves the duty-officer’s local broker, through the publish/
subscribe network, under control of the Hermes routing algorithm. Note that
en route, each broker decodes and filters the event in so far as it can. In this
particular case, only P brokers will be able to filter based on the location
and/or polCode attributes, but all brokers will be able to filter on the zone
attribute (see Fig. 2).

6) As e travels along the reverse path of the subscriptions, it passes through
broker b3, which is police officer 2’s local broker. The broker uses the police key
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to decrypt the location and polCode attributes before delivering the event to
officer 2 over the secure ‘final hop’ set up as described in Step 1 above.

7) In order to reach police officer 1, e needs to be routed through b2. While
this is not the most desirable mode of operation, since the event passes through
a broker that does not have access to the police key, it is crucially better than
the situation in which the police network remains partitioned.

As mentioned in Step 2, since broker b2 cannot decrypt police encrypted
attributes, it cannot apply filtering on fields such as location. Thus for routing
e, the event appears as BurglaryEvent (location = 7, polCode = 7, ...,
zone = ‘university’), and it is passed on to bl regardless of its location
value.

8) Finally, the local broker bl of police officer 1, which is trusted with the
police key, will receive e from b2, and decrypt the location attribute. It will
then apply the restriction, checking whether officer 1 is currently in West Cam-
bridge. If so, b1l will decrypt the entire event and pass it over the secure ‘final
hop’ to officer 1. We have assumed for simplicity that although officer 1 is mobile
he remains connected to the same local broker. The alternative is that he creates
a new OASIS session whenever he needs to connect to a different broker.

6 Evaluation

The EDSAC21 project is substantial and still at an early stage. We have carried
out the following simulation studies to validate the approach. Fig. 5 and Fig. 6
compare the performance of our attribute encryption implementation with the
more common approach (such as [4]) that encrypts multiple instances of entire
events with each of the relevant keys. Each figure shows the average result of
three simulations for each data point.

These experiments all used the Hermes publish/subscribe system for message
routing, running over a simulated network topology of 1000 IP routers (organised
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into ten autonomous subnetworks), with fifty randomly chosen event brokers. In
this overlay network we randomly introduced ten event publishers, who, in each
iteration of the test, published a total number of 1000 events.

We used the case study scenario of Section 5 as a basis for the simulation,
generating events of type PoliceEvent. There were three groups of subscribers:
(1) public information services (S0) that filtered only on a single unencrypted
attribute (severity); (2) police officers (S1) who filtered on a single police en-
crypted attribute (location); (3) police trainers (S2) who held both police and
policeTraining keys and filtered on isDrill and location. For the attribute en-
crypted case, publishers encrypted the individual message attributes as shown
in Fig. 2. The implementation that encrypts whole events had to send up to
three instances of each event, one for each of the independent security domains
covered by a message.

The events were delivered to the subscribers, whose number (ny) we grad-
ually increased from 25 to 2000 in steps of 25. Subscribers set random filters
on event attribute values. Five per cent of all subscriptions were S2 subscrip-
tions that filtered on two encrypted attributes, one encrypted with the police
key, and the other with the policeTraining key. Thirty five per cent of all
subscriptions were S1 subscriptions that filtered on one attribute encrypted
with the police key, while the rest were SO subscriptions filtering on a single
unencrypted attribute. Note that subscriptions with filtering on encrypted at-
tributes may also include filters on unencrypted attributes. The total num-
ber of events sent within the broker network is also shown in the graphs, as
Total messages = SO + S1 + S2.

Our performance results show that with 1000 subscribers, only about 39300
messages needed to be sent when using attribute encryption, while 51400 were
sent when events were encrypted atomically with one key at a time — a 24%
saving in bandwidth. For 2000 subscribers, the savings had increased further
to 27%.
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As the number of subscribers increases, the network with attribute encryption
eventually becomes saturated by complex filtering; this is because it becomes
increasingly likely that there is a local S1 or S2 subscriber at each broker for any
given event. Thus the number of events that need to be decrypted (S1 and S2)
grows in Fig. 5, initially because of new event dissemination routes, but later
also because events previously counted under SO now need at least one attribute
decrypted; they contribute instead to S1 or S2, which explains the eventual fall-off
of the SO tally as the number of subscribers increases. However, even with 2000
subscribers there were over 11000 event hops for which no attribute decryptions
were needed.

Attribute encryption slightly increases the number of times that events need to
be decrypted for filtering. However, this is largely compensated by the fact that we
then need fewer point-to-point encryptions and decryptions within a TLS connec-
tion (total decryptions = 2 x S24 S1). For 2000 subscribers, whole event encryption
needed about 87400 decryptions, while attribute encryption required a grand to-
tal of approximately 88500, — an increase of 1.2%. However, for a less saturated
network with 1000 subscriptions, overall encryptions decreased by 2.7%.

Note that generally the overall load on event brokers is decreased still further
in our approach, since less data needs to be decrypted at each filtering decryption
step (a few attributes, as opposed to the whole event).

7 Conclusions and Future Work

Security is a crucial concern for the development of scalable messaging systems,
particularly those for the public sector where data is often highly confidential and
privacy must be guaranteed. Publish/Subscribe communication is recognised as
appropriate for large-scale systems, yet most research on it excludes security.
This paper presents our architecture for a secure publish/subscribe middleware.
Our system builds on the performance and fault-tolerance of publish/subscribe
messaging, and augments it with scalable security administration based on de-
centralised Role-Based Access Control. We assume a multi-domain architecture
for administration of roles, message types and policies.

Although our implementation uses Hermes and OASIS, our design is appli-
cable to publish/subscribe systems in general. To secure a topic-based publish/
subscribe system, whole event encryption would be used, with given events being
sent multiple times, encrypted under different keys. Our simulation takes this ap-
proach as a basis for comparison. To secure a content-based publish/subscribe
system, whole event encryption could be used, but we have shown that it is
practicable to encrypt the different attributes of an event separately.

Using an “Active City” example, we show how various public-sector, emer-
gency service notifications can be captured in an event type hierarchy, and how
access control and attribute encryption can facilitate secure and efficient com-
munication. If a type hierarchy is not available, our design equally well supports
separate services using a shared publish/subscribe system with a flat message
type-space.
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We have simulated attribute encryption and whole-event encryption for a
scenario based on the case study in Section 5. We show that our approach
reduces the number of events sent in the system, as well as the processing
required for decryptions performed by brokers. Efficiency was not the main
focus of our design; rather, we were concerned to demonstrate that the ex-
pressiveness of fine-grained access control need not incur undue implementation
overhead.

Current and Future Work. This research is part of a project, EDSAC21,
to provide secure middleware for large-scale, widely distributed applications.
The system mechanisms themselves are used to maintain role membership rules
and push changes of policy, thus facilitating immediate response to changes in
security predicates.

In [25] we present current work on ensuring the system-wide uniqueness and
integrity of message type names and versions, and [26] discusses how a bro-
ker network is assembled securely and maintained. We are currently integrat-
ing active databases and publish/subscribe. Database message types are defined
as described in Section 4.2. Database instances can then advertise the events
they are prepared to publish, and subscribers use the standard subscription
mechanism [27].

We are also working on how to support communication patterns other than
the anonymous multicast of publish/subscribe, while retaining the efficiency and
resilience of a broker network. Natural requirements are for an individual member
of a role to be selected on publication, and for any recipient to be able to reply
to a publication, either anonymously (as in voting) or identified.

We shall continue to assume stationary rather than mobile brokers. Since
OASIS is session-based we have so far assumed that mobile clients will remain
connected to a single broker during their period of subscription. We envisage
natural extensions that allow detached operation while a subscription persists,
where a local broker (or a separate service) will buffer messages on behalf of
detached clients. Future work is to investigate how best to support client mobility
during a period of subscription.

In this paper we have demonstrated the synergy between roles and publish/
subscribe communication within and between domains, and have shown the fea-
sibility of expressing and enforcing fine-grained security policy.
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Abstract. Recent trends in the global economy force competitive enterprises to
collaborate with each other to analyze markets in a better way and make deci-
sions based on that. Therefore, they might want to share their data with each
other to run data mining algorithms over the union of their data to get more ac-
curate and representative results. During this process they do not want to reveal
their data to each other due to the legal issues and competition. However, current
systems do not consider privacy preservation in data sharing across private data
sources. To satisty this requirement, we propose a distributed middleware, ABA-
CUS, to perform intersection, join, and aggregation queries over multiple private
data warehouses in a privacy preserving manner. Our analytical evaluations show
that ABACUS is efficient and scalable.

1 Introduction

Recent trends in the global economy force competitive enterprises to collaborate with
each other for the purpose of market analysis. One of the most important examples of
such collaboration is data sharing to mine and understand the market trends to be used
in decision making. However, although enterprises are willing to share information with
each other, they do not want to reveal their data. Due to the legal issues and competition
in the market, datasources want to preserve the privacy of their data while sharing them.
For example, consider a scenario consisting of two hotels, H1 and Hos, and two airlines,
Aq and A,. Assume hotel H; wants to offer a new deal to each of its customers includ-
ing hotel and flight expenses based on his/her flight history. Therefore, hotel H; needs
to learn flight history of its customers from airlines A; and As. One method to learn
flight history of customers is that airlines send all of their data to hotel H; so that hotel
H, can extract desired information. However, these airlines also work with hotel Ho,
which is a competitor of hotel H7, and thus they may not want to send all of their data
to hotel H;. That is because hotel H; can discover the customers of hotel Hy and try
to attract them. Therefore, if airlines want to work with both hotels, they cannot send
their data to any of these hotels. Similarly, hotel H; cannot send its data to airlines so
that airlines can extract the information that hotel H; needs since airlines will discover
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each other’s customers. In order to be able to collaborate, hotel H; should take its cus-
tomers’ information from airlines in a way that airlines A; and A, share their data with
hotel H; by only revealing common customers (i.e., revealing H; N A; to H; and A,
and H; N Ay to Hy and A,). By using such a method hotel H; cannot discover new
customers which may be customers of hotel H5 and also airlines cannot discover new
customers which may be customers of the other airline. In addition to this, hotel H;
may want to know the total amount of its customers’ travel expenses or total expendi-
ture of a customer for its future business decisions and offers. Other enterprises may
be willing to collaborate with hotel H, if they can preserve their privacy. The essential
operations to perform these collaborations are privacy preserving intersection, join and
aggregation queries. Unfortunately, we cannot use traditional query processing tech-
niques since they do not consider privacy issues. Therefore, there is a need for privacy
preserving query processing and data sharing across multiple private data warehouses.

Data integration and sharing has emerged as an important practical problem from
a data management point of view [3,4,7,8,9]. Techniques used for this purpose com-
monly assume that the data sources are willing to allow access to all their data without
privacy concerns during query processing. This assumption, however, is unrealistic in
real life since most of the time data sources are competing enterprises. There have been
several techniques in the areas of database and cryptography for privacy preserving data
sharing. One of them is to use trusted third parties such that data sources hand over their
data and a third party performs the computation on their behalf [1,10]. The level of trust
may not be acceptable in these methods. Another approach is using secure multi-party
computation where given m parties and their respective inputs x1, 2, .., Tm, a function
f(x1,x2,...,xm) is computed such that all parties can only learn f(z1, w2, ..., Tm) but
nothing else [6,7,11]. The computation and the communication costs make this method
impractical for database operations working over a large number of elements.

In this paper, we address the problem of privacy preserving data sharing over mul-
tiple private data warehouses. We propose a distributed middleware, ABACUS, to per-
form intersection, join, and aggregation queries over multiple private data warehouses
in a privacy preserving manner. Privacy preservation means that parties involved in the
query would only be able to learn the query result but nothing else. In addition, we intro-
duce new types of aggregation queries needed in this context and propose efficient tech-
niques to process them. ABACUS operates as a proxy among private data warehouses
and allows users to pose queries over multiple private data warehouses. Our analyti-
cal evaluations demonstrate that ABACUS provides an efficient and scalable scheme to
perform intersection, join, and aggregation queries.

The rest of the paper is organized as follows. Section 2 formulates the problem
and presents the architecture overview. Section 3 describes intersection and join query
processing. Aggregation query processing is discussed in Section 4 and the analysis is
presented in Section 5. The last section concludes the paper.

2 Problem Definition and Architecture Overview

Enterprises gather data from their multiple operational databases into a data warehouse,
which is one the most popular ways of storing data to support decision-making in or-
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Fig. 1. An Example of Star Schema

ganizations. Data warehouse systems or OLAP (Online Analytical Processing) systems
are different than OLTP (On-Line Transaction Processing) systems which are designed
for fast updates. Thus, large enterprises have both OLAP and OLTP systems to support
both an on-line community who expect fast response time for executing transactions and
off-line users who expect to analyze the data in a reasonable amount of time. Most enter-
prises create a large data warehouse, and periodically extract data from OLTP systems
into data warehouse to be able to analyze data without interfering with online users.
Data Warehouses usually use star schema for fast execution of queries over aggregated
data. Star schema has dimension tables and a fact table containing a foreign key for
each of the dimension tables. Furthermore, it is usually not normalized for efficient
query response time since fewer joins, a bottleneck in query processing, are performed.
Figure 1 shows an instance of a star schema with the fact table, Sales, and the dimension
tables, Customers, Times, and Locations. Current commercial data warehouses support
efficient methods to examine data. However, they do not support privacy preserving
data sharing across multiple private data warehouses, which is useful for analyzing the
market instead of a single company’s data.

The problem of query processing across multiple private data warechouses is defined
as follows:

Let Dy, Do, ..., D,, be the data warehouses (defined with a star schema) of
a set of m data sources P = {Pi,..., P,} and ¢ be a query spanning D
through D,,,. The problem is to compute the answer of ¢ without revealing any
additional information to any of the data sources.

Agrawal et al. [2] solved the problem of privacy preserving query processing across
private databases by restricting it to two data sources with some relaxation in an honest-
but-curious environment [6] for intersection and equijoin operations. The honest-but-
curious environment means that parties follow the protocols correctly but keep all mes-
sages sent and received during the course of the query processing. The relaxation reveals
the sizes of the tables or lists in the database to the other party. However, the proposed
technique has two shortcomings: 1) Encryption is a computation intensive operation
which is not suitable for database operations where large numbers of items need to
be processed. 2) It does not support aggregation queries, which are among the most
important queries.
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In this paper, we propose ABACUS for privacy preserving data sharing across mul-
tiple private data warehouses. ABACUS eliminates the need for third parties by taking
advantage of the star schema and executes intersection, join and aggregation queries in
a privacy preserving manner. In addition, we introduce new types of aggregation op-
erators which are useful in the context of data warehouse and solve them efficiently.
ABACUS also operates in an honest-but-curios environment and it reveals the size of
tables and lists similar to [2].

ABACUS is a distributed middleware operating on top of any commercial database
as shown in Figure 2. It provides a user interface where users can pose queries over mul-
tiple private data warehouses. ABACUS executes queries by running ABACUS nodes
operating on different data warehouses. Each ABACUS node interacts with its data
warehouse via SQL interface supplied by the underlying commercial database. Then,
it contacts other ABACUS nodes and shares its data with them to process queries in a
privacy preserving manner using the protocols proposed in this paper.

ABACUS does not aim to solve the problem of revealing additional information to
a datasource which poses multiple queries and combines their results in order to obtain
additional information about the data. In addition, it does not solve the problem of
data discovery and schema mediation. Solutions to these problems are discussed briefly
in [2] and they could be used in ABACUS.

3 Intersection and Join Query Processing

Intersection and join queries are the two important types of queries supported by cur-
rent commercial databases without privacy concerns. However, in the context of data
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sharing across multiple private data warehouses we need privacy preserving intersection
and join queries. Therefore, we will define the problems of privacy preserving intersec-
tion, and join queries and also show how to solve them efficiently in Section 3.1 and
Section 3.2 respectively.

3.1 Aggregated Intersection

Intersection queries constitute the first step for collaboration over common data items.
For example, a company may need to know other companies’ opinions about its cus-
tomers. For this kind of collaboration, two companies need to find the common cus-
tomers as a first step, i.e., intersection. The intersection of two customer lists can be
found easily unless they do not hesitate to reveal their customers to each other. How-
ever, most of the time companies may not want to reveal their customer lists but only
common customers to each other due to legal issues or competition. To support such
a type of collaboration, a method for privacy preserving intersection where parties can
only learn items in the intersection but nothing else is needed. Therefore, we first define
the problem of finding the intersection of lists in the context of data warehouse while
preserving the privacy called aggregated intersection query processing as follows:

Let L1, Lo,..., Ly, be the lists containing secret data stored by a set of data-
sources P = {P1, P, ..., P,, } respectively. For each data source P;, the prob-
lem is to find all other data sources, P;, with e € L; for each item e € L; in
a privacy preserving manner, i.e., if P; does not have e in L, then P; will not
knowe € L; .

Example 1. We illustrate the aggregated intersection problem with an example. Con-
sider three datasources Pi, P» and Ps; involved in executing aggregated intersection
query with customer tables T3, T» and T3 respectively as shown in Figure 3. At the
end of aggregated query processing, datasources will only learn the common customers
they share with other data sources but nothing else. In this example, all data sources
will know 6565 exists in tables 71, T», and 75. P, and P, will also know that 8080 is
common in their tables. Similarly, P, and Ps will know that 7070 is common in tables
T, and T3. However, P, should not be able to know that P, and Ps have 7070 in their
tables. Similarly, P; must not know that P, and P, have 8080 in their tables.

Our solution to the above problem is based on using one-way secure cryptographic
hash functions. These hash functions are widely used in many real life applications such
as password protection, message authentication, and digital signatures. The examples
of such hash functions include SHA-1, MD4, and MD5 [12]. A simple solution to the
aggregated intersection problem could use one-way hash functions and compare hashed
values of items to determine whether they are the same or not. Basically, data source
P; computes the hashed list of list L; by computing the hash value of each item in L;.
Then, it sends the hashed list to data source P; so that it can compare the incoming
hashed list with its own hashed list to find the common items in L; and L;. According
to this scheme, in Example 1, data source P; uses a hash function H and sends the list
of hashed values, {H(6565), H(7070), H(8080)}, to P» and Ps. Then, P, compares
the hashed list with its own hashed list, { H (6565), H (8080)}, and determines that 6565
and 8080 are common. Since the hash function is a one-way hash function, P, will not
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Costumers

SSN | Name Surname | Addres: Phone
6565 | Jack Brial 6616 K Rd. Xyz 93090 ZT | 890-908-4545
7070
8080

Ty
SSN | Name Surname | Addre: Phone
6565 | Jack Brial 6616 K Rd. Xyz 93090 ZT | 890-908-4545
8080

Ty
SSN | Name Surname | Addres: hone E-mail
6565 | Jack Brial 6616 K Rd. Xyz 93090 ZT | 890-908-4545| hj@utz edu
7070

T3

Fig. 3. Illustration of Aggregated Intersection

be able to know 7070 is in L;. This basic solution, however, suffers from the following
two problems: 1) If the domain size is small, then item = whose hash value is H (z)
could be computed by exhaustively searching the whole domain. 2) Hash collisions
might produce inaccurate results.

In the context of data warehouses, data sources usually have more information about
the secret items. For example, all data sources in Example 1 keep name, last name,
phone and address information as well as SSN (Social Security Number) of a customer
in their customers tables. If all of these information is used in hashing, then the domain
will become large. For instance, instead of hashing SSN, a concatenation of SSN, name,
last name, phone and address could be used in hashing, i.e., H(6565|Jack|Brial|6616 K RD
XyzZT93090|8909084545) could be used instead of H(6565) for a customer with an SSN
6565. This method allows us to enlarge the domain size and makes exhaustive search
impossible. The aggregated intersection problem is to find the common secret items in
the dimensions tables in the context of data warehouse. ABACUS uses the common
attributes in all of the tables to hash secret items i.e., the values of common attributes
are used instead of a value of a primary key. For example, the attributes SSN, Name,
Surname, Phone, and Address are common in 11, 15 and T5 in Example 1. If 5 attributes
each of which is 10 characters long are used in hashing, the domain size would be
2859 ~ 2250 which makes exhaustive search impossible.

As mentioned before, hash collisions might result in sharing a secret item which is
not in the intersection. H maps values to | DomH | which is assumed to be arbitrarily
large compare to the intersection size. Let N =| DomH |[; in the random oracle model,
the probability that n hash values have at least one collision equals [2]: Pr|collision] =
1—exp(~"$%7"). For 1024 bit hash values and » = 1 million, this probability is 1072°°
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[2]. Thus, the solution to expand the domain size minimizes the probability of data
vulnerability by exhaustive search and also helps in reducing the probability of hash
collisions, and therefore, errors in the queries are significantly reduced.

3.2 Aggregated Join Queries

One of the most important query operators supported by current commercial database
systems is the join operator. Privacy preserving join operations have not been previously
considered in database research or in current database management systems. However,
they might be needed in data sharing across private data sources. For example, a com-
pany (e.g. a hotel) might want to know the transaction details of its customers in other
companies (e.g. airlines) in the market to classify them according to their transactions.
For instance, a hotel can identify the customers that travel frequently and offer special
promotions to them. To be able to do this, it needs to join its customers table with other
companies’ sales tables. Since other companies may benefit from this process, they
might be willing to share transaction details. However, during this process companies
are not willing to reveal any information about a customer who is not a customer of
the other company as well as his/her existence. Traditional join query processing tech-
niques cannot be used to process these queries since they do not consider privacy issues.
In order to satisfy these requirements, we propose a new join operator, the aggregated
Jjoin query operator, to be used for privacy preserving data sharing across private data
warehouses. We first formally define the aggregated join query processing problem and
then propose a solution.
The aggregated join query processing problem is formally defined as follows:

Assume data source P; has a dimension table P;.T; and data sources Pz, Ps, ..,
P,, have fact tables P,. Ty, P3.T}, ..., P, . Ty respectively with common attribute
A. Then, the goal is to compute P;. Ty X Po. Ty U Py. Ty X Ps.TyU ... U Py. Ty X
P,,.Ty such that none of the data sources learn any extra information other than
the query result. Query poser P; will learn only the tuples ¢ such that ¢t € P;.T
for which t.A € P;.T;.A . In other words, P; shares a list, L, , of tuples in
P,.Ty for each value v € P,.Ty.A with P, if 3t € P,.T,; such thatt.A = v , and
nothing else where i = 2, 3..., m.

We illustrate the problem with an example. Assume the three data warehouses in
Example 1 want to execute an aggregated join query. And assume P; poses the aggre-
gated join query to find the aggregated join of its dimension table, Customers Table,
with the fact tables, Sales Table, of the other data sources as shown in Figure 4. The
problem is to provide an answer to this query without revealing any additional infor-
mation. For this example, P, will return the tuples with SSN 6565 and 8080 in its Sales
table without knowing P, has 7070 in its customers table. Similarly, Ps; will return all
tuples with SSN 6565 and 7070 without knowing P, has a customer with an SSN 8080.
In addition, P; will not be revealed the transaction details of other customers which are
not in its Customers table, e.g. a customer with an SSN 9090.

ABACUS executes the aggregated join query, (J!~, P1.T4 X P;.Ty, in two phases:
Intersection Phase and Join Computation Phase. In the intersection phase, P; and P;
compute the intersection of their dimension tables, P1.T; N P;.T,; with the method dis-
cussed in Section 3.1 (i.e., P; sends a hashed list of its customers so that P; can know
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SSN Date Amount SSN Date Amount

6565 |7/21/200: 10 6565 |7/9/2004 23

6565 19/27/200: 48 6565 19/7/2004 84

8080 [1/1/2004 23 7070 12/2/2004 79
9090 (2/2/2004 92

Sales Table at P 2 Sales Table at P 3

SSN | Name Surname | Addre hone

6565 | Jack Brial 6616 K Rd. Xyz 93090 ZT | 890-908-4545

7070

8080

Customers Table at P

Fig. 4. Illustration of Aggregated Join

common customers). Then, P; sends all tuplest € P;. Ty wheret.A € I14(Py.TaNP;.Ty)
to P1 .

During the query processing, no extra useful information gets revealed. In the inter-
section phase, all data sources compute the intersection of the dimension tables and in
the join computation phase, all data sources other than the query poser send the related
tuples from their fact tables. As a result, no site gains extra useful information other
than the intersection and the join results.

4 Aggregate Query Processing

The traditional aggregation operation is generally used to compute the aggregate of a
list of values such as SUM, AVERAGE or MIN/MAX. One kind of privacy preserving
aggregation can be thought of as computing the aggregation of values in the union of
lists coming from different data sources such that each data source will only know the
final aggregate but nothing else. To execute these queries, each data source can compute
its local aggregate and the final aggregate can be computed in such a way that none of
the data sources will know the local aggregate of other data sources (Secure multiparty
computation or the technique described in this section can be used to compute the final
aggregate value for SUM and AVERAGE). However, data sources may not be willing to
execute aggregation operations over their whole data or may want to know more than the
sum of the values in several lists. Therefore, there is a need for new types of aggregation
queries. In this section, we will introduce Row-Based Aggregation and Column-Based
Aggregation queries. We formally define Row-Based Aggregation queries and show
how to process them in Section 4.1. Then, we will present Column-Based Aggregation
queries and techniques to execute them efficiently in Section 4.2.

4.1 Row-Based Aggregation

Enterprises may want to know the total expenditure of a customer in the market. For
example, hotels and airlines may want to classify their customers based on their travel
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expenses. Without privacy concerns it is easy to perform this classification task. One
of the enterprises may collect data from all enterprises and perform the computation.
However, they may not be willing to reveal their value during this operation. For ex-
ample, an airline company may not be willing to reveal an expenditure of a customer
to other airlines since other airlines may try to attract this customer. For instance, if
a customer’s expenditure in company C; is 80, and another company C; knows that
his/her expenditure in C1 is 80, then C5 can offer a new deal to this customer and try
to attract him/her using this information. Although enterprises may not be willing to
reveal their earnings from a customer, they may want to know the total expenditure of
the customer without revealing their values. For example, these hotels and airlines may
be willing to know the total expenditure of a customer in these hotels and airlines (i.e.,
total expenditure in the market) without revealing their earnings from this customer
so that competing hotels and airlines protect their private information from each other.
Since the traditional aggregation operation is not strong enough to support these needs,
ABACUS proposes a new type of aggregation queries, Row-Based Aggregation queries,
and a new technique to execute them in a privacy preserving manner in the context of
data warehouses.

For the sake of this discussion, we will first define the row-based aggregation on a
table with two attributes namely Key and Value. Then, we will discuss how this can be
generalized to support queries in data warehouses. The Row-Based Aggregation query
processing problem is defined as follows:

Let T4, Tb,..., T\, be the tables stored by a set of source peers P = {P1, P, ...,
P} (m > 3) respectively containing a Key and a Value attributes. Each data

m

source, I, would like to learn the aggregate for each Key € Ti, 377", Value
3[Key, Value] € T;. Then, the problem is to obtain the answer of the query

without revealing any additional information.

The above problem formulation is for SUM queries. We solve the above problem
with some relaxation. The relaxation is that a data source with Key in its database can
learn who else has the same Key (Note that this information is the same as the result
of aggregated intersection). However, it is impossible to learn the Value associated with
that Key at the other data warehouses. Extending our solution to support AVERAGE
queries is straightforward and discussed briefly at the end of this section.

Example 2. Let us illustrate the problem with an example. Consider four companies,
Py, P>, P; and Py, that want to classify their customers according to their total expen-
ditures from these companies. They have tables T4, 7>, T5 and 7y each of which with
two attributes customer SSN and the amount of expenditure as [Key, Value] pairs. The
contents of the tables are as follows:

T, = {[6565, 10], [7070, 20], [8080, 30]}
T, = {[6565, 50], [8080, 30]}
Ts = {[6565, 10], [7070, 20], [8080, 30]}
Ty = {[6565, 10], [7070, 20]}

To classify customers, one should know their total expenditures in the market. In other
words, a row-based aggregation is needed for this process so that at the end of query pro-
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cessing Py, P>, Ps and P, will get the following lists respectively as an answer without
knowing any additional information: {[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [8080, 90]},
{[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [7070, 60]}. The first item in the above first list,
[6565, 80] means that the customer with SSN 6565 has a total expenditure of 80 in com-
panies P, P, P; and Ps. ABACUS can process row-based aggregation queries in a
privacy preserving manner while revealing some information which is typically accept-
able in an honest-but-curious environment. For example, each company will learn who
else has a customer with the same SSN as in its list. For instance, P; will know that
6565 exists in all data sources, while 7070 also exists in Pz and P,, and 8080 exists in
P, and Ps. During this query processing, none of the data sources will be able to learn
the value of a specific key of the other data sources. For example, P, will not learn that
6565 has an expenditure of 50 in P, , but will learn that 80 is the total expenditure of
6565 in all of the companies. Note that, if only two data sources have the same key, they
may not share their values with each other by rejecting aggregation on that key (because
they can learn each other’s value for that key). ABACUS allows users to configure their
privacy policies for this kind of policy related issues and handle them efficiently. We
will discuss these issues later in this section.

A simple technique to compute the sum of values (i.e., V1 + Vo + V5 + V4 ) for a
specific key Key in four key-value pairs [Key, V1], [Key, V2|, [Key, V5], and [Key, V4]
residing at four different parties Pi, P, Ps and P, respectively without revealing Vi,
Va, V3 and V4 could be circulating a token with a label H(Key). Using secure one-way
hash function can prevent others from learning Key if they do not have Key. The process
consists of two circulations. During the first circulation, every party, P;, would add its
value, V;, and a random number, r;, and pass the token to the next party. Therefore, P;
creates a token with a label H(Key) and adds Vi1 + r1 , then passes it to P. The other
parties follow the same protocol and pass the token to the next one. At the end of first
circulation, Pywill get Vi + 71 + Vo + ro + V3 + r3 + Vi + 74 for a token with a label
H(Key). There is no way to determine the value of a specific party during the course of
the first circulation because of the random numbers added. In the second circulation, all
parties subtract the random numbers they added during the first circulation. Therefore,
at the end of second circulation, P; would have a token with a label H(Key) and the
sum of the values for that Key, V1 + Va + V3 + V4. Although it seems secure, this basic
technique has two problems. Since this process is needed for every item in the list, using
the same random number for every item in the list may result in information leakage
such as the difference between two values. To prevent this information leakage, parties
should use a different random number for each item in their lists. Therefore, every data
source should maintain a list of random numbers it used during this process which is
not scalable for large lists. Another problem is that any two of the data sources could
collude and learn the value of another data source. For example, P, and P4 could learn
the value of Ps, V3. In the first circulation, P, would pass the token with a label H(Key)
and Vi +7r1 + Vo +ra+ Va + 73+ Vi + 7y to Py and in the second circulation, P; would
pass Vi+Vo+r2+ Vs +rs+Vi+rs to Py . Since P, and Py know Vi + 71 + Vo + 72 +
Vs +r3+ Vi +rqand Vi + Vo + 72 + V3 + r3 + Vi + 74 they could figure out r1, and
thus Vi(Note that P, passed V7 + r1 to P in the first circulation). Therefore, P> and P
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could collude and reveal the value of P; without revealing their values to each other or
to the other parties.

In order to compute aggregation securely, ABACUS uses Shamir’s secret shar-
ing technique, which allows one to compute any linear combination of secret values.
ABACUS uses this property to perform SUM and AVERAGE queries thus computing
aggregation without revealing individual values.

Shamir’s Secret Sharing

Shamir’s secret sharing method [13] allows a dealer D to distribute a secret value wvs
among n peers {P1, Pa, ..., P, }, such that knowledge of any &k (k < n) peers is required
to reconstruct the secret. Since, even complete knowledge of £ — 1 peers cannot reveal
any information about the secret, Shamir’s method is information theoretically secure.
Dealer D chooses a random polynomial ¢(z) of degree k — 1 where the constant term is
the secret value, vs, and a publicly known set of n random points. The dealer computes
the share of each peer as ¢(z;) and sends it to peer P;. The method is summarized in
Algorithm 1.

Algorithmus 1. Shamir’s Secret Sharing Algorithm

Input:
. wg: Secret value;
. D: Dealer of secret v}
. P:setof peers Py, ..., P, to distribute secret;

1:

2

3

4

5: Output:
6

7

8

9

. shareq, ..., sharey: Shares of secret, v, for each peer P;;
. Procedure:
. D creates a random polynomial g(z) = arp_12" "1+ ...+ araz’ + ao with degree k — 1 and a constant term
apg = Vs.
. D chooses publicly known n random points, 1, ...x,, such that z; # 0.
10: D computes share, share;, of each peer, P;, where share; = g(x;) and sends it to P;.

In order to construct the secret value vs, any set of k peers will need to share the
information they have received. After finding the polynomial g(z), the secret value v, =
q(0) can be reconstructed. ¢g(x) can be found using Lagrange interpolation such that
p(x;) = share; where i = 1, ..., k. The key observation is that at least k£ points and the
respective shares are required to determine a unique polynomial ¢(z) of degree k — 1.

Row-Based Aggregation in ABACUS
ABACUS executes row-based aggregation queries in three phases: Distribution phase,
Intermediate-Computation phase, and Final-Computation phase.

Distribution Phase

After the query is posed, m data sources decide on the degree of the polynomial that
is going to be used in Shamir’s secret sharing (the degree of the polynomial should
be greater than or equal to m — 1). They also choose n > m random values X =
{z1, ...,z }. Without loss of generality, we will use a polynomial of degree of m — 1
and n = m in our setting. Each data source P; has a list of Key-Value pairs, L; =
{[K1, V1], ..., [K|L;), Vi, |1}s Pi creates m shares from L;, share(Li, P1), ... ,share(Ls,
P,,), one for each of the data sources P; through P, respectively (including itself).
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P; creates the shares by applying a one-way hash function and Shamir’s secret shar-
ing algorithm to each of the elements in L;. For every element [Key, Value] in L;, P;
computes the share of data source P;, sh([Key, Value], P;) = [H(Key), ¢(z;)], using
a hash function H and Algorithm 1 with ¢(x) and X (the constant term in ¢(z) will be
replaced by the secret value, Value, to compute ¢(z) in Shamir’s secret sharing). There-
fore, the list of shares of data source P; from L; is share(L;, P;) = {sh([K1, V1], P;), ...,
sh([K|L;1»Viz,], Pj)}. Then, P; sends share(Li, P;) to the data source P;. Note that P;
keeps its share, share(L;, P;), for itself and since using the same ¢(z) would results in
information leakage, a random polynomial is used for each of the item in the list. There-
fore, random polynomials ¢; through g, are used for the items 1 through | L; | in L;.

In Example 2, assume P; with a list, L; = {[6565, 10], [7070, 20], [8080, 30]} and four
data sources decided on four random points X = {27, 65, 90, 123}. Since there are four
data sources, a polynomial ¢(z) of a degree three would be used with a hash function
H while calculating the share of each data source. As a first step, P chooses three ran-
dom polynomials for each item in its list: ¢;(z) = 22° — 222 + 10, ga(z) = ® — 52 + 20,
g3(z) = z® — 1322 + 30. Observe that the constant term of polynomial ¢; is value of the ith
item in L; and ¢; is used for the ith item in L,. Then, the shares of key-value pairs in
L, for data source P» are calculated as follows:

sh([6565,10], P2) = [H(6565), q1(z2)] = [H(6565), q1(65)]
sh([7070,20], P2) = [H(7070), q2(z2)] = [H(7070), q2(65)]
sh([8080,30], P2) = [H (8080), q3(z2)] = [H(6565), q3(65)].

Therefore, the share list for P», share(Li, P2), iS: share(Li,Ps) = {[H(6565),q:1(65)],
[H(7070), g2(65)], [H(8080), ¢5(65)]. Similarly, other data sources’ share lists are computed
and are sent to them. P, would keep share(L1, P1) for itself and sends share(L1, P2),
share(L1, Ps), and share(L1, Py) to P, Ps, and P, respectively.

Distribution phase at data source P; is summarized in Algorithm 2.

Algorithmus 2. Distribution Phase

1: mnput:

2: X:Random Values X = {z1,..,m };

3: H: Secure one-way hash function

4: L,: Secret list of Key-Value pairs at data source P;;

5: Output:

6: share(Li, P1), ..., share(L;, Pp,): Shares of secret list, L;, for each data source P;;

7: Procedure:

8: for Each secret Key-Value pair [K ey, Vs] € L; do

9:  Find share sh([Key, Vs], P;) of each data source P; for [K ey, Vi] with Algorithm 1 using a random polyno-
mial g(z) where g(x) = ap_12""" + ... + V, and the hash function H such that sh([Key, Vi], P;) =
[H(Key),q(z;)].

10:  Add sh([Key, Vs], P;) into share(L;, Pj).

11: end for

12:

13: for For each data source P; do

14:  Send share(L;, P;) to data source P;

15: end for

Intermediate-Computation Phase
After receiving their shares from the data sources, P, ..., P, each data source, P;, cal-
culates intermediate result lists, IR(L1, P;),....] R(Lm, P;), corresponding to the lists
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share(L1, P;) ....share(Lqy,, P;) respectively. The kth element of share(L;, P;) is a
key-value pair i.e., share(L;, P;)[k] = [H(Key), Value*] which is the share of P; from
the [Key, Value] pair in L; (share(L;, P;)[k][1] = H(Key) and share(L;, P;)[k][2] =
Value*). P; computes the intermediate result lists as follows:

IR(L;, P)[K][1] = share(L;, P;)[k][1]

IR(Lj, P;)[K][2] = > v, (share(Ly, P;)[g][2] s.t.3 g where share(Ly, P;)[g][1] = IR(Lj, P;)[K][1]),
ie,INTER — RES;.

In Example 2, P, would have lists share(L1, Py1), share(Lz, P1), share(Ls, P1) and
share(La4, P) where

share(Ly1, Py) = {[H(6565), 120], [H(7070), 320], [H (8080), 400] }
share(L2, P1) = {[H(6565), 100], [H (8080), 600] }

share(Ls, P1) = {[H(6565), 3500], [H(7070), 900], [H (8080), 90]}
share(La, P1) = {[H(6565), 110], [H(7070), 80]}

Then, in the intermediate computation phase, Piwill compute I R(L1, P1) IR(L2, P1),
IR(Ls, P1) and IR(L4, P1) and send them to data sources Pi, P>, P; and P, respec-
tively. For example, IR(Ls, P1) is computed as follows: Since H(6565) exists in all
lists, the values associated with it, 120, 100, 3500 and 110 in share(L:, Py) through
share(L4, P1) respectively, are added. Therefore, IR(Ls,P1)[l] = H(6565) and
IR(Ls, P1)[2] = 120+100+3500+110 = 3830. The same calculation is performed for all
items in the list resulting in TR(L3, P1) = {[H(6565), 3830], [H(7070), 4900], [H (8080), 1090]}.

The intermediate computation process at data source F; is summarized in
Algorithm 3.

Algorithmus 3. Intermediate Computation Phase

1: mnput:

2: Sharer: Set of share lists, Sharer, = {share(L1, P;), .., share(Lm, P;) };

3: Output:

4: Set of intermediate result lists { TR(L1, P;), .., IR(Lm, P;)} to send back to the data sources P = { Py, ..., Py, }
respectively;

5: Procedure:

6: for each list share(Ly, P;) € Sharer, do

7. forj =1;j < |share(Ly, P;)| do

8: IR(Ly, Pi)[5][1] = share(Ly, P;)[5][1]

9: if share(Ly, P;)[j][1] = share(L;, P;)[o][1] such that 3 [ and o where I < mand 1 < o <|

share(L;, P;) | then

10: IR(Ly, P;)[5][2] = IR(Ly, P;)[5](2] + share(Ly, P;)[o][2]

11: end if

12:  end for

13: end for

14: Send IR(L1,P;),....,]R(Ly,, P;)to P1,..., Py, respectively

Final-Computation Phase

In the final computation phase, data source P; retrieves its intermediate result lists,
IR(L;, P1) ,...IR(L;i, Py) from all m data sources. Since all data sources compute the
sum of their shares for a specific Key, the kth entry of an intermediate list contains H (K ey)
and the sum of shares for Key. Therefore, for a Key-Value pair in L;, the correspond-
ing entry k in the intermediate result lists are: IR(L;, P.)[k] = [H(Key), INTER — RES1],
IR(L;, P2)[k] = [H(Key), INTER — RES2], ..., IR(L;, P)[k] = [H(Key), INTER — RESp,)].
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In the final computation phase, data sources calculate the sum for each Key from
the m intermediate results. Since all data sources use a random polynomial degree of
m — 1 and compute the shares of all data sources using m points, X = {z1,z2,..,Zm},
these result in a polynomial P(z) = am—12™"* + ... + a1z’ + ap where constant term,
ao, is the sum of the values for Key and P(z;) = INTER — RES;. The coefficients of
P(z) and thus the sum of the values could be computed because the values of P(z) are
known at m different points (P(z;) = INTER — RES;).

Proof of Correctness

A data source P; constructs a random polynomial ajz ' 4b;z™ 2 +...+ Value to hide
the secret values for each [Key, Value] pair. After generating this random polynomial,
it computes the share of P; as (H(Key), [ap;z]" "' +bp,x]" > +...4+vp,]) for each secret
key-value pair, where vp; = Value and sends the shares of the other data sources. After
P; receives the shares from all m data sources, it sends the sum of values which have
the same key. Without loss of generality, assume [ of the m data sources have the same
Key with the secret values v, through v; respectively. Then the sum for that Key is in the
following form:

m—1 m—2
arx; + bix] et vt

r—1 -2
aze]" " +bax" T+ v2t

amcﬁ”fl + blac;"72... + v

Therefore, P; sends its results INTER — RES; = (a1 + a2+ ...+ a)z" "' + ...+ SUM
to the parties having Key in their lists, where SUM is the sum of the secret values

(SUM = v1 + v2 + ... + v;) for the values that have the same key, Key.
Each data source receives m results from each of the data sources (including itself)
for each key in its [Key-Value] list:

INTER — RES: = (a1 + a2 + ... +a))z]" "t + ...+ SUM
INTER — RESs = (a1 +az + ... +a))zl ' + ... + SUM

INTER — RES,, = (a1 + az + ... + a))z™ "' + .. + SUM

Since X = {z1,z2, .., zm } is known by all data sources, there are a total of m unknown
coefficients including SUM and m equations in the above system of equations. There-
fore, SUM can be derived by using the above equations. The data source, P;, cannot
know the value of the other data sources, since the coefficients of the polynomials used

by other data sources are not known by P;.
For the average query, P, sends INTER — RES; = [(a1 + a2 + ... + @)
"' 4 ... + SUM]/l where INTER — RES; = (1@ fFepm=t o L AVG)

and AVG = "1+v2FF%  Therefore, each data source receives m results:

INTER — RES, = (“1Te2fdedm—1 4 4 ave
INTER — RES, = (a1+a2+ Fayp) a L4 4 AVG

INTER — RES,, = (“1*o2f+al m=1 4 4 avg

Lo
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Again, since X = {z1,z2,..,x,} is known by the data sources, there are m unknown
coefficients including AV G and m equations and thus, AV G can be derived from the
above equations.

Row-Based Aggregation in Data Warehouses

After the query is posed, data sources create lists of [Key, Value] pairs using their fact
and dimension tables so that row-based aggregation can be performed over them with
the above technique. All information in the dimension table about a tuple in the fact
table is used to form a Key for that tuple. The tuple from a fact table is added into
the list as [Key, Value] pairs where Value is the value associated with that tuple. For
example, data source P, in Figure 4 creates [Key-Value] pairs as follows: for a tuple
with SSN 6565, it retrieves other information about 6565 from the customers table such
as name, surname and address. Then, it combines those information to create the Key
for this tuple and the amount is used as the Value.

Properties of the Algorithm

Data sources use a one-way hash function to hide Key, and thus all of the data sources
will learn H(Key). Only those data sources which have Key would be able to know
Key and its existence at data source P;. In addition, P; uses Shamir’s secret sharing
to hide the value associated with Key from other data sources. It uses a polynomial
degree of m — 1 and m random points to compute shares of the m data sources. Then,
it keeps one of these shares for itself and sends the remaining m — 1 shares to the other
parties. Since all of the m shares are needed to reveal the secret value in Shamir’s secret
sharing method, the other data sources would not be able to compute the value, even if
they combine their shares coming from P;.

In general, for any Key at any data source P;, any data source P; can prevent ex-
ecution of aggregation for that Key. Since one of the m shares is sent to P;, P; can
prevent aggregation on Key by not sending the intermediate result to the other data
sources. Therefore, other data sources would not be able to learn SUM for Key. Us-
ing this property, ABACUS allows data sources to control sharing the value of Key
with other data sources. This might be needed since if only two data sources have Key,
performing row-based aggregation will result in revealing the values to these two data
sources (the result is the sum of the two values, and since these data source know their
values, they can figure out the other value from the result). Note that, if Key exists in
only one data source, then the owner can protect it from other data sources This can
easily be done by preventing aggregation on Key. In addition to these, data sources can-
not figure out something from their shares using the distribution of values since they are
random values (i.e., a random polynomial is used for each item in the list to compute
the shares).

4.2 Column-Based Aggregation

Enterprises might want to know the size of the market and some statistical information
about the market where they compete. In addition, they might be interested in expen-
ditures of their customers such as the ratio of their expenditures in their companies to
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their total expenditures in the market. In other words, a company might want to know
how much it satisfies the needs of customers. Therefore, companies might be willing to
collaborate to perform these kinds of operations however, they might not want to reveal
extra information, for example a company might not want to reveal how much it satisfies
the needs of its customers. One way to compute the market size in a privacy preserving
manner is to aggregate the expenditures of all customers in that market. Formally, data
sources Pi, P, .., P, might want to know sum of their local sums LS1, LS, ..., LS,
respectively, and the global sum GS = LS; + ... + LS,,, without revealing their local
sums. This problem could be solved with the technique discussed in Section 4.1. How-
ever, in a competitive environment it is unrealistic to expect enterprises to share their
local sums. For example, a big company with 1000 customers might not be willing to
share its local sum which is the sum of its 1000 customers with a small company with
10 customers. Instead, it might want to collaborate for the common customers to com-
pute their total expenditures, so that both companies could learn how much they satisfy
the needs of their customers. However, during this process they do not want to reveal
any additional information. In order to satisfy these needs, we introduce column-based
aggregation.

Formally, the column-based aggregation query processing problem is defined as
follows:

Let Ty, T>,..., T, be the tables stored by a set of data warehouses P={P1, P, ...,
P} (m > 3) respectively containing a key and a value field. The data source P;
would like to learn the aggregation of values for all Keys in T;, i.e., >y oy e,

v (Value s.t. I[Key, Value] € Tp A IKey € T;). Then the problem is to
obtain the answer by only providing the aggregation result to P; while reveal-

ing only the common Keys to other data sources.

The goal of the query processing is to compute column-based aggregation such
that the data source posing the query, P;, would only know the result of the query,
> VKeyeT; S (Value s.t. 3[Key, Value] € T, A IKey € T;), while other data
sources would only know the Keys in T; if they have those Keys. The query processing
consists of three steps:

— Intersection Phase: Data source P; sends the list of hash values of Keys in T;. On P;
receiving this list, P; computes the common keys in tables 7; and 7); (by hashing
its keys in 7; and comparing them with the list coming from F7;).

— Local Aggregation for Intersection Phase: Data source P;, computes the local sum
of values, local sum, for the common keys between P; and P;. Formally, the local
sum, LS, at data source P; is: LS; = > ., eq, (Value s.t. I[Key, Value] € T; A
dKey € Ty).

— Global Aggregation Phase: Data sources compute the global sum, GS, which is
the sum of local sum of m data sources. They compute GS = " | LS; with-
out revealing the local sums with the technique discussed in Section 4.1 (One
could think of the data sources, P, ..., P, have the following [Key, Value] pairs
[P;, LS1),....[P;, LSm] respectively and they want to compute the row-based aggre-
gation for the key P;, which is the global sum).
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The proposed query processing method computes column-based aggregation queries
correctly. The answer to the column-based aggregation query for data source P; is
Pvkeyer, 2one1 (Value sit. I[Key,Value] € Tx A 3Key € T;). The proposed tech-
nique computes the local sum at each data source in local aggregation for intersection
phase where LS; = 3" . cr. (Value s.t. 3[Key, Value] € T; A 3Key € T). Then, in
global aggregation phase the sum of all the local aggregations are computed as answer
whichis 370, LSk, 1.6, 3 v xeyer, 2onet (Value sit. I[Key, Value] € T NIKey € Tr).

At the end of the query processing other data sources will only know their common
Keys with the query poser P; and P; will only know the result of the column based ag-
gregation query result but nothing else. After intersection phase, the other data sources
will know the common elements between P; and them but nothing else, since one-way
hash function is used to hide Keys. During local aggregation for intersection phase,
the data sources would compute their local aggregates. Then, in the global aggregation
phase, they compute the sum of the local aggregations without revealing their local ag-
gregations to anybody with the row-based aggregation. Therefore, P; would only know
the global aggregation result, which is column based aggregation result but not the local
aggregations. And the other data sources would not know any other local aggregation
and the global aggregation results unless P;wants them to know (Note that if P; does
not send its intermediate result to other data sources, they cannot compute the global
sum in the row-based aggregation in Section 4.1).

5 Analytical Evaluation

In this section, we compute the query response times for the proposed query processing
techniques. The query responses time for intersection and join queries are studied in
Section 5.1. Then, the query execution costs of row-based aggregation and column-
based aggregation queries are calculated in Section 5.2. Finally, we show the query
response times of the queries over a sample scenario to demonstrate the scalability of
our technique in Section 5.3.

5.1 Cost of Intersection and Join Query Processing

Data source P; hashes its list and sends to m data sources. Then, it compares its list with
other datasources to find the intersection. Therefore, the computation cost is the cost of
hashing the list and the cost of comparisons. Let C}, be the cost of hashing a single item
and every hashed word is b bits long. The computation time for hashing is: C}, x |L;] .
The number of comparisons to compare the hashed list, L,, with the other lists coming
from other data sources is (assuming lists are sorted) less than (m — 1) x |L;| without
loss of generality assume L; is the longest list. The time needed for this comparison is:
g};}{;p‘fe’;} seconds. Therefore, total computation time is: Cj, x |L;| + %"P’l}?;fe 14‘ The
communication time is the sum of the time needed to send its own hashed list and the
time to receive the m — 1 hashed lists from other data sources. Therefore, total commu-
nication time is: **(E11%-*[LmD) “The query response time, the sum of the computation

. . Bandw}'dth
and communication cost, is:

(m—1) x [Li|  bx (|L1] + o + |Lm])

L; .
Cn x |Lal + CPU Speed Bandwidth
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In the aggregated join, the first step is aggregated intersection. After this first step,
data source P; sends the related tuples to P;. The query response time is sum of the cost
of aggregated intersection and the cost of sending related tuples. Therefore, the query
response time for aggregated join is:

The cost of intersection + m x |L] x v
Bandwidth

where v is the size of a tuple ¢ € Tk.

5.2 Cost of Aggregation Query Processing

The Cost of Row-Based Aggregation Query Processing

In the distribution phase, data sources compute the hash value of keys and the shares of
m data sources. Therefore, the computation cost is C;fUXS‘ pLele 4+ Cr x |L]. The communi-
cation cost is sending these shares to other data sources and receiving shares from other
data sources, which is 23" *I"1<? 'where b is the size of a Key-Value pair.

In the local aggregation phase, the computation cost is scanning all lists and adding
the values for a specific key (computation of intermediate result lists). The amount of
addition is less than m x |L| . Thus the cost of computation in the local aggregation
phase is C;fUXS‘ pLele ., (assuming that lists are sorted and are of the same size). After this
computation, P; sends intermediate results lists to m data sources and receive its inter-
mediate result lists from m data sources. The communication cost for this operation is
2xmx|LI P (note that the size of intermediate lists is equal to the size of lists).

In the final aggregation phase, P; solves an equation system for each element in
the list. Thus, the computation time is |L;| x Ceq, Where Ceq is the cost of solving an
equation with m unknowns.

The query response time for row-based aggregation query is (without loss of gener-

ality, assume all lists are size of |L|):

dxmxbx|Ll  2xmx|L|

~ |L
LI % Cr+ Bandwidth CPUspeed

+ L] X Ceq.
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Fig. 5. The Query Response Time for Intersection Queries
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The Cost of Column-Based Aggregation Query Processing

The column-based aggregation query processing consists of three phases: 1) intersec-
tion phase 2) local aggregation for intersection 3) global aggregation. In the intersection
phase, data source P; sends its hashed lists to m data sources. The communication and
computation cost for this phase is:

m X b x ‘Ll‘
C x Li
b ILel + Bandwidth
The cost of computation in local aggregation for intersection phase is PlUL;;Lee . (data

sources calculates the sum of values in the intersection). Remember that there is no
communication in this phase. The cost of global aggregation phase is negligible since
the cost of the summation of m values using m parties is negligible in this context.
Therefore, the cost of column-based aggregation query processing is:

Cn x |Lal + Bandwidth =~ CPUspeed
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5.3 Query Response Times over a Sample Scenario

We demonstrate the query response time of ABACUS for intersection and row-based
and column based aggregation queries over a sample scenario to show that it is scalable
and efficient. We compute the response times for queries in an environment where m
data warehouses each of which with a dimension table and a fact table size of 1 million.
We execute the queries over these data warehouses by varying the bandwidth and the
number of data warehouses involved, m. Figures 5, 6, and 7 show the query response
time for intersection, row-based aggregation and column-based aggregation queries.
During these calculations we take the size of key-value pair, b, as 1024 bits, the cost
of hashing, Cj,, as 10~* [5] seconds and the cost of solving an equation, Ce,, as 107"
seconds (the time needed to solve an equation system with 20 unknowns in Matlab).
The analytical evaluations and the results over the sample scenario demonstrate that
ABACUS is scalable in terms of the number of parties participating in queries and the
cost is increasing linearly with the number of parties involved. In addition as results
show that the query processing is communication intensive operation since ABACUS
uses light-weight computations.

6 Conclusion

In this paper, we propose a distributed middleware, ABACUS, to perform intersection,
join and aggregation queries over multiple private data warehouses in a privacy preserv-
ing manner. In addition to this, we present new types of aggregation queries which are
needed for privacy preserving data sharing. Analytical evaluations demonstrate that the
proposed scheme is efficient and scalable.
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Abstract. Causeway provides runtime support for the development of
distributed meta-applications. These meta-applications control or ana-
lyze the behavior of multi-tier distributed applications such as multi-tier
web sites or web services. Examples of meta-applications include multi-
tier debugging, fault diagnosis, resource tracking, prioritization, and se-
curity enforcement.

Efficient online implementation of these meta-applications requires
meta-data to be passed between the different program components. Ex-
amples of metadata corresponding to the above meta-applications are
request identifiers, priorities or security principal identifiers. Causeway
provides the infrastructure for injecting, destroying, reading, and writing
such metadata.

The key functionality in Causeway is forwarding the metadata asso-
ciated with a request at so-called transfer points, where the execution of
that request gets passed from one component to another. This is done au-
tomatically for system-visible channels, such as pipes or sockets. An API
is provided to implement the forwarding of metadata at system-opaque
channels such as shared memory.

We describe the design and implementation of Causeway, and we eval-
uate its usability and performance. Causeway’s low overhead allows it to
be present permanently in production systems. We demonstrate its us-
ability by showing how to implement, in 150 lines of code and without
modification to the application, global priority enforcement in a multi-
tier dynamic web server.

1 Introduction

Many applications, e.g., web sites generating dynamic content and web service
applications, have multi-tiered implementations. A multi-tier application is com-
posed of multiple program components communicating among themselves to ex-
ecute incoming requests. In such applications, a request is executed by multiple
threads of control on different application components, the threads of control
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exchanging data among themselves along communication channels. For exam-
ple, an application may be composed of a web server, an application server, and
a database server: requests are executed by all three programs communicating
with each other to exchange request data.

Often, systems to control or analyze the execution of multi-tier applications
are written to perform tasks like multi-tier debugging, fault diagnosis, resource
tracking, prioritization, and security enforcement. Examples include Pinpoint [5],
Magpie [4,9], and Domain and Type Enforcement (DTE) [3] for Unix systems.
We term these and similar systems that control or analyze the execution of
multi-tier applications as meta-applications.

Traditionally, there have been two approaches to writing such meta-
applications: a log-based approach, and a metadata-passing approach. The log-
based approach operates in two phases — first, execution events of the applica-
tion are recorded in logs, and next, the log records are analyzed. Magpie [4,9] and
TraceBack [2] are examples of systems employing this approach. The log-based
approach cannot affect the execution of requests in an online manner because pro-
cessing of a log record lags the corresponding execution event by a positive time
delay. Additionally, the execution events on the different tiers belonging to the
same request need to be identified and connected while processing the log records.

The metadata-passing approach propagates metadata — arbitrary, out-of-
band data — in addition to request data along execution paths. The meta-
application accesses and utilizes this metadata to achieve its goal. Often, the
metadata also serves in connecting a request’s execution events spread across
the tiers of the system, e.g., if it contains a request identifier. Several examples
of meta-applications using this approach exist in the literature, e.g., Pinpoint [5]
and DTE [3]. Pinpoint and DTE use request identifiers and security principal
identifiers as metadata respectively. These meta-applications use hand-crafted
code to handle and propagate metadata.

Unlike the log-based approach, the metadata-passing approach can affect the
execution of requests in an online manner, e.g., Real-Time CORBA [10] which
propagates priorities among application components to affect scheduling. Hence,
we adopt the metadata-passing approach to building meta-applications. Our
objective is to provide a framework that makes development of meta-applications
using this approach easier.

In this paper we introduce Causeway, a framework to facilitate the associa-
tion and propagation of metadata along request execution paths in a multi-tier
application. Causeway provides an interface to associate metadata with threads
of control and facilitates the propagation of metadata across communication
channels. Causeway aids the development of meta-applications by performing
all necessary management to handle and propagate metadata. This obviates
the need for hand-crafted code for the common requirements of different meta-
applications employing the metadata-passing approach.

The alternative to Causeway, propagating metadata at application level, in-
volves augmenting all application-level inter-process communication protocols —
a tedious solution. By making propagation of metadata a system-level function,
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it becomes independent of the application-level communication protocol used.
Further, in a multi-tier application, it is possible that some individual compo-
nents are unaware of the presence of metadata or choose to ignore it. Consider
a three-tier system, where the middle tier component is unaware of metadata.
The front and the back-end tiers may still, however, need to access metadata.
In this scenario, system support for metadata propagation is required in the
middle tier.

Causeway performs automatic propagation of metadata across system-visible
communication channels. Such channels are those implemented in the operating
system kernel and system libraries, e.g., pipes and sockets. Augmented kernel
and system libraries provide Causeway’s support for system-visible channels.
Causeway provides an API to be called from application code to perform meta-
data propagation across system-opaque channels, e.g., shared memory. Support
for system-opaque channels is the essential difference between Causeway and
Stateful Distributed Interposition (SDI) [11].

We have implemented a prototype of Causeway, measured its overhead, and
built a useful meta-application using Causeway. We summarize our experience
with Causeway as follows:

— Adding support to propagate metadata across system-visible channels re-
quired modest effort.

— The measured overhead of Causeway to propagate metadata was small in
absolute cost (order of microseconds) and it scaled well with increasing meta-
data size. The overhead of Causeway, while not propagating any metadata,
was insignificant — less than 3% for a microbenchmark involving the pipe
channel. Thus Causeway may reasonably remain a part of a production en-
vironment whether implementing a meta-application or not.

— Using Causeway we could rapidly implement a distributed priority enforce-
ment system where the priority of a request is injected and propagated as
metadata, and accessed to implement global priority scheduling. This re-
quired writing only about 150 lines of code on top of Causeway to change
the priority of threads executing requests. We evaluated this system on an
implementation of the TPC-W [12] benchmark.

The rest of the paper is organized as follows. We describe the design of
Causeway in Section 2. In Section 3 we measure Causeway’s overhead with two
microbenchmarks. In Section 4 we evaluate Causeway’s complexity to support
system-visible channels, and measure the overhead of Causeway on an implemen-
tation of the TPC-W benchmark. We describe the distributed priority enforce-
ment system using Causeway in Section 5. Related work is covered in Section 6.
We conclude in Section 7.

2 Causeway Design

At an abstract level, Causeway works as follows. A request to an application is
executed by one or more threads of control, possibly in one or more tiers. Threads
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exchange request data along communication channels, e.g., sockets, pipes and
shared memory. Causeway’s interface supports injection, inspection, modifica-
tion and removal of metadata. Metadata is assigned to a thread when it performs
injection. When a thread sends request data to another thread along a channel,
Causeway transfers metadata from the former thread to the latter. Support for
metadata propagation is required at transfer points where an application thread
sends to or receives data from a channel. In this way, metadata, once injected,
is propagated along the request execution paths.

Causeway has two parts: (1) a set of interfaces that are used by applica-
tions to manage and utilize metadata, and (2) mechanisms that implement
propagation of metadata. First, we describe the structure and composition of
metadata.

2.1 Metadata

Metadata in Causeway consists of a two-tuple containing the metadata type
and the metadata value. Examples of metadata types include request priority,
request identifier, and security principal identifier. Meta-applications can define
new metadata types, if required.

2.2 Interfaces

Meta-applications can interact with Causeway in two ways — through an in-
terface to inject and access metadata and through a callback interface in which
Causeway calls handlers registered by the meta-application.

Metadata Interface. Causeway provides interfaces for injection, inspection,
modification, and removal of metadata. These interfaces may be called from
user-level or kernel-level.

Causeway manages metadata in a dictionary keyed by the address of the
associated entity. An entity is either a thread of control or data that is read from
or written to a channel. A thread’s metadata is propagated to the data written
on a write operation, subsequently this metadata is propagated from the data to
a thread performing a read operation. Further, a thread can remove metadata
associated with itself or a data entity. Table 1 shows the function signatures of
the Causeway API. The Causeway API performs metadata operations in the
following manner:

Table 1. The Causeway API

int cw type query(void *addr, int types[], int ntypes)

int cw data lookup(void *addr, int mtype, struct cw metadata *md p)
int cw data insert(void *addr, int mtype, struct cw metadata md)
int cw data remove(void *addr, int mtype)
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— cw type query retrieves the collection of all metadata types associated with
addr in the types array of size ntypes. On successful completion,
cw type query returns the number of metadata types retrieved and -1 on
error. The types array must be large enough to hold all the metadata types
associated with addr otherwise an error is flagged.

— cw data lookup retrieves the metadata of type mtype associated with addr.
It returns 0 on successful completion and -1 on error.

— cw data insert inserts the given metadata md of type mtype and associates
it with addr, overwriting any prior metadata of that type. It returns O on
successful completion and -1 on error.

— cw data remove removes any existing metadata of type mtype associated
with addr. It returns O on successful completion and -1 on error.

Callback Interface. Using Causeway’s callback interface the meta-application
can register a transfer-point callback method. A transfer point is a point where
data is read from or written to a channel by a thread. At a transfer point
Causeway determines if the type of the metadata being passed has a callback
method registered. If a callback method exists, it is invoked with the metadata
as an argument. The callback method reads and possibly modifies the metadata.
The callback method can call arbitrary operating system code, e.g., to change
the priorities of threads.

The signatures of a callback method and the callback interface are shown
in Table 2. A callback method is of type callback t. The callback interface,
reg callback method, registers a given callback method for a given metadata
type at a transfer point.

Table 2. The Callback Interface

typedef void (xcallback t) (struct cw metadata **md, int mtype);
callback t callback method;
void reg callback method(int mtype, callback t callback method);

2.3 Support for Propagation of Metadata

When a thread performs a write on a channel, the thread’s metadata is associated
with the data written into the channel. On a subsequent read on the channel by
a thread, metadata is propagated from the data and assigned to the thread.

There are two ways metadata can be assigned to a thread — injection and
propagation across a channel. Newly assigned metadata replaces the thread’s
existing metadata of the same type.

Transfer Points. Places where a thread writes to or reads from a channel are
transfer points. Channels are of two types: system-visible channels that occur
in the operating system kernel and system libraries, e.g., sockets and pipes,
and system-opaque channels that occur in the application, e.g., shared memory.
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Causeway exports a Systems Programming Interface (SPI) consisting of a single
function cw metadata xfer for the purpose of implementing transfer points.
cw metadata xfer takes a source entity and a destination entity as arguments.
It obtains the source entity’s metadata and assigns the obtained metadata to
the destination entity. At a transfer point for either a system-visible or system-
opaque channel, a single call to cw metadata xfer is performed.

2.4 System-Visible Channels

For system-visible channels, the metadata transfer SPI is automatically called
from an augmented kernel and system libraries to implement Causeway’s sup-
port for metadata propagation. Sockets and pipes are system-visible channels
supported by Causeway. Further, for a multi-threaded program, metadata needs
to be propagated between the user-level thread and the kernel-level thread on en-
try to and exit from the kernel because multiple user-level threads may be multi-
plexed on top of a kernel-level thread. Metadata propagation between a user-level
thread and a kernel-level thread constitutes additional system-visible channels in
Causeway. We enumerate below the transfer points for system-visible channels:

1. User-level thread to kernel-level thread: On entry to the kernel, Causeway
transfers metadata from the user-level thread to the kernel-level thread run-
ning it.

2. Kernel-level thread to user-level thread: On exit from the kernel, Causeway
transfers the kernel-level thread’s metadata to the user-level thread.

3. Kernel-level thread to message: When a kernel-level thread writes a message
on a socket or a pipe, its metadata is transferred to the message.

4. Message to kernel-level thread: When a kernel-level thread receives a message
from a socket or a pipe, metadata is transferred from the received message
to the kernel-level thread.

These transfer points occur in the operating system kernel and the threading
library.

Causeway handles sockets and pipes similarly. When a thread writes to a
socket (or a pipe), Causeway associates metadata from the thread to the data
written via the metadata transfer SPI described above. Similarly, on a subse-
quent read from the socket by another (or the same) thread, metadata is prop-
agated from the data to the thread.

The above applies for LOCAL sockets only. For INTERNET sockets, data is
encapsulated in IP packets for send and receive across sockets. Causeway encap-
sulates metadata, in addition to data, in the IP packets. For IPv4, Causeway
encapsulates metadata in the IP header as IP options. In particular, Causeway
defines a new IP option type, populates the IP header with the option type,
length, and payload. At the receiver side, metadata, if any, is extracted from
the received IP options. Since IP options can be a maximum of 40 bytes only,
with 1 byte each for the type and length fields, via this mechanism Causeway
can transfer at most 38 bytes of metadata in IP packets. This limit on metadata
size is deemed enough for most practical purposes. This limitation is an artifact
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of Causeway’s implementation and not its design. A general purpose tunneling
protocol could be used to overcome this limitation, if required. For IPv6, Cause-
way uses the destination options in the IP header which does not have any size
limitation. Further details about that are outside the scope of this paper.

2.5 Shared Memory — System-Opaque Channel

For system-opaque channels, the application must be modified to call the meta-
data transfer SPI to perform propagation of metadata. Causeway supports meta-
data propagation across shared memory — a system-opaque channel imple-
mented in user-space. A transfer point needs to be inserted in the application
where a user-level thread reads from or writes to shared memory. Producer-
consumer is a popular model of shared memory usage. At an abstract level,
the model works as follows. Producers and consumers share a buffer or queue
of objects. A producer creates an object, acquires a lock to enter the critical
section, adds the object to the shared buffer or queue, and releases the lock.
A consumer acquires a lock to enter the critical section, retrieves and removes
an object from the shared buffer or queue, releases the lock, and then accesses
the retrieved object. The use of system-supported synchronization primitives,
like pthread mutex or pthread rwlock, simplifies the task of identifying the
producer-consumer communication channels through shared memory.

Two transfer points, one in the producer code and the other in the con-
sumer code are inserted. Both transfer points use the metadata transfer SPI.
The producer transfer point associates the producer thread’s metadata with the
produced object. The consumer transfer point retrieves the metadata associated
with the consumed object and propagates it to the consumer thread. Causeway
provides a user-level library that exports the metadata transfer SPT and manages
the metadata associated with shared memory objects.

2.6 Heterogeneity of Operating System Kernel and Hardware

It is quite common for a multi-tier application to be spread across machines
running heterogeneous operating system kernels on diverse hardware platforms.
The design of Causeway mandates that all inter-machine metadata propagation
be typed and be transmitted in network byte order. This ensures correct inter-
pretation of metadata at the receiver. Further, our implementation of Causeway
in FreeBSD lays out a blueprint for its implementation in other operating system
kernels. In Section 4.1 we list the transfer points in the FreeBSD kernel required
for the system-visible channels. An equivalent set of transfer points is required
in another operating system kernel, such as Linux.

2.7 Operating System Specific Meta-applications

Sometimes, parts of a meta-application may require modifications to the oper-
ating system kernel. Under such circumstances, the meta-application becomes
operating system specific. For example, we implemented a distributed priority
enforcement system on top of Causeway which may alter priorities of threads
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and processes in a system — an operating system specific task. Thus, this meta-
application is operating system specific. On the other hand, if all we wanted in a
meta-application is to tag identifiers with requests, it would require no operating
system modification other than Causeway itself.

3 Microbenchmarks

In this section we quantify the overhead imposed by our implementation of
Causeway at the transfer points for two system-visible channels. We chose light-
weight applications to provide maximum exposure to Causeway’s overhead. We
wrote two microbenchmarks: the first measuring the overhead associated with
the transfer points for metadata propagation between a user-thread and a kernel
thread, and the second measuring the overhead for the transfer points for the
pipe channel.

In the first microbenchmark, a process creates a pthread which invokes a
getpid call. This test brings out the cost of metadata propagation across the
user-kernel boundary, because on each entry to and exit from the kernel, meta-
data is transferred from user space to kernel and vice versa. We repeat the getpid
call multiple times and measure its average cost. We perform this experiment un-
der the following scenarios: (1) without inserting the transfer point, which is the
base case, (2) inserting the transfer point but transferring 0 bytes of metadata,
(3) transferring 1 byte of metadata, and (4) transferring 32 bytes of metadata.

Table 3 shows the results of the above experiment. The cost of getpid in-
creased by about 840 machine cycles when a transfer point was introduced. We
used a 2.4 GHz Pentium 4 Xeon, so this overhead translates to about 0.35 mi-
croseconds. This result shows the cost of having the Causeway framework but
not using it to propagate any metadata. The overhead increased by about 1500
machine cycles or about 0.6 microseconds when transferring 1 byte of metadata.
To transfer 32 bytes of metadata, the further increase in overhead was small:
about 40 machine cycles or 0.02 microseconds. In relative terms, the overhead
with respect to the base case ranged from about 12% to less than 35% to transfer
metadata in the above test.

The results of the above experiment show that the overhead of using Cause-
way is small. The overhead of inserting a transfer point is less than half of a
microsecond. The overhead of transferring 32 bytes of metadata is about 1 mi-
crosecond, and the overhead scales well with increasing metadata size.

Table 3. Causeway Overhead (getpid test)

Description Cost (machine cycles) Cost (microseconds) Overhead (%)
Base case 7001 2.92 -
0 byte metadata 7841 3.27 12.0
1 byte metadata 9369 3.90 33.8

32 bytes metadata 9409 3.92 34.4
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Table 4. Causeway Overhead (pipe test)

Description Cost (machine cycles) Cost (microseconds) Overhead (%)
Base case 35782 14.9 -
0 byte metadata 36807 15.3 2.9
1 byte metadata 49858 20.8 39.3
32 bytes metadata 54383 22.66 52.0

The second microbenchmark measures the cost of transferring 1 byte of data
between two processes across a pipe. As before, we perform this experiment
under the four scenarios used in the previous microbenchmark. Table 4 shows
the result for the pipe test. The overhead of inserting a transfer point but passing
no metadata is similar to that of the getpid test. The overhead of passing
metadata is higher because the metadata is propagated across address spaces.
Nevertheless, the overhead of propagating up to 32 bytes of metadata is less than
8 microseconds, a small amount. Finally, the overhead scales well with increasing
metadata size. In this test Causeway’s overhead ranged from less than 3% to
about 52% over the base case.

Note that for the above measurements we could not use a microbenchmark
consisting of a network server and client as the cost of sending messages over the
network is several orders of magnitude higher than the overhead of Causeway in
terms of absolute cost and we would not have been able to detect the overhead
of Causeway with such a microbenchmark.

4 Evaluating Causeway

In this section we quantify the complexity involved in Causeway to insert trans-
fer points for system-visible channels, and transfer points in an implementa-
tion of the TPC-W [12] benchmark. We also measure Causeway’s overhead on
TPC-W.

4.1 Transfer Points for System-Visible Channels

Sockets, pipes, and user-level thread/kernel-level thread boundary are the
system-visible channels supported by Causeway. Six transfer points in the
FreeBSD 5.2 kernel support metadata propagation across these channels as
shown in Table 5. The user thread to kernel thread and kernel thread to user
thread transfer points are required if the application is multithreaded. The socket
and pipe transfer points are required if the application performs interprocess
communication. Transfer points within system-visible channels do not require
reimplementation for each new application.

4.2 Transfer Points for Apache and MySQL

We used Causeway to propagate metadata in an implementation of the TPC-
W [12] benchmark. Our implementation of the TPC-W benchmark used the
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Table 5. Transfer Points for System-visible Channels in the FreeBSD Kernel

Location Description File name Function name
Kernel User thread to kernel thread kern/kern kse.c thread user enter
Kernel Kernel thread to user thread kern/kern kse.c thread userret
Kernel Kernel thread to socket message kern/uipc socket.c sosend
Kernel Socket message to kernel thread kern/uipc socket.c soreceive
Kernel Kernel thread to pipe message kern/sys pipe.c pipe write
Kernel Pipe message to kernel thread kern/sys pipe.c pipe read

Apache web server (version 1.3.31) built with the PHP module (version 4.3.6)
and the MySQL database server (version 4.0.16). The TPC-W interactions are
implemented as PHP scripts.

Apache is a multi-process web server and does not use shared memory com-
munication among the different processes. Thus, no transfer points are required
in Apache.

MySQL is a multi-threaded program and it uses the libpthread library on
FreeBSD. Inspection of the MySQL source code revealed that though individual
MySQL pthreads access some shared data structure in a synchronized manner,
there is no communication between threads to exchange data corresponding to
a single request. In other words, a request in MySQL is executed in its entirety
by a single pthread. An incoming database connection is accepted by a listener
thread and handed over to a worker thread. The worker thread reads the request,
executes it and sends back the response. Hence, no transfer points are required
in MySQL as well.

In TPC-W, Apache and MySQL exchange messages across sockets. MySQL
uses user-level thread on top of kernel-level threads. Thus Causeway’s support
for metadata propagation across system-visible channels, viz., sockets, and user-
level thread and kernel-level thread boundary, suffices for our implementation of
TPC-W using Apache and MySQL. This support is provided in an augmented
FreeBSD kernel.

4.3 Overhead of Causeway on TPC-W

We conducted an experiment to evaluate the overhead imposed by Causeway on
our implementation of TPC-W under a realistic workload. We subjected TPC-
W to a workload consisting of emulated clients exercising the shopping miz [12]
workload. Apache, MySQL and the load generator ran on separate machines.
All the machines were 2.4 GHz Pentium Xeon with 2 Gigabytes of memory, and
were connected by switched Gigabit ethernet. We varied the number of concur-
rent emulated clients and measured the throughput (interactions per minute)
obtained from TPC-W. We compare the throughput obtained with the Cause-
way framework with that obtained without the Causeway framework (base case).
Under Causeway we transferred 4 bytes of metadata across each transfer point
for TPC-W. Table 6 shows the results of this experiment; Causeway’s overhead
on TPC-W'’s throughput remains less than 5%, further it does not increase with
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Table 6. TPC-W Throughput (interactions/minute) for Shopping Mix

No. of concurrent Throughput Throughput Causeway
emulated clients (base case) using Causeway Overhead(%)
10 89.4 89 4.91
50 424.8 411 3.25
100 844.2 826.4 2.11

increasing load on the system and remains fairly constant. This result shows
that Causeway may be used in a production environment without any substan-
tial performance degradation.

5 Example Use of Causeway: Multi-tier Priority
Propagation

Meta-applications to control and analyze the execution of applications can be
built easily using Causeway. We illustrate one such meta-application here.

Using Causeway we could rapidly implement a priority propagation sys-
tem, enabling a multi-tier application to prioritize the execution of requests.
Under this system, upon receiving a request the application injects a priority
as metadata, Causeway propagates this priority metadata with the execution
of the request to each of the tiers, and the meta-application uses the prior-
ity metadata to enforce priority scheduling on each tier. The meta-application
is automatically invoked on each tier by Causeway’s transfer point callback
mechanism.

The implementation of the multi-tier priority propagation system on top of
Causeway required writing about 150 lines of code. We tested the multi-tier pri-
ority propagation system with an implementation of the TPC-W benchmark [12].
No modifications were required in the TPC-W application code, other than the
injection of priority metadata.

5.1 Metadata Access

The priorities are injected into the system when a request arrives, using the
metadata access API of Causeway. We register transfer point callback meth-
ods at the transfer points from a kernel thread to a user thread, and from a
socket to a kernel thread. These callback methods change the priorities of the
user thread and the kernel thread respectively. The first callback method affects
the scheduling of MySQL pthreads while the second one achieves the same for
Apache processes.

5.2 Application

We use the TPC-W [12] benchmark as our application. TPC-W simulates an
online bookstore. Its implementation consists of a front-end web server, providing
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an HTTP front-end and serving static content, a middle-tier application that
implements the business logic, and a back-end database server that stores the
dynamic content of the site. The benchmark defines 14 interactions with the web
site, 13 of which access the database. 6 interactions write to the database, while
the others are read-only. Our hardware and software platforms are the same as
described earlier in Section 4.

5.3 Experiment

The goal of the experiment is to demonstrate that multi-tier priority propaga-
tion using Causeway, without application modification, has considerable benefits.
Our performance metric is the response time of the high-priority requests. We
show that the response time of high priority requests is relatively independent
of the load imposed on the system. We also demonstrate that enforcing priority
at both tiers (web server and database server) is superior to only enforcing it at
the first tier.

We define a foreground load as a sequence of 100 instances of each TPC-W
interaction, spaced out in time by one second. We define a background load
that directs a steady stream of read-only requests at the site. The background
load simulates visitors browsing the web site, while the foreground load simulates
customers performing the actions that may lead to purchases at the site, thereby
deserving higher priority. We use two different levels of background load: one
which overloads the system and one which imposes a moderate load without,
however, saturating the system.

We have two levels of priority in the system: a default priority and a high
priority. Requests originating from the background load are always tagged with
metadata indicating the default priority. To demonstrate the effect of priorities,
we perform two experiments, with requests from the foreground load tagged
with metadata either indicating the high priority or the default priority. In ad-
dition, to demonstrate the difference between single-tier and multi-tier priority
enforcement, we run an experiment in which on the web server the priorities are
enforced by the transfer point callback methods as described above, but on the
database server they are ignored.

5.4 Results

Table 7 shows the average response times (along with the 95% confidence inter-
vals) in milliseconds for each of the interactions under the following conditions:

1. No background load: This case shows the baseline response time for each
interaction.

2. No priority: The background load is present, but neither of the tiers enforce
priority scheduling based on the metadata.

3. Priority in first tier: The background load is present, and the first tier (the
web server) enforces priority scheduling based on the metadata.

4. Priority in both tiers: The background load is present, and both tiers enforce
priority scheduling based on the metadata.
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Table 7. Average Response Time and 95% Confidence Interval (in milliseconds) for
the TPC-W Interactions under High Background Load

Inter- No back- No
action ground load  priority

admin-confirm 60 (£0.2) 1936 (£3.8) 1993 (£38)
admin-request 59 (£0.01) 1617 (£120) 868 (£85)
best-sellers 918 (£49) 3173 (£986) 3016 (£234) 940 (£33)
buy-confirm 85 (£1.3) 1951 (£36)

buy-request 60 (£1) 1030 (£4.5) 1915 (£59) 81 (£36)
customer-reg 55 (£1.2) 931 (£88) 61 (£1.5) 60 (£1.6)
home 61 (£1.7) 1737 (£93) 1095 (£102) 63 (£2.2)
new-product 81 (£1.7) 1933 (£3) 1969 (£28) 85 (£4)
order-display 60 (£0.8) 1930 (£3) 1970 (£4) 64 (£4)
order-inquiry 40 (£0.01) 42 (£2.2) 40 (£1) 40 (£0.3)
product-detail 60 (£0.6) 1516 (£127) 966 (£100) 68 (£+14)
search-request 60 (£0.03) 1533 (£127) 987 (£102) 61 (£0.7)

search-result 670 (£0.6) 2628 (+£314) 2528 (£5.3) 671 (£1.5)
shopping-cart 70 (+0.9) 1931 (+4)

Interaction: search-request
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Fig. 1. Response Time Distribution (Sorted in Descending Order) for Search-Request

Interaction (High Background Load)

As further illustration of the results, we show in Figure 1 the response times,
sorted in descending order, for the execution of the 100 requests of the search-

request interaction under the four cases as described above.

217 (+40.5)
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Table 8. Average Response Time and 95% Confidence Interval (in milliseconds) for
the TPC-W Interactions under Moderate Background Load

Inter- No back- No Priority Priority
action ground load  priority in 1Ist. tier in all tiers

admin-confirm 60 (£0.2) 95 (£6) 90 (£6) 65 (£1.3)
admin-request 60 (£0.2) 92 (+6) 65 (£2.7) 60 (£0.15)
best-sellers 918 (£49) 1092 (£165) 1137 (£158) 912 (£0.9)

buy-confirm 5 (£1.3) 136 (£6) 123 (£6) 94 (£1.8)
buy-request 60 (£1) 103 (£7) 99 (£6) 63 (£1.7)
customer-reg 5 (£1.3) 78 (x4.4) 62 (£2.6) 59 (£1.1)

home 61 (£1.9) 98 (£6.2) (i5 5 62 (£2)
new-product (£1.7) 125 (£9.6) 101 (£7) 84 (£3.4)

order-display 60 (£0.8) 102 (£6.9) 101 (i6.5) 62 (£1.5)
order-inquiry 40 (£0.01) 40 (£0.15) 40 (£0.01) 40 (+0.01)
product-detail 60 (£0.6) 94 (£6) 64 (£2.4) 60 (£0.2)
search-request 60 (£0.04) 97 (£6.3) 65 (£2.8) 60 (+0.14)
search-result 670 (£0.62) 715 (£19.7) 728 (£11.8) 667 (£3.2)
shopping-cart 70 (£0.86) 110 (£6.2) 83 (£4.1) 73 (£1.1)
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Fig. 2. Response Time Distribution (Sorted in Descending Order) for Search Request
(Moderate Background Load)

Table 7 and Figure 1 reflect the behavior under a background load that
pushes the system into overload. The same results for a moderate background
load are shown in Table 8 and Figure 2.
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5.5 Discussion

The results overall confirm the benefits of multi-tier priority enforcement. With
priorities enforced at both tiers the response times approximate those under no
load, and they are substantially better than those in the absence of priorities or
in the presence of priorities only at the first tier. The results for single-tier prior-
ity enforcement are better than with no priorities, but inferior to using priorities
at both tiers. The differences are more outspoken in the case of overload, but
remain present even under more moderate loads. Given that Causeway allows
multi-tier priority propagation without modification of the application and with-
out noticeable overhead, we argue that this serves as a convincing demonstration
of its merits.

More detailed inspection of the results on a per-interaction basis leads to
some additional observations. First, in looking at Table 7 we see that for a large
number of the interactions the response time under load with multi-tier priorities
is almost identical to the response time under no load. For a few interactions,
however, the response under load is higher, even with the priorities. This ob-
servation is explained by the fact that the background load acquires read locks
on a certain table in the database, and the fact that the interactions that show
a slowdown under load acquire an exclusive lock on that table. As a result, in-
dependent of priorities, the foreground interactions need to wait for all current
readers to finish before they can proceed at the database. Under overload, there
can be a large number of such reads in progress, explaining the marked increases
in response time for the admin-confirm, buy-confirm, buy-request and shopping-
cart interactions. For the moderate load where only a very few such readers are
present, the differences almost vanish (see Table 8). For foreground interactions
that have no conflicts with the background load, there is almost no difference
between the the no-load case and the case of load and with multi-tier priorities.

Second, in a few cases, namely the customer-registration and the order-
inquire interactions, there is no difference between single-tier and multi-tier
priorities. This is the result of the fact that for these interactions there is no
access to the database or the cost is mainly governed by application execution
and not by database access. Conversely, for the interactions whose cost is pri-
marily governed by database access or for the interactions that acquire exclusive
locks on the database, there is a more pronounced difference between single-tier
and multi-tier priorities. In these cases, the benefit of enforcing priority at the
first tier is also limited relative to the case of not having priorities at all.

6 Related Work

Several meta-applications to control or analyze multi-tier applications exist in
the literature. The use of request tagging has been utilized to determine faults
in Internet services [5]. The resulting Pinpoint system uses instrumentation of
the J2EE platform to pass on request identifiers among the different compo-
nents of the system. Each component registers information in a log about the
request identifier, the component identifier and whether a particular operation
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results in success or failure. Failure is defined as throwing a Java exception, a
runtime exception, an infinite loop, etc. The log is statistically analyzed using
data clustering techniques to find faulty components. Pinpoint does not sup-
port applications spanning multiple machines, but the authors state that the
Java RMI libraries can be extended to pass request identifiers across machines.
Unlike Causeway, Pinpoint does not track execution events in the kernel as its
instrumentation does not extend beyond the J2EE platform.

Aguilera et al. [1] infer causal paths from message traces to locate nodes
causing performance bottlenecks; their implementation is based on the Pinpoint
system [5]. They collect traces of messages between nodes, process them offline
to find causal relationships among them, and study the delay patterns of the
messages to infer which node is causing the bottleneck. Their system is intended
to operate in a ”black-box” environment, and therefore tries to be minimally
invasive. Causeway is more invasive, requiring kernel and library changes, but
in turn provides more functionality. In particular, it’s deterministic rather than
being heuristic, and much more fine-grained.

Magpie [4,9] logs events, and extracts events belonging to a particular request
execution by performing temporal joins over the log of events. These joins are
based on application-specific schemas, which may require considerable expertise
and knowledge about the application. Magpie and request identification using
Causeway present an interesting set of tradeoffs. Magpie does not require kernel
or library modifications, and leverages event logging facilities already present in
Windows. In contrast, Causeway accepts the premise of such modifications, and
as a result avoids the need for detailed knowledge about the application.

TraceBack [2] provides a debugging facility in production systems. It can
identify what first went wrong in the event of a program crash, hang or exception.
It instruments the program to record control flow information at runtime, which
is later analyzed to locate the occurrence of the first fault.

DTE [3] propagates domain and type information among communicating
processes providing security and access control for interprocess communication.
While DTE provides security mechanisms, Causeway may be used to implement
arbitrary meta-applications.

Perhaps the work closest to Causeway is Stateful Distributed Interposition
(SDI) [11] which propagates contextual information along request execution
paths in a multi-tier application. Resource constraints and security classifica-
tion are examples of contextual information. Contextual information in SDI and
metadata in Causeway are analogous. SDI assumes all communication chan-
nels in a multi-tier program to be system-visible, and thus it does not propa-
gate contextual information across system-opaque channels. Causeway supports
metadata propagation across shared memory, a system-opaque channel.

7 Conclusions

We have designed Causeway, operating system support for facilitating develop-
ment of meta-applications to control and analyze multi-tier applications. Cause-
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way provides interfaces for metadata injection and access which can be used for
propagation of metadata in multi-tier applications. Propagated metadata can
be accessed and used to implement the desired meta-application. We have im-
plemented Causeway in the FreeBSD operating system kernel. The complexity
of adding transfer points in the FreeBSD kernel for system-visible channels was
modest. Causeway’s support for system-visible channels suffices for metadata
propagation in an implementation of the TPC-W [12] benchmark using Apache
and MySQL — no modification to Apache or MySQL was required. We mea-
sured the overhead of Causeway and found it small enough so that it can be used
in a production environment. Further, the overhead scales well with increasing
metadata size and load on the application. We have demonstrated the use of
Causeway by implementing a multi-tier priority enforcing system and using it to
achieve global priority enforcement on our implementation of the TPC-W bench-
mark. This required adding only about 150 lines of code on top of Causeway.

As ongoing and future work we are implementing call path profiling of dis-
tributed programs on top of Causeway. Call path profiling [7,8] associates re-
source consumption of program execution with call paths. At any point in the
program execution, a call path is defined as the sequence of call sites used to
activate each of the procedure frames on the call stack when the given point
of execution is reached. Call path profilers are superior to call-graph profilers
like gprof [6] because they can distinguish resource consumption of a procedure
based on the call paths leading to it.

In a distributed program whose components perform Remote Procedure Calls
(RPCs) among themselves, we can use Causeway to propagate the context infor-
mation (call path) from the caller to the callee, and use this propagated context
information to annotate the callee’s profiles. Profiles of the caller and the callee
may then be stitched together in a single call path tree using these annotations.
The end result is an end-to-end call path profile of a distributed program —
such a profiler does not exist in the literature. This profiling system illustrates
another useful meta-application on top of Causeway.
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Abstract. The promises inherent in users coming together to form data
sharing network communities, bring to the foreground new problems for-
mulated over such dynamic, ever growing, computing, storage, and net-
working infrastructures. A key open challenge is to harness these highly
distributed resources toward the development of an ultra scalable, effi-
cient search engine. From a technical viewpoint, any acceptable solution
must fully exploit all available resources dictating the removal of any
centralized points of control, which can also readily lead to performance
bottlenecks and reliability /availability problems. Equally importantly,
however, a highly distributed solution can also facilitate pluralism in in-
forming users about internet content, which is crucial in order to preclude
the formation of information-resource monopolies and the biased visibil-
ity of content from economically-powerful sources. To meet these chal-
lenges, the work described here puts forward MINERVA oo, a novel search
engine architecture, designed for scalability and efficiency. MINERVA co
encompasses a suite of novel algorithms, including algorithms for creating
data networks of interest, placing data on network nodes, load balancing,
top-k algorithms for retrieving data at query time, and replication algo-
rithms for expediting top-k query processing. We have implemented the
proposed architecture and we report on our extensive experiments with
real-world, web-crawled, and synthetic data and queries, showcasing the
scalability and efficiency traits of MINERVAco.

1 Introduction

The peer-to-peer (P2P) approach facilitates the sharing of huge amounts of data
in a distributed and self-organizing way. These characteristics offer enormous
potential benefit for the development of internet-scale search engines, power-
ful in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, click streams, etc.) of a large user com-
munity participating in the sharing network. Finally, but perhaps even more
importantly, a P2P web search engine can also facilitate pluralism in informing
users about internet content, which is crucial in order to preclude the forma-
tion of information-resource monopolies and the biased visibility of content from
economically powerful sources.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 60-81, 2005.
© IFIP International Federation for Information Processing 2005
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Our challenge therefore was to exploit P2P technology’s powerful tools for
efficient, reliable, large-scale content sharing and delivery to build a P2P web
search engine. We wish to leverage DHT technology and build highly distributed
algorithms and data infrastructures that can render P2P web searching feasible.

The crucial challenge in developing successful P2P Web search engines is
based on reconciling the following high-level, conflicting goals: on the one hand,
to respond to user search queries with high quality results with respect to preci-
sion/recall, by employing an efficient distributed top-k query algorithm, and, on
the other hand, to provide an infrastructure ensuring scalability and efficiency
in the presence of a very large peer population and the very large amounts of
data that must be communicated in order to meet the first goal.

Achieving ultra scalability is based on precluding the formation of central
points of control during the processing of search queries. This dictates a solution
that is highly distributed in both the data and computational dimensions. Such a
solution leads to facilitating a large number of nodes pulling together their compu-
tational (storage, processing, and communication) resources, in essence increasing
the total resources available for processing queries. At the same time, great care
must be exercised in order to ensure efficiency of operation; that is, ensure that en-
gaging greater numbers of peers does not lead to unnecessary high costs in terms
of query response times, bandwidth requirements, and local peer work.

With this work, we put forward MINERVAoco, a P2P web search engine
architecture, detailing its key design features, algorithms, and implementation.
MINERVA o features offer an infrastructure capable of attaining our scalability
and efficiency goals. We report on a detailed experimental performance study
of our implemented engine using real-world, web-crawled data collections and
queries, which showcases our engine’s efficiency and scalability. To the authors’
knowledge, this is the first work that offers a highly distributed (in both the
data dimension and the computational dimension), scalable and efficient solution
toward the development of internet-scale search engines.

2 Related Work

Recent research on structured P2P systems, such as Chord [17], CAN [13], Skip-
Nets [9] or Pastry [15] is typically based on various forms of distributed hash
tables (DHTSs) and supports mappings from keys to locations in a decentralized
manner such that routing scales well with the number of peers in the system.
The original architectures of DHT-based P2P networks are typically limited to
exact-match queries on keys. More recently, the data management community
has focused on extending such architectures to support more complex queries
[10,8,7]. All this related work, however, is insufficient for text queries that con-
sist of a variable number of keywords, and it is absolutely inappropriate for
full-fledged Web search where keyword queries should return a ranked result list
of the most relevant approximate matches [3].

Within the field of P2P Web search, the following work is highly related to our
efforts. Galanx [21] is a P2P search engine implemented using the Apache HTTP
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server and BerkeleyDB. The Web site servers are the peers of this architecture;
pages are stored only where they originate from. In contrast, our approach leaves
it to the peers to what extent they want to crawl interesting fractions of the Web
and build their own local indexes, and defines appropriate networks, structures,
and algorithms for scalably and efficiently sharing this information.

PlanetP [4] is a pub/sub service for P2P communities, supporting content
ranking search. PlanetP distinguishes local indexes and a global index to describe
all peers and their shared information. The global index is replicated using a
gossiping algorithm. This system, however, appears to be limited to a relatively
small number of peers (e.g., a few thousand).

Odissea [18] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds the
complete, Web-scale, index for a given text term (i.e., keyword or word stem).
Query execution uses a distributed version of Fagin’s threshold algorithm [5].
The system appears to create scalability and performance bottlenecks at the
single-node where index lists are stored. Further, the presented query execution
method seems limited to queries with at most two keywords. The paper actually
advocates using a limited number of nodes, in the spirit of a server farm.

The system outlined in [14] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and man-
ages the respective index structures. Particular emphasis is put on minimizing
the bandwidth used during multi-keyword searches. [11] considers content-based
retrieval in hybrid P2P networks where a peer can either be a simple node or a
directory node. Directory nodes serve as super-peers, which may possibly limit
the scalability and self-organization of the overall system. The peer selection for
forwarding queries is based on the Kullback-Leibler divergence between peer-
specific statistical models of term distributions.

Complementary, recent research has also focused into distributed top-k query
algorithms [2,12] (and others mentioned in these papers which are straightfor-
ward distributed versions/extensions of traditional centralized top-k algorithms,
such as NRA [6]). Distributed top-k query algorithms are an important com-
ponent of our P2P web search engine. All these algorithms are concerned with
the efficiency of top-k query processing in environments where the index lists
for terms are distributed over a number of nodes, with index lists for each term
being stored in a single node, and are based on a per-query coordinator which
collects progressively data from the index lists. The existence of a single node
storing a complete index list for a term undoubtedly creates scalability and ef-
ficiency bottlenecks, as our experiments have showed. The relevant algorithms
of MINERVAoco ensure high degrees of distribution for index lists’ data and
distributed processing, avoiding central bottlenecks and boosting scalability.

3 The Model

In general, we envision a widely distributed system, comprised of great numbers
of peers, forming a collection with great aggregate computing, communication,
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and storage capabilities. Our challenge is to fully exploit these resources in order
to develop an ultra scalable, efficient, internet-content search engine.

We expect that nodes will be conducting independent web crawls, discover-
ing documents and computing scores of documents, with each score reflecting
a document’s importance with respect to terms of interest. The result of such
activities is the formation of index lists, one for each term, containing relevant
documents and their score for a term. More formally, our network consists of a set
of nodes N, collectively storing a set D of documents, with each document having
a unique identifier docID, drawn from a sufficiently large name space (e.g., 160
bits long). Set T refers to the set of terms. The notation |S| denotes the cardi-
nality of set S. The basic data items in our model are triplets of the form (term,
docID, score). In general, nodes employ some function score(d,t) : D — (0,1],
which for some term ¢, produces the score for document d. Typically, such a
scoring function utilizes tdf*idf style statistical metadata.

The model is based on two fundamental operations. The Post(t,d,s) op-
eration, with ¢t € T, d € D, and s € (0,1], is responsible for identifying a
network node and store there the (¢,d, s) triplet. The operation Query(T;, k) :
return(Ly), with T; C T, k an integer, and Ly = {(d,TotalScore(d)) : d €
D, TotalScore(d) > RankK score}, is a top-k query operation. TotalScore(d)
denotes the aggregate score for d with respect to terms in T;. Although there
are several possibilities for the monotonic aggregate function to be used, we em-
ploy summation, for simplicity. Hence, T'otalScore(d) = 3,y score(d,t). For a
given term, Rank K score refers to the k-th highest TotalScore, Sy (Smax) refers
to the minimum (maximum) score value, and, given a score s, next(s) (prev(s))
refers to the score value immediately following (preceding) s.

All nodes are connected on a global network G. G is an owverlay network,
modeled as a graph G = (N, E), where E denotes the communication links
connecting the nodes. F is explicitly defined by the choice of the overlay network;
for instance, for Chord, E consists of the successor, predecessor, and finger table
(i.e., routing table) links of each node.

In addition to the global network G, encompassing all nodes, our model
employs term-specific overlays, coined Term Index Networks (TINs). I(t) denotes
the TIN for term ¢ and is used to store and maintain all (¢,d, s) items. TIN ()
is defined as I(t) = (N(t),E(t)), N(¢t) € N. Note that nodes in N(t) have
in addition to the links for participating in G, links needed to connect them
to the I(t) network. The model itself is independent of any particular overlay
architecture.

1(t).n(s;) defines the node responsible for storing all triplets (¢, d, s) for which
score(d,t) = s = s;. When the context is well understood, the same node is
simply denoted as n(s).

4 Design Overview and Rationale

The fundamental distinguishing feature of MINERVAoco is its high distribu-
tion both in the data and computational dimensions. MINERVAco goes far
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beyond the state of the art in distributed top-k query processing algorithms,
which are based on having nodes storing complete index lists for terms and
running coordinator-based top-k algorithms [2,12]. From a data point of view,
the principle is that the data items needed by top-k queries are the triplets
(term, docI D, score) for each queried term (and not the index lists containing
them). A proper distributed design for such systems then should appropriately
distribute these items controllably so to meet the goals of scalability and effi-
ciency. Thus, data distribution in MINERVAco is at the level of this, much finer
data grain. From a system’s point of view, the design principle we follow is to
organize the key computations to engage several different nodes, with each node
having to perform small (sub)tasks, as opposed to assigning single large task
to a single node. These design choices, we believe, will greatly boost scalability
(especially under skewed accesses).

Our approach to materializing this design relies on the employment of the
novel notion of Term Index Networks (TINs). TINs may be formed for every term
in our system, and they serve two roles: First, as an abstraction, encapsulating
the information specific to a term of interest, and second, as a physical mani-
festation of a distributed repository of the term-specific data items, facilitating
their efficient and scalable retrieval. A TIN can be conceptualized as a virtual
node storing a virtually global index list for a term, which is constructed by the
sorted merging of the separate complete index lists for the term computed at dif-
ferent nodes. Thus, TINs are comprised of nodes which collectively store different
horizontal partitions of this global index list. In practice, we expect TINs to be
employed only for the most popular terms (a few hundred to a few thousand)
whose accesses are expected to form scalability and performance bottlenecks.

We will exploit the underlying network G’s architecture and related algo-
rithms (e.g., for routing/lookup) to efficiently and scalably create and maintain
TINs and for retrieving TIN data items, from any node of G. In general, TINs
may form separate overlay networks, coexisting with the global overlay G'.

The MINERVAco algorithms are heavily influenced by the way the well-
known, efficient top-k query processing algorithms (e.g., [6]) operate, looking
for docIDs within certain ranges of score values. Thus, the networks’ lookup(s)
function, will be used using scores s as input, to locate the nodes storing docIDs
with scores s.

A key point to stress here, however, is that top-k queries Q({t1,....t }, k)
can originate from any peer node p of G, which in general is not a member of
any I(t;), ¢ = 1,...,r and thus p does not have, nor can it easily acquire, the
necessary routing state needed to forward the query to the TINs for the query
terms. Our infrastructure, solves this by utilizing for each TIN a fairly small
number (relative to the total number of data items for a term) of nodes of G

! In practice, it may not always be necessary or advisable to form full-fledged separate
overlays for TINs; instead, TINs will be formed as straightforward extensions of G:
in this case, when a node n of G joins a TIN, only two additional links are added to
the state of n linking it to its successor and predecessor nodes in the TIN. In this
case, a TIN is simply a (circular) doubly-linked list.
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which will be readily identifiable and accessible from any node of G and can act
as gateways between G and this TIN, being members of both networks.

Finally, in order for any highly distributed solution to be efficient, it is cru-
cial to keep as low as possible the time and bandwidth overheads involved in the
required communication between the various nodes. This is particularly challeng-
ing for solutions built over very large scale infrastructures. To achieve this, the
algorithms of MINERVA oo follow the principles put forward by top-performing,
resource-efficient top-k query processing algorithms in traditional environments.
Specifically, the principles behind favoring sequential index-list accesses to ran-
dom accesses (in order to avoid high-cost random disk I0s) have been adapted in
our distributed algorithms to ensure that: (i) sequential accesses of the items in
the global, virtual index list dominate, (ii) they require either no communication,
or at most an one-hop communication between nodes, and (iii) random accesses
require at most O(log|N|) messages.

To ensure the at-most-one-hop communication requirement for successive se-
quential accesses of TIN data, the MINERVAoco algorithms utilize an order pre-
serving hash function, first proposed for supporting range queries in DHT-based
data networks in [20]. An order preserving hash function h,,() has the property
that for any two values v1, va, if v1 > vy then hqp(v1) > hop(v2). This guarantees
that data items corresponding to successive score values of a term t are placed
either at the same or at neighboring nodes of I(¢). Alternatively, similar func-
tionality can be provided by employing for each I(t) an overlay based on skip
graphs or skip nets [1,9]. Since both order preserving hashing and skip graphs
incur the danger for load imbalances when assigning data items to TIN nodes,
given the expected data skew of scores, load balancing solutions are needed.

The design outlined so far, leverages DHT technology to facilitate efficiency
and scalability in key aspects of the system’s operation. Specifically, posting (and
deleting) data items for a term from any node can be done in O(log|N|) time,
in terms of the number of messages. Similarly, during top-k query processing,
the TINs of the terms in the query can be also reached in O(log|N|) messages.
Furthermore, no single node is over-burdened with tasks which can either require
more resources than available, or exhaust its resources, or even stress its resources
for longer periods of time. In addition, as the top-k algorithm is processing
different data items for each queried term, this involves gradually different nodes
from each TIN, producing a highly distributed, scalable solution.

5 Term Index Networks

In this section we describe and analyze the algorithms for creating TINs and
populating them with data and nodes.

5.1 Beacons for Bootstrapping TINs

The creation of a TIN has these basic elements: posting data items, inserting
nodes, and maintaining the connectivity of nodes to ensure the efficiency /scalabi-
lity properties promised by the TIN overlay.



66 S. Michel, P. Triantafillou, and G. Weikum

As mentioned, a key issue to note is that any node p in G may need to post
(t,d,s) items for a term t. Since, in general, p is not a member of I(¢) and does
not necessarily know members of I(t), efficiently and scalably posting items to
I(t) from any p becomes non-trivial. To overcome this, a bootstrapping process
for I(t) is employed which initializes an TIN I(t) for term ¢. The basic novelty
lies in the special role to be played by nodes coined beacons, which in essence
become gateways, allowing the flow of data and requests between the G and I(t)
networks.

In the bootstrap algorithm, a predefined number of “dummy” items of the
form (t,*,s;) is generated in sequence for a set of predefined score values s;,
i = 1,...,u. Each such item will be associated with a node n in G, where it
will be stored. Finally, this node n of G will also be made a member of I(t) by
randomly choosing a previously inserted beacon node (i.e., for the one associated
with an already inserted score value s;, 1 < j <i—1) as a gateway.

The following algorithm details the pseudocode for bootstrapping I(t). It
utilizes an order-preserving hash function hep() : T x (0, 1] — [m], where m is
the size of the identifiers in bits and [m] denotes the name space used for the
overlay (e.g., all 2169 ids, for 160-bit identifiers). In addition, a standard hash
function () : (0,1] — [m], (e.g. SHA-1) is used. The particulars of the order
preserving hash function to be employed will be detailed after the presentation
of the query processing algorithms which they affect. The bootstrap algorithm
selects u “dummy” score values, i/u, i = 1, ..., u, finds for each such score value
the node n in G where it should be placed (using ho,()), stores this score there
and inserts n into the I(t) network as well. At first, the I(¢) network contains
only the node with the dummy item with score zero. At each iteration, another
node of n is added to I(t) using as gateway the node of G which was added
in the previous iteration to I(t). For simplicity of presentation, the latter node

)

Algorithm 1. Bootstrap I(t)

1: input: u: the number of “dummy” items (¢,%,8:), i =1,...,u

2: input: ¢: the term for which the TIN is created

3p=1/u

4: for 1 =1 to v do

5 s=1Xp

6:  lookup(n.s) = hop(t,s) { n.s in G will become the next beacon node of I(t) }
7: if s =p then

8: N(t) = {n.s}

9: E(t) = 0 {Initialized I(t) with n.s with the first dummy item}
10:  end if
11:  if s # p then
12: n1 = hop(t,s — p) {insert n(s) into I(¢) using node n(s — p) as gateway}
13: call join(I(t),n1,s)
14:  end if

15:  store (t,x,s) at I(¢).n(s)
16: end for
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can be found by simply hashing for the previous dummy value. A better choice
for distributing the load among the beacons is to select at random one of the
previously-inserted beacons and use it as a gateway.

Obviously, a single beacon per TIN suffices. The number u of beacon scores
is intended to introduce a number of gateways between G and I(t) so to avoid
potential bottlenecks during TIN creation. u will typically be a fairly small
number so the total beacon-related overhead involved in the TIN creation will
be kept small. Further, we emphasize that beacons are utilized by the algo-
rithm posting items to TINs. Post operations will in general be very rare com-
pared to query operations and query processing does not involve the use of
beacons.

Finally, note that the algorithm uses a join() routine that adds a node n(s)
storing score s into I(t) using a node n; known to be in I(t) and thus, has the
required state. The new node n(s) must occupy a position in I(¢) specified by the
value of hep(t, s). Note that this is ensured by using h(nodel D), as is typically
done in DHTs, since these node IDs were selected from the order-preserving
hash function. Besides the side-effect of ensuring the order-preserving position
for the nodes added to a TIN, the join routine is otherwise straightforward: if the
TIN is a full-fledged DHT overlay, join() is updating the predecessor/successor
pointers, the O(log|N|) routing state of the new node, and the routing state of
each I(t) node pointing to it, as dictated by the relevant DHT algorithm. If the
TIN is simply a doubly-linked list, then only predecessor/successor pointers are
the new node and its neighbors are adjusted.

5.2 Posting Data to TINs

The posting of data items is now made possible using the bootstrapped TINs.
Any node ny of G wishing to post an item (¢,d, s) first locates an appropriate
node of G, ns that will store this item. Subsequently, it inserts node ns into I(t).
To do this, it randomly selects a beacon score and associated beacon node, from
all available beacons. This is straightforward given the predefined beacon score
values and the hashing functions used. The chosen beacon node has been made
a member of I(t) during bootstrapping. Thus, it can “escort” ny into I(t).

The following provides the pseudocode for the posting algorithm. By design,
the post algorithm results in a data placement which introduces two character-
istics, that will be crucial in ensuring efficient query processing. First, (as the
bootstrap algorithm does) the post algorithm utilizes the order-preserving hash
function. As a result, any two data items with consecutive score values for the
same term will be placed by definition in nodes of G which will become one-hop
neighbors in the TIN for the term, using the join() function explained earlier.
Note, that within each TIN, there are no ‘holes’. A node n becomes a member
of a TIN network if and only if a data item was posted, with the score value
for this item hashing to n. It is instructing here to emphasize that if TINs were
not formed and instead only the global network was present, in general, any
two successive score values could be falling in nodes which in G could be many
hops apart. With TINs, following successor (or predecessor) links always leads to
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Algorithm 2. Posting Data to I(t)

: input: ¢,d, s: the item to be inserted by a node n;

: 1(5) = hup(t,5)

: n1 sends (t,d, s) to n(s)

: if n(s) ¢ N(t) then

n(s) selects randomly a beacon score sy

lookup(ny) = hop(t, sp) { ms is the beacon node storing beacon score sp }
n(s) calls join(I(t),ns,s)

: end if

: store ((¢,d, s)

nodes where the next (or previous) segment of scores have been placed. This fea-
ture in essence ensures the at-most-one-hop communication requirement when
accessing items with successive scores in the global virtual index list for a term.

Second, the nodes of any I(t) become responsible for storing specific segments
(horizontal partitions) of the global virtual index list for t. In particular, an I(t)
node stores all items for ¢ for a specific (range of) score value, posted by any
node of the underlying network G.

5.3 Complexity Analysis

The bootstrapping I(t) algorithm is responsible for inserting u beacon items. For
each beacon item score, the node n.s is located by applying the hop() function
and routing the request to that node (step 5). This will be done using G’s lookup
algorithm in O(log|N|) messages. The next key step is to locate the previously
inserted beacon node (step 11) (or any beacon node at random) and sending
it the request to join the TIN. Step 11 again involves O(log|N|) messages. The
actual join() routine will cost O(log?|N(t)|) messages, which is the standard
join() message complexity for any DHT of size N (t). Therefore, the total cost is
O(u x (log|N| + log?|N(t)|) messages.

The analysis for the posting algorithm is very similar. For each post(t,d, s)
operation, the node n where this data item should be stored is located and
the request is routed to it, costing O(log|N|) messages (step 3). Then a random
beacon node is located, costing O(log| N |) messages, and then the join() routine is
called from this node, costing O(log?| N (t)|) messages. Thus, each post operation
has a complexity of O(log|N|) + O(log?|N(t)|) messages.

Note that both of the above analysis assumed that each I(t) is a full-blown
DHT overlay. This permits a node to randomly select any beacon node to use
to join the TIN. Alternatively, if each I(t) is simply a (circular) doubly-linked
list, then a node can join a TIN using the beacon storing the beacon value that
is immediately preceding the posted score value. This requires O(log|N|) hops
to locate this beacon node. However, since in this case the routing state for each
node of a TIN consists of only the two (predecessor and successor) links, the cost
to join is in the worst case O(|N(t)]), since after locating the beacon node with
the previous beacon value, O(|N(¢)|) successor pointers may need to be followed
in order to place the node in its proper order-preserving position. Thus, when
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TINs are simple doubly-linked lists, the complexity of both the bootstrap and
post algorithms are O(log|N| + |N(t)|) messages.

6 Load Balancing

6.1 Order-Preserving Hashing

The order preserving hash function to be employed is important for several rea-
sons. First, for simplicity, the function can be based on a simple linear transform.
Consider hashing a value f(s) : (0,1] — I, where f(s) transforms a score s into
an integer; for instance, f(s) = 10° x s. Function h,,() can be defined then as

hop(s) _ ( f(5> - f(smm>

f(smaz) - f(smzn)
Although such a function is clearly order-preserving, it has the drawback that
it produces the same output for items of equal scores of different terms. This
leads to the same node storing for all terms all items having the same score. This
is undesirable since it cannot utilize all available resources (i.e., utilize different
sets of nodes to store items for different terms). To avoid this, hep() is refined
to take as input the term name, which provides the necessary functionality, as

follows.

f(smaz) - f(smzn)
The term h(t) adds a different random offset for different terms, initiating the
search for positions of term score values at different, random, offsets within the
namespace. Thus, by using the h(t) term in hp(t, s) the result is that any data
items having equal scores but for different terms are expected to be stored at
different nodes of G.

Another benefit stems from ameliorating the storage load imbalances that
result from the non-uniform distribution of score values. Assuming a uniform
placement of nodes in G, the expected non-uniform distribution of scores will
result in a non-uniform assignment of scores to nodes. Thus, when viewed from
the perspective of a single term ¢, the nodes of I(t) will exhibit possibly severe
storage load imbalances. However, assuming the existence of large numbers of
terms (e.g., a few thousand), and thus data items being posted for all these
terms over the same set of nodes in G, given the randomly selected starting
offsets for the placement of items, it is expected that the severe load imbalances
will disappear. Intuitively, overburdened nodes for the items of one term are
expected to be less burdened for the items of other terms and vice versa.

But even with the above hash function, very skewed score distributions will
lead to storage load imbalances. Expecting that exponential-like distributions
of score values will appear frequently, we developed a hash function that is
order-preserving and handles load imbalances by assigning score segments of
exponentially decreasing sizes to an exponentially increasing number of nodes.
For instance, the sparse top 1/2 of the scores distribution is to be assigned to a
single node, the next 1/4 of scores is to be assigned to 2 nodes, the next 1/8 of
scores to 4 nodes, etc. The details of this are omitted for space reasons.

x 2™) mod 2™ (1)

hop(t, s) = (h(t) + x 2™) mod 2™ (2)
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6.2 TIN Data Migration

Exploiting the key characteristics of our data, MINERVAoco can ensure further
load balancing with small overheads. Specifically, index lists data entries are
small in size and are very rarely posted and/or updated. In this subsection we
outline our approach for improved load balancing.

We require that each peer posting index list entries, first computes a (equi-
width) histogram of its data with respect to its score distribution. Assuming a
targeted | N ()| number of nodes for the TIN of term ¢, it can create |N ()| equal-
size partitions, with lowscore;, highscore; denoting the score ranges associated
with partition ¢,7 = 1, ..., |N(¢)|. Then it can simply utilize the posting algorithm
shown earlier, posting using the lowscore; scores for each partition. The only
exception to the previously shown post algorithm is that the posting peer now
posts at each iteration a complete partition of its index list, instead of just a
single entry.

The above obviously can guarantee perfect load balancing. However, subse-
quent postings (typically by other peers) may create imbalances, since different
index lists may have different score distributions. Additionally, when ensuring
overall load balancing over multiple index lists being posting by several peers,
the order-preserving property of the placement must be guaranteed. Our ap-
proach for solving these problems is as follows. First, again the posting peer
is required to compute a histogram of its index list. Second, the histogram of
the TIN data (that is, the entries already posted) is stored at easily identifi-
able nodes. Third, the posting peer is required to retrieve this histogram and
‘merge’ it with his own. Fourth, the same peer identifies how the total data
must now be split into |N(t)|, equal-size partitions of consecutive scores. Fi-
nally, it identifies all data movements (from TIN peer to TIN peer) necessary to
redistribute the total TIN data so that load balancing and order preservation is
ensured.

Detailed presentation of the possible algorithms for this last step and their
respective comparison is beyond the scope of this paper. We simply mention
that total TIN data sizes is expected to be very small (in actual number of
bytes stored and moved). For example, even with several dozens of peers posting
different, even large, multi-million-entry, index lists, in total the complete TIN
data size will be a few hundred MBs, creating a total data transfer movement
equivalent to that of downloading a few dozen MP3 files. Further, index lists’
data posting to TINs is expected to be a very infrequent operation (compared
to search queries). As a result, ensuring load balancing across TIN nodes proves
to be relative inexpensive.

6.3 Discussion

The approaches to index lists’ data posting outlined in the previous two sections
can be used competitively or even be combined. When posting index lists with
exponential score distributions, by design the posting of data using the order-
preserving hash function of Section 5.1, will be adequately load balanced and
nothing else is required. Conversely, when histogram information is available and
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can be computed by posting peers, the TIN data migration approach will yield
load balanced data placement.

A more subtle issue is that posting with the order-preserving hash function
also facilitates random accesses of the TIN data, based on random score values.
That is, by hashing for any score, we can find the TIN node holding the entries
with this score. This becomes essential if the web search engine is to employ
top-k query algorithms which are based on random accesses of scores. In this
work, our top-k algorithms avoid random accesses, by design. However, the above
point should be kept in mind since there are recently-proposed distributed top-k
algorithms, relying on random accesses and more efficient algorithms may be
proposed in the future.

7 Top-k Query Processing

The algorithms in this section focus on how to exploit the infrastructure pre-
sented previously in order to efficiently process top-k queries. The main efficiency
metrics are query response times and network bandwidth requirements.

7.1 The Basic Algorithm

Consider a top-k query of the form Q({t1,...,t.},k) involving r terms that is
generated at some node n;,;+ of G. Query processing is based on the following
ideas. It proceeds in phases, with each phase involving ‘vertical’ and ‘horizontal’
communication between the nodes within TINs and across TINs, respectively.
The vertical communications between the nodes of a TIN are occuring in parallel
across all » TINs named in the query, gathering a threshold number of data items
from each term. There is a moving coordinator node, that will be gathering the
data items from all » TINs that enable it to compute estimates of the top-k
result. Intermediate estimates of the top-k list will be passed around, as the
coordinator role moves from node to node in the next phase where the gathering
of more data items and the computation of the next top-k result estimate will
be computed.

The presentation shows separately the behavior of the query initiator, the
(moving) query coordinator, and the TIN nodes.

Query Initiator

The initiator calculates the set of start nodes, one for each term, where the
query processing will start within each TIN. Also, it randomly selects one of the
nodes (for one of the TINs) to be the initial coordinator. Finally, it passes on the
query and the coordinator ID to each of the start nodes, to initiate the parallel
vertical processing within TINs.

The following pseudocode details the behavior of the initiator.

Processing Within Each TIN

Processing within a TIN is always initiated by the start node. There is one start
node per communication phase of the query processing. In the first phase, the
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Algorithm 3. Top-k QP: Query Initiation at node G.npt
1: input: Given query Q = {t1,..,t+}, k :

2: fori=1tor do

3 startNode; = I(t;).n(Smaz) = hop(ti, Smax)

4: end for

5: Randomly select ¢ from [1,...,7]

6: coordID = I(tc).n(Smaz)

7: for i=1tor do

8:  send to startNode; the data (Q, coordI D)

9: end for

start node is the top node in the TIN which receives the query processing request
from the initiator. The start node then starts the gathering of data items for
the term by contacting enough nodes, following successor links, until a threshold
number ~ (that is, a batch size) of items has been accumulated and sent to the
coordinator, along with an indication of the maximum score for this term which
has not been collected yet, which is actually either a locally stored score or the
maximum score of the next successor node. The latter information is critical for
the coordinator in order to intelligently decide when the top-k result list has
been computed and terminate the search. In addition, each start node sends to
the coordinator the ID of the node of this TIN to be the next start node, which is
simply the next successor node of the last accessed node of the TIN. Processing
within this TIN will be continued at the new start node when it receives the
next message from the coordinator starting the next data-gathering phase.
Algorithm 4 presents the pseudocode for TIN processing.

Algorithm 4. Top-k QP: Processing by a start node within a TIN

: input: A message either from the initiator or the coordinator

tCollection; = 0

n = startNode;

while [tCollection;| < v do

while [tCollection;| < v AND more items exist locally do

define the set of local items L = {(t;,d, s) in n}
send to coordID : L
[tCollection;| = [tCollection;| + |L|

9:  end while

10:  n = succ(n)

11: end while

12: bound; = max score stored at node n

13: send to coordID : n and bound;

Recall, that because of the manner with which items and nodes have been
placed in a TIN, following succ() links, items are collected starting from the item
with the highest score posted for this term and proceeding in sorted descending
order based on scores.
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Moving Query Coordinator

Initially, the coordinator is randomly chosen by the initiator to be one of the
original start nodes. First, the coordinator uses the received collections and runs
a version of the NRA top-k processing algorithm, locally producing an estimate
of the top-k result. As is also the case with classical top-k algorithms, the exact
result is not available at this stage since only a portion of the required infor-
mation is available. Specifically, some documents with high enough TotalScore
to qualify for the top-k result are still missing. Additionally, some documents
may also be seen in only a subset of the collections received from the TINs so
far, and thus some of their scores are missing, yielding only a partially known
TotalScore.

A key to the efficiency of the overall query processing process is the ability
to prune the search and terminate the algorithm even in the presence of missing
documents and missing scores. To do this, the coordinator first computes an
estimate of the top-k result, which includes only documents whose TotalScores
are completely known, defining the RankKscore value (i.e. the smallest score in
the top-k list estimate). Then, it utilizes the bound; values received from each
start node. When a score for a document d is missing for term ¢, it can be
replaced with bound; to estimate the TotalScore(d). This is done for all such
d with missing scores. If RankK score > TotalScore(d) for all d with missing
scores then there is no need to continue the process for finding the missing scores,
since the associated documents could never belong to the top-k result. Similarly,
if RankKscore >, _ 1,... bound;, then similarly there is no need to try to find
any other documents, since they could never belong to the top-k result. When
both of these conditions hold, the coordinator terminates the query processing
and returns the top-k result to the initiator.

If the processing must continue, the coordinator starts the next phase, send-
ing a message to the new start node for each term, whose ID was received in the
message containing the previous data collections. In this message the coordina-
tor also indicates the ID of the node which becomes the coordinator in this next
phase. The next coordinator is defined to be the node in the same TIN as the
previous coordinator whose data is to be collected next in the vertical processing
in this TIN (i.e., the next start node at the coordinator’s TIN). Alternatively,
any other start node can be randomly chosen as the coordinator.

Algorithm 5 details the behavior of the coordinator.

7.2 Complexity Analysis

The overall complexity has three main components: the cost incurred for (i) the
communication between the query initiator and the start nodes of the TINs, (ii)
the vertical communication within a TIN, and (iii) the horizontal communication
between the current coordinator and the current set of start nodes.

The query initiator needs to lookup the identity of the initial start nodes
for each one of the r query terms and route to them the query and the chosen
coordinator ID. Using the G network, this incurs a communication complexity of
O(r x log|N|) messages. Denoting with depth the average (or maximum) number
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Algorithm 5. Top-k QP: Coordination
: input: For each i: tCollection; and newstartNode; and bound;
tCollection = |, tCollection;
compute a (new) top-k list estimate using tCollection, and RankKscore
candidates = {d|d ¢top-k list}
for all d € candidates do
worstScore(d) is the partial TotalScore of d
bestScore(d) := worstScore(d) + _ ;¢ ppp bound; {Where MT is the set of term
ids with missing scores }
8: if bestScore(d) < RankKscore then
9: remove d from candidates
10:  end if
11: end for
12: if candidates is empty then
13:  exit()
14: end if
15: if candidates is not empty then
16:  coordI Dyew = pred(n)
17:  calculate new size threshold ~
18: fori¢=1tor do

19: send to startNode; the data (coordI Dyew,?)
20: end for
21: end if

of nodes accessed during the vertical processing of TINs, overall O(r x depth)
messages are incurred due to TIN processing, since subsequent accesses within a
TIN require, by design, one-hop communication. Each horizontal communication
in each phase of query processing between the coordinator and the r start nodes
requires O(r x log|N|) messages. Since such horizontal communication takes
place at every phase, this yields a total of O(phases x r X log|N|) messages.
Hence, the total communication cost complexity is

cost = O(phases X v X log|N| +r X log|N| + r x depth) (3)

This total cost is the worst case cost; we expect that the cost incurred in
most cases will be much smaller, since horizontal communication across TINs
can be much more efficient than O(log|N|), as follows. The query initiator can
first resolve the ID of the coordinator (by hashing and routing over G) and
then determine its actual physical address (i.e., its IP address), which is then
forwarded to each start node. In turn, each start node can forward this from
successor to successor in its TIN. In this way, at any phase of query processing,
the last node of a TIN visited during the vertical processing, can send the data
collection to the coordinator using the coordinator’s physical address. The cur-
rent coordinator also knows the physical address of the next coordinator (since
this was the last node visited in its own TIN from which it received a message
with the data collection for its term) and of the next start node for all terms
(since these are the last nodes visited during vertical processing of the TINs,
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from which it received a message). Thus, when sending the message to the next
start nodes to continue vertical processing, the physical addresses can be used.
The end result of this is that all horizontal communication requires one message,
instead of O(log|N|) messages. Hence, the total communication cost complexity
now becomes

cost = O(phases X r + 1 x log|N| + r x depth) (4)

As nodes are expected to be joining and leaving the underlying overlay network
G, occasionally, the physical addresses used to derive the cost of (4) will not be
valid. In this case, the reported errors will lead to nodes using the high-level IDs
instead of the physical addresses, in which case the cost is that given by (3).

8 Expediting Top-k Query Processing

In this section we develop optimizations that can further speedup the perfor-
mance of top-k query processing. These optimizations are centered on: (i) the
‘vertical’ replication of term-specific data among the nodes of a TIN, and (ii)
the ‘horizontal’ replication of data across TINs.

8.1 TIN Data Replication

There are two key characteristics of the data items in our model, which permit
their large-scale replication. First, data items are rarely posted and even more
rarely updated. Second, data items are very small in size (e.g. < 50 bytes each).
Hence, replication protocols will not cost significantly either in terms of replica
state maintenance, or in terms of storing the replicas.

Vertical Data Replication. The issue to be addressed here is how to appro-
priately replicate term data within TIN peers so to gain in efficiency. The basic
structure of the query processing algorithm presented earlier facilitates the easy
incorporation of a replication protocol into it. Recall, that in each TIN I(¢),
query processing proceeds in phases, and in each phase a TIN node (the current
start node) is respounsible for visiting a number of other TIN nodes, a successor
at a time, so that enough, (i.e., a batch size of) data items for ¢ are collected.
The last visited node in each phase which collects all data items, can initiate
a ‘reverse’ vertical communication, in parallel to sending the collection to the
coordinator. With this reverse vertical communication thread, each node in the
reverse path sends to its predecessor only the data items its has not seen. In the
end, all nodes in the path from the start node to the last node visited will even-
tually receive a copy of all items collected during this phase, storing locally the
pair (lowestscore, highestscore), marking its lowest and highest locally stored
scores. Since this is straightforward, the pseudocode is omitted for space reasons.
Since a new posting involves all (or most) of the nodes in these paths, each
node knows when to initiate a new replication to account for the new items.
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Exploiting Replicas. The start node selected by the query initiator no longer
needs to perform a successor-at-a-time traversal of TIN in the first phase, since
the needed data (replicas) are stored locally. However, vertical communication
was also useful for producing the ID of the next start node for this TIN. A
subtle point to note here is that the coordinator can itself determine the new
start node for the next phase, even without receiving explicitly this ID at the end
of vertical communication. This can simply be done using the minimum score
value (bound;) it has received for term ¢;; the ID of the next start node is found
hashing for score prev(bound;).

Additionally, the query initiator can select as start nodes the nodes responsi-
ble for storing a random (expected to be high score) and not always the maximum
score, as it does up to now. Similarly, the coordinator when selecting the ID of
the next start node for the next batch retrieval for a term, it can choose to hash
for a score value that is lower than the score prev(bound;). Thus, random start
nodes within a TIN are selected at different phases and these gather the next
batch of data from the proper TIN nodes, using the TIN DHT infrastructure for
efficiency. The details of how this is done, are omitted for space reasons.

Horizontal Data Replication. TIN data may also be replicated horizontally.
The simplest strategy is to create replicated TINs for popular terms. This in-
volves the posting of data into all TIN replicas. The same algorithms can be
used as before for posting, except now when hashing, instead of using the term ¢
as input to the hash function, each replica of ¢ must be specified (e.g., t.v, where
v stands for a version/replica number). Again, the same algorithms can be used
for processing queries, with the exception that each query can now select one of
the replicas of I(t), at random.

Overall, TIN data replication leads to savings in the number of messages and
response time speedups. Furthermore, several nodes are off-loaded since they
no longer have to partake in the query processing process. With replication,
therefore, the same number of nodes overall will be involved in processing a
number of user queries, except that each query will be employing a smaller set
of peers, yielding response time and bandwidth benefits. In essence, TIN data
replication increases the efficiency of the engine, without adversely affecting its
scalability. Finally, it should be stressed that such replication will also improve
the availability of data items and thus replication is imperative. Indirectly, for
the same reason the quality of the results with replication will be higher, since
lost items inevitably lead to errors in the top-k result.

9 Experimentation

9.1 Experimental Testbed

Our implementation was written in Java. Experiments were performed on 3GHz
Pentium PCs. Since deploying full-blown, large networks is not an option, we
opted for simulating large numbers of nodes as separate processes on the same
PC, executing the real MINERVAco code. A 10,000 node network was simulated.



MINERVAoco: A Scalable Efficient P2P Search Engine 7

A real-world data collection was used in our experiments: GOV. The GOV
collection consists of the data of the TREC-12 Web Track and contains roughly
1.25 million (mostly HTML and PDF) documents obtained from a crawl of the
.gov Internet domain (with total index list size of 8 GB). The original 50 queries
from the Web Track’s distillation task were used. These are term queries, with
each query containing up to 4 terms. The index lists contained the original
document scores computed as tf * log idf. tf and idf were normalized by the
maximum tf value of each document and the maximum idf value in the corpus,
respectively. In addition, we employed an extended GOV (XGOV) setup, with a
larger number of query terms and associated index lists. The original 50 queries
were expanded by adding new terms from synonyms and glosses taken from
the WordNet thesaurus (http://www.cogsci.princeton.edu/~wn). The expansion
yielded queries with, on average, twice as many terms, up to 18 terms.

9.2 Performance Tests and Metrics

Efficiency Experiments. The data (index list entries) for the terms to be
queried were first posted. Then, the GOV/XGOV benchmark queries were exe-
cuted in sequence. For simplicity, the query initiator node assumed the role of a
fixed coordinator. The experiments used the following metrics:

Bandwidth. This shows the number of bytes transferred between all the nodes
involved in processing the benchmarks’ queries. The benchmarks’ queries were
grouped based on the number of terms they involved. In essence, this grouping
created a number of smaller sub-benchmarks.

Query Response Time. This represents the elapsed, “wall-clock” time for
running the benchmark queries. We report on the wall-clock times per sub-
benchmark and for the whole GOV and XGOV benchmarks.

Hops. This reports the number of messages sent over our network infras-
tructures to process all queries. For communication over the global DHT G, the
number of hops was set to be log|N| (i.e., when the query initiator contacts the
first set of start nodes for each TIN). Communication between peers within a
TIN requires, by design, one hop at a time.

To avoid the overestimation of response times due to the competition be-
tween all processes for the PC’s disk and network resources, and in order to
produce reproducible and comparable results for tests ran at different times,
we opted for simulating disk IO latency and network latency. Specifically, each
random disk IO was modeled to incur a disk seek and rotational latency of 9
ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network la-
tency we utilized typical round trip times (RTTs) of packets and transfer rates
achieved for larger data transfers between widely distributed entities [16]. We
assumed a RTT of 100 ms. When peers simply forward the query to a next peer,
this is assumed to take roughly 1/3 of the RTT (since no ACKs are expected).
When peers sent more data, the additional latency was dictated by a “large”
data transfer rate of 800Kb/s, which includes the sender’s uplink bandwidth, the
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receivers downlink bandwidth, and the average internet bandwidth typically
witnessed.?

Scalability Experiments. The tested scenarios varied the query load to the
system, measuring the overall time required to complete the processing of all
queries in a queue of requests. Our experiments used a queue of identical queries
involving four terms, with varying index lists characteristics. Two of these terms
had small index lists (with over 22,000 and over 42,000 entries) and the other
two lists had sizes of over 420,000 entries. For each query the (different) query
initiating peer played the role of the coordinator.

The key here is to measure contention for resources and its limits on the pos-
sible parallelization of query processing. Each TIN peer uses his disk, his uplink
bandwidth to forward the query to his TIN successor, and to send data to the
coordinator. Uplink/downlink bandwidths were set to 256Kbps/1Mbps. Simi-
larly, the query initiator utilizes its downlink bandwidth to receive the batches
of data in each phase and its uplink bandwidth to send off the query to the
next TIN start nodes. These delays define the possible parallelization of query
execution. By involving the two terms with the largest index lists in the queries,
we ensured the worst possible parallelization (for our input data), since they
induced the largest batch size, requiring the most expensive disk reads and
communication.

9.3 Performance Results

Overall, each benchmark experiment required between 2 to 5 hours for its real-
time execution, a big portion of which was used up by the posting procedure.

Figures 1 and 2 show the bandwidth, response times, and hops results for
the GOV and XGOV group-query benchmarks. Note, that different query groups
have in general mutually-incomparable results, since they involve different index
lists with different characteristics (such as size, score distributions etc).

In XGOV the biggest overhead was introduced by the 8 7-term and 6 11-term
queries. Table 1 shows the total benchmark execution times, network bandwidth
consumption, as well as the number of hops for the GOV and XGOV benchmarks.

Generally, for each query, the number of terms and the size of the corre-
sponding index list data are the key factors. The central insight here is that
the choice of the NRA algorithm was the most important contributor to the
overhead. The adaptation of more efficient distributed top-k algorithms within
MINERVAoo (such as our own [12], which also disallow random accesses) can
reduce this overhead by one to two orders of magnitude. This is due to the fact
that the top-k result can be produced without needing to delve deeply into the
index lists’ data, resulting in drastically fewer messages, bandwidth, and time
requirements.

2 This figure is the average throughput value measured (using one stream — one cpu
machines) in experiments conducted for measuring wide area network throughput
(sending 20MB files between SLAC nodes (Stanford’s Linear Accelerator Centre)
and nodes in Lyon France [16] using NLANR’s iPerf tool [19].
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Table 1. Total GOV and XGOV Results

Benchmark Hops  Bandwidth(KB) Time(s)

GOV 22050 130189 2212
XGOV 146168 744700 10372

The 2-term queries introduced the biggest overheads. There are 29 2-term, 7
3-term, and 4 4-term queries in GOV.

Figure 3 shows the scalability experiment results. Query loads tested rep-
resent queue sizes of 10, 100, 1000, and 10000 identical queries simultaneously
arriving into the system. This figure also shows what the corresponding time
would be if the parallelization contributed by the MINERVAco architecture was
not possible; this would be the case, for example, in all related-work P2P search
architectures and also distributed top-k algorithms, where the complete index
lists at least for one query term are stored completely at one peer. The scala-
bility results show the high scalability achievable with MINERVAco. It is due
to the “pipelining” that is introduced within each TIN during query process-
ing, where a query consumes small amounts of resources from each peer, pulling
together the resources of all (or most) peers in the TIN for its processing. For
comparison we also show the total execution time in an environment in which
each complete index list was stored in a peer. This is the case for most related
work on P2P search engines and on distributed top-k query algorithms. In this
case, the resources of the single peer storing a complete index list are required
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for the processing of all communication phases and for all queries in the queue.
In essence, this yields a total execution time that is equal to that of a sequen-
tial execution of all queries using the resources of the single peers storing the
index lists for the query terms. Using this as a base comparison, MINERVAoo is
shown to enjoy approximately two orders of magnitude higher scalability. Since
in our experiments there are approximately 100 nodes per TIN, this defines the
maximum scalability gain.

10 Concluding Remarks

We have presented MINERVAoo, a novel architecture for a peer-to-peer web
search engine. The key distinguishing feature of MINERVAoo is its high-levels
of distribution for both data and processing. The architecture consists of a suite
of novel algorithms, which can be classified into algorithms for creating Term
Index Networks, TINs, placing index list data on TINs and of top-k algorithms.
TIN creation is achieved using a bootstrapping algorithm and also depends on
how nodes are selected when index lists data is posted. The data posting algo-
rithm employs an order-preserving hash function and, for higher levels of load
balancing, MINERVAco engages data migration algorithms. Query processing
consists of a framework for highly distributed versions of top-k algorithms, rang-
ing from simple distributed top-k algorithms, to those utilizing vertical and/or
horizontal data replication. Collectively, these algorithms ensure efficiency and
scalability. Efficiency is ensured through the fast sequential accesses to index
lists’ data, which requires at most one hop communication and by algorithms
exploiting data replicas. Scalability is ensured by engaging a larger number of
TIN peers in every query, with each peer being assigned much smaller sub-
tasks, avoiding centralized points of control. We have implemented MINERVAoco
and conducted detailed performance studies showcasing its scalability and effi-
ciency.

Ongoing work includes the adaptation of recent distributed top-k algorithms
(e.g., [12]) into the MINERVAoo architecture, which have proved one to two
orders of magnitude more efficient than the NRA top-k algorithm currently
employed, in terms of query response times, network bandwidth, and peer loads.
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Abstract. Unstructured peer-to-peer networks are frequently used as the overlay
in various middleware toolkits for emerging applications, from content discov-
ery to query result caching to distributed collaboration. Often it is assumed that
unstructured networks will form a power-law topology; however, a power-law
structure is not the best topology for an unstructured network. In this paper, we
introduce the square-root topology, and show that this topology significantly im-
proves routing performance compared to power-law networks. In the square-root
topology, the degree of a peer is proportional to the square root of the popular-
ity of the content at the peer. Our analysis shows that this topology is optimal
for random walk searches. We also present simulation results to demonstrate that
the square-root topology is better, by up to a factor of two, than a power-law
topology for other types of search techniques besides random walks. We then
describe a decentralized algorithm for forming a square-root topology, and evalu-
ate its effectiveness in constructing efficient networks using both simulations and
experiments with our implemented prototype. Our results show that the square-
root topology can provide a significant performance improvement over power-law
topologies and other topology types.

Keywords: peer-to-peer search, overlay topology, random walks.

1 Introduction

Peer-to-peer search networks have gone from serving as application-specific overlays to
become generally useful components in systems for finding and distributing content. In
particular, “unstructured” peer-to-peer networks, such as those in Gnutella and Kazaa,
continue to remain popular and widely deployed. Even with the advent of more “struc-
tured” networks for content-based routing (such as [1,2,3]), unstructured networks con-
tinue to be important, both because of their usefulness for content discovery [4] and
because they can be used together with structured networks in so-called hybrid sys-
tems [5,6]. Several types of systems have an unstructured topology as a sub-network:
superpeer networks [7] use an unstructured topology to connect the superpeers, caching
networks [8] use an unstructured topology to connect caches, scientific collaboration
networks [9] use an unstructured topology to locate data sets, and so on. Since a variety
of middleware tools implement an unstructured peer-to-peer network, it is important to
investigate techniques for optimizing unstructured topologies.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 82-101, 2005.
(© IFIP International Federation for Information Processing 2005



An Optimal Overlay Topology for Routing Peer-to-Peer Searches 83

Unstructured networks tend toward power-law topologies, and several techniques
for searching in power-law topologies have been developed. One especially effective
technique is to conduct a “random walk,” where each peer forwards a search message
to a random neighbor until results have been found [10,11,12]. This technique requires
far fewer messages than Gnutella’s original flooding-based algorithm, and results have
shown that random walk searches are a scalable and effective way to find content in a
peer-to-peer network.

Although these techniques have been developed to work with power-law topolo-
gies, a power-law network is not the best network for a random walk. Implementing a
protocol that causes the network to converge to a more efficient topology can signifi-
cantly improve search performance. In this paper, we introduce the square-root topol-
ogy, where the degree of each peer is proportional to the square root of the popularity
of the content at the peer (measured in terms of the number of submitted searches that
match the peer’s content). We present analysis based on random walks in Markov chains
to show that the square-root topology is not only better than power-law networks, it is
in fact optimal in the number of hops needed to find content. Intuitively, the probability
that a random walk quickly reaches a peer is proportional to the degree of the peer, and
if peers with popular content have correspondingly high degrees, then most searches
will quickly reach the right peers and find matching content. Simulation results confirm
our analysis, showing that a random walk requires up to 45 percent fewer hops in a
square-root topology than in a power-law topology.

We also present simulation results to show that several other walk-based techniques
perform better in a square-root topology than in a power-law topology. One technique
is suggested by Adamic et al [10], who propose biasing random walks toward high
degree peers. If peers track their neighbors’ content, then high degree peers will have
knowledge of the content of many peers, and searches will quickly be evaluated over a
large amount of content. Another technique is suggested by Lv et al [11], who argue for
starting multiple parallel random walks for the same search. This technique reduces the
time before searches complete, though it requires roughly the same total number of mes-
sages. A third technique is to bias random walks based on previous results from peers,
as suggested by Yang and Garcia-Molina [13]. In each case, the square-root topology
performs better than a power-law topology, decreasing the number of messages per
search by as much as 50 percent.

Next, we introduce a decentralized algorithm, square-root-construct, for building
and maintaining the square-root topology as peers join and leave the system. Each peer
uses purely local information to estimate the popularity of its content, avoiding the need
for tracking the global distribution of popularities among peers. Then, each peer adds
or drops connections to other peers to achieve its optimal degree. Simulation results as
well as experiments using our implemented peer-to-peer system prototype demonstrate
the performance advantages of the square-root topology. For example, in a network of
1,000 peers running on a cluster in our lab, a random topology required more than twice
the bandwidth of a topology maintained using square-root-construct.

A related result to the square-root topology was obtained by Cohen and Shenker
[14], who suggested that content be replicated proactively to improve search efficiency.
Their result showed that the optimal replication was the square-root replication, where
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the number of copies of a content object is proportional to the square root of the ob-
ject’s popularity. Our results are complementary, as we deal with the number of neigh-
bors each peer has rather than the number of copies of each document. In particular, our
square-root topology can be used in cases where a square-root replication is not feasible,
such as applications where there are high storage and bandwidth costs for replicating
content. Moreover, in cases where square-root replication is used, a square-root topol-
ogy still provides better efficiency than a power-law topology, with an improvement of
more than 50 percent.

We are implementing a flexible peer-to-peer content location middleware toolkit,
called Overlay-Dynamic Information Networks (ODIN). ODIN can be layered on top of
existing data repositories (such as document repositories, local filesystems or scientific
databases) to connect these repositories into a large scale searching network for use by
different applications. The square-root topology forms the basis of the overlay networks
constructed in ODIN. In this paper, we focus on the square-root topology, and show its
usefulness for a wide range of different searching techniques that might be employed
by peer-to-peer middleware like ODIN. In particular, our contributions include:

e We define the square-root topology, and give analysis based on random walks in
Markov chains to show that a square-root topology is optimal for random walk
searches. (Section 2)

e We present simulation results to show that a square-root topology is better than
a power-law topology for a variety of search techniques, and when square-root
replication is used. (Section 3)

e We develop a distributed algorithm, square-root-construct, for dynamically build-
ing the square-root topology based on purely local information available to a peer.
(Section 4)

e We present results from simulations and from our prototype that demonstrate the ef-
fectiveness of square-root-construct for constructing efficient topologies.
(Section 5)

We examine related work in Section 6, and present our conclusions in Section 7.

2 Network Topologies

Random walk searches were initially introduced as a way to optimize searches in power-
law networks [10], and recent research often takes the power-law topology as a given
(see for example [11,7]). While random walk searches are better than Gnutella-style
search broadcasts in power-law networks, power-law networks are not the best structure
for random-walk searches. In this section, we provide analysis showing that square-root
networks provide optimal performance for random walk searches, and thus are better
than power-law networks. Our analysis is backed up with simulation results for different
scenarios in Section 3.

2.1 Background

A peer-to-peer search network is a partially connected overlay of peers, sitting on top of
a fully connected underlying network (such as the Internet.) The main reason to keep the
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overlay network partially connected is to reduce the state that each peer must maintain.
Since each peer only has to stay connected to a few neighbors, no peer has to know
about all of the peers in the system or understand the whole topology. Furthermore,
a peer only needs to react to changes concerning its immediate neighbors; changes to
remote parts of the topology do not directly affect peers. This limited state and localized
impact of changes improves scalability, even when there is a high amount of peer churn,
with many peers joining and leaving the system.

The topology of the overlay network is built up over time in a decentralized way.
Peers that join the system connect to peers that are already in the system, and the choice
of neighbors is essentially random in many existing systems. Topologies in these sys-
tems tend toward a power-law distribution, where some long-lived peers have many con-
nections while most peers have a few connections. Formally, in a power-law network,
the number of neighbors of the i** most connected peer is proportional to 1/i%, where a
is a constant that determines the skew of the distribution. Larger « results in more skew.

A simple random walk search starts at one peer in the network, and is processed
over that peer’s content. That peer then forwards the search to one or a subset of its
neighbors, who each process and forward the query. In this way, the search “walks”
around the network, until it terminates according to some stopping criterion. There
are several alternatives for terminating the walk [11]: a walk can be given a time-to-
live which limits the number of hops the walk makes, or the walk can terminate after
G results have been found, where G is a user-defined parameter (the “goal”). Several
researchers have adapted random walk searches in various ways to make them less
random and more efficient. We examine these adaptations in more detail in Section 3.

2.2 The Square-Root Topology

Consider a peer-to-peer network with N peers. Each peer £ in the network has degree
dy, (that is, dj, is the number of neighbors that % has). The total degree in the network is
D, where D = Zgil dy,. Equivalently, the total number of connections in the network
is D/2.

We define the square-root topology as a topology where the degree of each peer
is proportional to the square root of the popularity of the peer’s content. Formally, if
we define g, as the proportion of searches submitted to the system that are satisfied by
content at peer k, then a square-root topology has dy, o< \/gi, for all k.

We now show that a square-root topology is optimal for random walk searches.
Imagine a user submits a search s that is satisfied by content at a particular peer k.
Of course, until the search is processed by the network, we do not know which peer k
is. How many hops will the search message take before it arrives at k, satisfying the
search? The expected length of the random walk (called the hitting time or mean first
passage time) depends on the degree of k:

Lemma 1. If the network is connected (that is, there is a path between every pair of
peers) and non-bipartite, then the expected number of hops for search s to reach peer
k is D/dk-.

This result is shown in [15], and is derived using the properties of Markov chains. We
now briefly summarize the reasoning behind the lemma. A Markov chain consists of a
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set of states, where the probability of transitioning from state ¢ to state j depends only on
¢ and j, and not on any other history about the process. For our purposes, the states of the
Markov chain are the peers in the system, and 1 < ¢, 57 < N. Associated with a Markov
chain is a transition matrix 7" that describes the probability that a transition occurs from
a state ¢ to another state j. In our context, this transition probability is the probability that
a search message that is at peer ¢ is next forwarded to peer j. With simple random walks,
the transition probability from peer 7 to peer j is 1/d; if ¢ and j are neighbors, and zero
otherwise. The result in [15] depends only on the node degrees, and not on the structure;
that is, the expected length of a walk does not depend on which peers are connected to
which other peers. This property follows from the fact that the Markov chain converges
to the same stationary distribution regardless of which vertices are connected.

This model assumes peers forward search messages to a randomly chosen neighbor,
even if that search message has just come from that neighbor or has already visited this
neighbor. This assumption simplifies the Markov chain analysis. Previous proposals for
random walks [11] have noted that avoiding previously visited peers can improve the effi-
ciency of walks, and we examine this possibility in simulation results in the next section.

Using the transition matrix, we can calculate the probability that a search message
is at a given peer at a given point in time. First, we define an N element vector Vj,
called the initial distribution vector; the k*" entry in V represents the probability that a
random walk search starts at peer k. The entries of V' sum to 1. Given 7" and Vj, we can
calculate V;, where the k' entry represents the probability of the search being at peer
k after one hop, as V1 = T'Vj. In general, the vector V,,,, representing the probabilities
that a search is at a given peer after m hops, is recursively defined as V,,, = T'V,,_1.

Under the conditions of the lemma (the network is connected and non-bipartite),
V. converges to a stationary distribution vector Vs, representing the probability that a
random walk search visits a given peer at a particular point in time. Most importantly
for our purposes, it can be shown [15] that the Eth entry of Vj is di/D. In other words,
in the steady state, the probability that a search message is at a given peer k is dy/D.

What is the expected number of hops before a search reaches its goal? We can treat
the search routing as a series of experiments, each choosing a random peer k from the
population of N peers with probability di/D. A “successful” experiment occurs when
a search chooses a peer with matching content. The expected number of experiments
before the search message successfully reaches a particular peer k is a geometric ran-
dom variable with expected value dkl/ D= fk . This is the result given by Lemma 1.

If a given search requires D /dj, hops to reach peer k, how many hops can we expect
an arbitrary search to take before it finds results? For simplicity, we assume that a search
will be satisfied by a single unique peer. We define gj to be the probability that peer &
is the goal peer; g, > 0 and 22[:1 gr = 1. The g5 will vary from peer to peer. The
proportion of searches seeking peer k is g, and the expected number of hops that will
be taken by peers seeking peer k is D/dj, (from Lemma 1), so the expected number of
hops taken by searches (called H) is:

N D
H = . 1
kZ:lgk Y (1)
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How can we minimize the expected number of hops taken by a search message? It
turns out that H is minimized when the degree of a peer is proportional to the square
root of the popularity of the documents at that peer. This is the square-root topology.

Theorem 1. H is minimized when

d— DV 2)

Zilil \/gi

Proof. We use the method of Lagrange multipliers to minimize equation (1). Recall
the constraint that all degrees dj, sum to D; that is, the constraint for our optimization
problem is f = (Zgil dr) — D = 0. We must find a Lagrange multiplier A that
satisfies VH = AV f (where V is the gradient operator). First, treating the g; values as
constants,

N
VH =Y -D-g d;> 3)
k=1
where uy is a unit vector. Next,

N
AVF =2 ti= > Atk )

Because VH = AV f, we can set each term in the summation of equation (3) equal to
the corresponding term of the summation of equation (4), so that — D - g, - d;z S =
Auy. Solving for dj, gives
d — VD - gy
e =

V=2
Now we will eliminate A, the Lagrange multiplier. Substituting equation (5) into f gives

&)

N

VD gk,
;< Joy =P (©)

and solving gives
r D
- N
VA VD Zk:l \/ 9k
If we change the dummy variable of the summation in equation (7) from k to ¢, and
substitute back into equation (5), we get equation (2). O

(N

Theorem 1 shows that the square-root topology is the optimal topology over a large
number of random walk searches. Our analysis shows that D, the total degree in the
network, does not impact performance: substituting equation (2) into equation (1) elim-
inates D. Thus, any value of D that ensures the network is connected is sufficient. Note
also that our result holds regardless of which peers are connected to which other peers,
because of the properties of the stationary distribution of Markov chains.

Finally, peer degrees must be integer values; it is impossible to have a third of a
connection for example. Therefore, the optimal peer degrees must be calculated by
rounding the value calculated in equation (2).
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3 Experimental Results for the Square-Root Topology

Our analysis of the square-root topology is based on an idealized model of searches
and content. Real peer-to-peer systems are less idealized; for example, searches may
match content at multiple peers. In this section we present simulation results to illustrate
the performance of a square-root topology for realistic scenarios. We use simulation
because we wish to examine the performance of large networks (i.e., tens of thousands
of peers) and it is difficult to deploy that many live peers for research purposes on the
Internet.

Our primary metric is to count the total number of messages sent under each search
method. Searches terminate when “enough” results were found, where “enough” is de-
fined as a user specified goal number of results G. In summary, our results show:

e Random walks perform best on the square-root topology, requiring up to 45 per-
cent fewer messages than in a power-law topology. The square-root topology also
results in up to 50 percent less search latency than power-law networks, even when
multiple random walks are started in parallel.

e The square-root topology is the best topology when proactive replication is used,
and the combination of square-root topology and square-root replication provides
higher efficiency than either technique alone.

e Other search techniques based on random walks, such as biased high-degree [10],
biased towards most results or fewest result hop neighbors [13], and random walks
with statekeeping [11] performed best on the square-root topology, decreasing the
number of messages sent by as much as 52 percent compared to a power-law
topology.

e The square-root topology performed better than other topology structures as well,
including a constant degree network, and a topology with peer degrees directly
proportional to peer popularity. In super-peer networks [7] the square-root was the
best topology for connecting the supernodes.

In this section, we first describe our experimental setup, and then present our results.

3.1 Experimental Setup

Our experimental results were obtained using a discrete-event peer-to-peer simulator
that we have developed. Our simulator models individual peers, documents and queries,
as well as the topology of the peer-to-peer overlay. Searches are submitted to individual
peers, and then walk around the network according to the specified routing algorithm.
Our simulations used networks with 20,000 peers. Simulation parameters are listed in
Table 1.

Because the square-root topology is based on the popularity of documents stored
at different peers, it is important to accurately model the number of queries that match
each document, and the peers at which each document is stored. It is difficult to gather
accurate and complete query, document and location data for tens of thousands of real
peers. Therefore, we use the content model described in [16], which is based on a trace
of real queries and documents, and more accurately describes real systems than sim-
ple uniform or Zipfian distributions. In particular, we downloaded text web pages from
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Table 1. Experimental parameters

Parameter Value
Number of peers 20,000
Documents 631,320
Queries submitted 100,000

Goal number of results 10
Average links per peer 4
Minimum links per peer 1

1,000 real web sites, and evaluated keyword queries against the web pages. We then
generated 20,000 synthetic queries matching 631,320 synthetic documents, stored at
20,000 peers, such that the statistical properties of our synthetic content model matched
those of the real trace. The resulting content model allowed us to simulate a network of
20,000 peers. In our simulation, we repeatedly submitted random queries chosen from
the set of 20,000 to produce a total of 100,000 query submissions. In [16] we describe
the details of this method of generating synthetic documents and queries, and provide
experimental evidence that the content model, though synthetic, results in highly accu-
rate simulation results. Most importantly, the synthetic model retains an accurate dis-
tribution of the popularity of peer content, which is critical for the construction of the
square-root topology.

3.2 Random Walks

First, we conducted an experiment to examine the performance of random walk searches
in different topologies. In this experiment, queries matched documents stored at differ-
ent peers, and had a goal G = 10 results. We compared three different topologies:

e A square-root topology, generated by assigning a degree to each peer based on
equation (2), and then creating links between randomly chosen pairs of peers based
on the assigned degrees.

o A low-skew power-law topology, generated using the PLOD algorithm [17]. In this
network, o = 0.58.

o A high-skew power-law topology, generated using the PLOD algorithm, with
a = 0.74.

The results of our experiment are shown in Figure 1. As the figure shows, random
walks in the square-root topology require 8,940 messages per search, 26 percent less
than random walks in the low-skew power-law topology (12,100 messages per search)
and 45 percent less than random walks in the high-skew power-law topology (16,340
messages per search). In the power-law topologies, searches tend toward high degree
peers, even if the walk is truly random and not explicitly directed to high degree peers
(asin [10]). Unless these high degree peers also have the most popular content, the result
is that searches have a low probability of walking to the peer with matching content,
and the number of hops and thus messages increases. If the power-law distribution is
more skewed, then the probability that searches will congregate at the wrong peers is
higher and the total number of messages necessary to get to the right peers increases.
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Fig. 1. Random walk searches on different topologies

Table 2. Parallel random walks: search latency (ticks)

Walks Square-root Power-law Power-law
low-skew high-skew

1 8930 12090 16350
2 4500 6210 8970
5 1800 2490 3740
10 904 1250 1880
20 454 630 947
100 96 130 194

Even though random walks perform best in the square-root topology, a large number
of messages need to be sent (8,940 messages in a network of 20,000 peers in the above
results). However, this result is a significant improvement over traditional Gnutella-
style search: flooding in a high-skew power-law network, with a TTL of five in order to
find at least ten results on average, requires 17,700 messages per search. Moreover, the
above results are for simple, unoptimized random walks. Adding optimizations such as
proactive replication or neighbor indexing significantly reduces the cost of a random
walk search, and results for these techniques (presented in the next sections) show that
the square-root topology is still best.

Another issue with random walks is that the search latency is high, as queries may
have to walk many hops before finding content. To deal with this, Lv et al [11] propose
creating multiple, parallel random walks for each search. Since the network processes
these walks in parallel, the result is significantly reduced search latency (even though
the total number of messages is not reduced). We ran experiments where we created 2, 5,
10, 20, and 100 parallel random walks for each search, and measured search latency as
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the number of simulation time ticks required to find the goal content (one tick represents
the time to process a search and forward it one hop.) These results are shown in Table 2.

As the table shows, the square-root topology provided the lowest search latency,
regardless of the number of parallel walks that were generated. The improvement for
the square-root topology was consistently 27 percent compared to the low-skew power-
law topology, and 50 percent compared to the high-skew power-law topology. Even
when searches are walking in parallel, the square root topology helps those search walks
quickly arrive at the peers with the right content.

3.3 Proactive Replication

The square-root topology is complementary to the square-root replication described
in [14]. In situations where it is feasible to proactively replicate content, the square-root
replication specifies that the number of copies made of content should be proportional
to the square root of the popularity of the content. The square-root topology can be used
whether or not proactive replication is used, but the combination of the two techniques
can provide significant performance benefits.

We conducted an experiment where we proactively replicated content according to
the square-root replication. Each peer was assigned capacity equal to twice the con-
tent they were already storing, and this extra capacity was used to store proactively
replicated copies. We then connected peers in the square-root, high-skew power-law,
and low-skew power-law topologies, and measured the performance of random walk
searches. Again, G = 10.

The results are shown in Figure 2. As expected, proactive replication provided
better performance than no replication (e.g., Figure 1). Proactive replication performs
best with the square-root topology, requiring only 2,830 messages per search, 42 percent
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20001

1000

Average number messages sent per search

Square-root Power-law Power-law
low-skew high-skew

Fig. 2. Random walk searches with proactive replication
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less than in the low-skew power-law network (4,830 messages) and 56 percent less than
in the high-skew power-law network (6,390 messages). Proactive replication makes
more copies of the documents that a search will match, while the square-root topology
makes it easier for the search to get to the peers where the documents are stored. The
combination of the two techniques provides more efficiency than either technique alone.
For example, in our experiment, the square root topology with proactive replication
required 68 percent fewer messages than the square root topology without replication.

3.4 Other Search Walk Techniques

Next, we examined the performance of other walk-based techniques on different topolo-
gies. We compared three other techniques based on random walks:

e Biased high degree: messages are preferentially forwarded to neighbors that have
the highest degree [10].

e Most results: messages are forwarded preferentially to neighbors that have returned
the most results for the past 10 queries [13].

e Fewest result hops: messages are forwarded preferentially to neighbors that returned
results for the past 10 queries who have travelled the fewest average hops [13].

In each case, ties are broken randomly. For the biased high degree technique, we ex-
amined both neighbor-indexing (peers track their neighbors’ content) and no neighbor-
indexing. Although [13] describes several ways to route searches in addition to most
results and fewest result hops, these two techniques represent the “best” that the au-
thors studied: fewest result hops requires the least bandwidth, while most results has
the best chance of finding the requested number of matching documents.

[ Square root
Il Power-law low-skew
18000 [ Power-law high—skew

16000 -

14000
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10000 -

8000 -

6000 -
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2000
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degree — neighbor degree — no hops
indexing neighbor indexing

Fig. 3. Other walk-based search techniques
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The results are shown in Figure 3. As the figure shows, in each case the square-root
topology is best. The most improvement is seen with the biased high degree technique,
where the improvement on going from the high-skew power-law topology (17,250 mes-
sages on average) to the square-root topology (8,280 messages on average) is 52 per-
cent. Large improvements are achieved with the fewest result hops technique (44 per-
cent improvement versus the high-skew power-law topology) and most results (41 per-
cent improvement versus the high-skew power-law topology). The smallest improve-
ment observed was for the biased high degree technique with neighbor indexing; the
square-root topology offers a 16 percent decrease in messages compared to the low-
skew power-law topology. Overall, the square-root topology provides the best perfor-
mance, even with the extremely efficient biased high degree/neighbor indexing combi-
nation. Moreover, the square-root topology can be used even when neighbor indexing
is not feasible.

The combination of square-root topology, square-root replication and biased high
degree walking with neighbor indexing provides even better performance. Our results
(not shown) indicate that this approach is extremely efficient, requiring only 248 mes-
sages per search on average. Again, the square-root topology is better than the power-
law topology when square-root replication and neighbor indexing are used. Using all
three techniques together results in a searching mechanism that contacts less than 2
percent of the system’s peers on average while still finding sufficient results.

Finally, the results so far assume state-keeping [11], where peers keep state about
where the search has been. Then, peers can avoid forwarding searches to neighbors
that the search has already visited. We also ran experiments for no statekeeping. The
results (not shown) demonstrate that the square-root topology is better than power-law
topologies, whether or not statekeeping is used.

3.5 Other Topologies

We also tested the square-root topology in comparison to several other network struc-
tures. First, we compared against two simple structures:

e Constant-degree topology: every peer has the same number of neighbors. In our
simulations, each peer had five neighbors.

e Proportional topology: every peer had a degree proportional to their popularity g
(rather than proportional to /gy, as in the square-root topology).

Our results show that the square-root topology is best, requiring 10 percent fewer
messages than the constant degree network, and 7 percent fewer messages than the
proportional topology. Although the improvement is smaller than when comparing the
square-root topology to power-law topologies, these results again demonstrate that the
square-root topology is best. Moreover, the cost of maintaining the square-root topology
is low, as we discuss in Section 4, requiring easily obtainable local information. Thus,
it clearly makes sense to use the square-root topology instead of constant degree or
proportional topologies.

A widely used topology in many systems is the super-peer topology [7,18]. In this
topology, a fraction of the peers serve as super-peers, aggregating content information
from several “leaf” pears. Then, searches only need to be sent to super-peers. The super-
peers are connected using a normal unstructured topology (which, like other topologies,
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tends to form into a power-law structure). We ran simulations using a standard super-
peer topology, in which searches are flooded to super-peers. We compared this standard
topology to a super-peer topology that used the square-root topology and random walks
between super-peers. The results indicate a significant improvement using our tech-
niques: the square-root super-peer network required 54 percent fewer messages than a
standard super-peer network.

4 Constructing Square-Root Networks

In order for the square-root topology to be useful in peer-to-peer systems, there must be
a lightweight, distributed algorithm for constructing the topology. We cannot expect a
centralized planner to organize peers into the square root topology, nor can we expect in-
dividual peers to keep a large amount of state about the rest of the network. In particular,
itis too costly in a large network to expect each peer to track all of the queries in the net-
work or the popularity of content at all the other peers in order to compute equation (2). In
this section, we describe an algorithm, called square-root-construct, that allows peers to
construct the square-root topology in a distributed manner, using only local information.

In our algorithm, when peers join the network, they make random connections to
some number of other peers. The number of initial connections that peer k£ makes is
denoted dY. The actual value of d? is not as important as the fact that peers make enough
connections to keep the network connected. Then, as peer k is processing queries, it
gathers information about the popularity of its content. From this information, peer k
calculates its first estimate of its ideal degree, d}.. If the ideal degree d}. is more than
d), peer k adds dj, — d) connections, and if the ideal degree is less than d, peer k
drops d? — d}, connections. Over time, peer k continues to track the popularity of its
content, and recomputes its ideal degree (d%7 d‘z...). Whenever its ideal degree estimate
is different from its actual degree, peer k adds or drops connections. As in other peer-to-
peer systems, peers can find new neighbors using a hostcatcher at a well known address,
or by caching peer addresses from network messages.

Peers use purely local information to estimate the popularity of their content. In
particular, each peer k maintains two counters: QF . .. the total number of queries seen
by k, and Qfmmh, the number of queries that match k’s content. Then, peers can es-
timate gy, in equation (2) as Q¥ .., /QF . .. As peer k sees more and more queries, it
can continue to recompute its estimate of g in order to calculate successive estimates
of its ideal degree.

It is much more difficult to estimate the denominator of equation (2), which is the
sum of the square roots of the popularity of all of the peers. Luckily, we can avoid this
problem, since we have another degree of freedom: D, the sum of the dj values for
all peers. Recall from our analysis in Section 2.2 that D does not impact the overall
performance of the system, as long as the system remains connected. Therefore, we
can choose D oc ) ." | \/9i, and substituting such a D into equation (2) eliminates

Zij\il /9i- More formally, we choose a maximum degree d;,q., representing the degree
we want for a peer whose popularity g, = 1. Of course, it is unlikely that any peer will
have content matching all queries, so the actual largest degree will almost certainly be
less than d,,,4.. Then, we define D as:
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N
D =dmas - Y _+/9i ®)
i=1
Substituting equation (8) into equation (2) gives the ideal degree of a peer as:

dk: = dmam . \/gk' ~ dmam ' \/Q'Ifnatch/Qfotal (9)

If the popularity of a peer’s content is very low, then di will be very small. If peer
degrees are too small, the network can become partitioned, which will prevent content
at some peers from being found at all. In the worst case, because d must be an integer,
we must round equation (9), so the ideal degree might be zero. Therefore, we define a
value d,,in, which is the minimum degree a peer will have. The degree a peer will aim
for is:

dy = round(d,,qz - \/ QF .n/QF..) if greater than dy;p (10)
dmin otherwise

Our algorithm square-root-construct can be summarized as follows:

e We choose a maximum degree d,,,, and minimum degree d,,;,, and fix them as
part of the peer-to-peer protocol.

e Peer k joins, and makes some number dg of initial connections; d,,;n, < dg < dmaz-

e Peer k tracks Qfmmh and Qfoml, and continually computes dj, according to equa-
tion (10).

e When the computed dj; differs from peer k’s actual degree, k adds or drops connec-
tions.

Eventually, this method will cause the network to converge to the square root topology;
as peers see more queries their estimates of their popularity will become increasingly
accurate. Simulation results in the next section show that the network converges fairly
quickly to an efficient structure.

Our algorithm also deals with situations where peer popularities change. Then peers
will see more or fewer matching queries for their content, and will adjust their gj, es-
timates and degrees accordingly. In this situation, we may decide to use a decay factor
1 to decrease the importance of older information in the estimate of g (0 < p < 1).
Periodically, peer & would multiply both QF, ., and Q¥ , . by p1. Then, newer samples
would have greater weight, and the network would converge more quickly according to
the new distribution of popularities.

5 Experimental Results for the Square-Root-Construct Algorithm

We conducted two experiments to evaluate the effectiveness of square-root-construct.
First, we ran simulations with 20,000 peers. Then, we validated our simulation results
by running an experiment with our implemented peer-to-peer prototype in a network
with 1,000 peers. Both experiments show that the square-root-construct algorithm ef-
fectively produces an efficient square-root topology.
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5.1 Simulation Results

We ran simulations to measure the performance of searches over time as the topology
adapted under the square-root-construct algorithm, and compared the performance to
searches in square-root and power-law topologies constructed a priori using complete
knowledge about peers and queries. We used the same experimental setup as described
in Section 3. The parameters for the square-root-construct algorithm are shown in Ta-
ble 3. We experimented with several parameter settings, and found that these settings
worked well in practice. In particular, they produced connected networks with approxi-
mately the same total degree as the networks from experiments in Section 3.

Figure 4 shows the number of messages per search, calculated as a running average
every 1,000 queries. As the figure shows, initially the performance of the network be-
ing adaptively constructed with the square-root-construct algorithm is not quite as good
as the a priori square-root topology. However, the performance quickly improves, and
after about 8,000 queries the performance of the adaptive square-root topology is con-
sistently as good as the topology constructed a priori. (Other experiments show that the
time for convergence to the performance of the a priori structure varies linearly with the
number of peers in the network.) The square-root-construct network already performs

Table 3. Parameters for square-root-construct

Parameter Value
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Fig. 4. Square-root-construct versus topologies constructed a priori
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better than the power-law networks after 1,000 queries (the first data point). Although
1,000 queries are only enough to provide rough estimates of peer popularity, even rough
estimates are able to produce a more efficient topology than a power law network.

5.2 Prototype Measurements

We have implemented a prototype peer-to-peer middleware toolkit, called Overlay-
Dynamic Information Networks (ODIN), and we used it to test the square-root topology
and square-root-construct algorithm with queries over real data. ODIN is implemented
in C++, and communicates using XML messages over HTTP connections. Each peer
connects to randomly chosen peers, whose addresses are gathered from a “host-catcher”
at a well known address or from the headers of messages observed in the network. Our
peers used the square-root-construct algorithm (with parameters from Table 3) to adapt
the network topology as they processed searches. We compared this network to one con-
structed using a traditional (i.e. Gnutella) unstructured topology policy. In this policy,
peers connected to random remote peers, always trying to keep at least five connections
alive but without aiming for a particular topology.

For our experiment, we downloaded 169,902 HTML pages (4.04 GB total) from
1,000 web sites. We then started 1,000 peers on cluster machines in our lab, and each
peer stored the content from one web site. Peers processed queries over the full text of
web pages using standard techniques (the cosine distance and TF/IDF weights [19]).
We generated 20,000 keyword queries from the downloaded data with query terms
matching the distribution observed in several real user query sets [20]. Each query was
submitted to a randomly chosen peer.

Figure 5 shows a running average (every 1,000 queries) of the total network
bandwidth required per search. As the figure shows, the network using the square-root
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Fig. 5. Bandwidth required for search messages
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construct algorithm initially performs poorly but then improves significantly, eventually
requiring half the bandwidth on average of the network constructed randomly. Once
each peer builds an accurate estimate of the popularity of its content, and adjusts its de-
gree accordingly, the total bandwidth used drops below 180 KB per search, compared
to 415 KB per search for the random topology.

In return for this higher efficiency, the square-root-construct network must send
more control traffic (connect and disconnect messages) between peers. In fact, the
square-root network requires 5.4 times as much bandwidth for control messages than in
the random network. However, this cost is far outweighed by the savings in search band-
width; an extra 4.6 KB per search on average for control messages results in a savings
of 238 KB in search bandwidth per search on average. We can conclude that the extra
control traffic is insignificant compared to the benefits of the square-root-topology.

6 Related Work

Random walk searches in peer-to-peer networks were proposed by Adamic et al [10] in
order to cope with the unique characteristics of power-law networks. Follow-on work
by others showed how to enhance performance by using replication [11,14], parallel
random walks [11] and biased random walks of various types [13]. Most of this work
assumes an existing topology, either power-law, random, or some other organization. In
our results sections we examined each of these techniques. Other techniques have been
proposed, such as “intelligent search” [21], routing indices [22], result caching [23]
and so on. We have not yet tested the square-root topology against an exhaustive list
of techniques, although we are continuing to gather data about its effectiveness for
various techniques. Gkantsidis, Mihail and Saberi [24] discuss how to use random walks
and flooding together to achieve high efficiency. Our square-root topology can be used
together with their techniques to achieve even higher performance.

Some investigators have looked at building efficient topologies for peer-to-peer
searches. Pandurangan et al [25] discuss building low diameter networks, although
their focus is on Gnutella-style flooding for which low diameter is important. Lv et
al [12] presented a dynamic algorithm for load balancing in peer-to-peer networks.
Their goal is to shift load onto high capacity nodes. To achieve this load balancing,
overloaded nodes must find nearby nodes to take over some of their connections. Our
approach, while similarly using adaptivity, has a different goal of shifting load onto
the most popular nodes. Moreover, our algorithm allows a peer to simply drop a con-
nection without having to find a peer to take it over. While our approach can reduce
overall load in the system, it does not achieve the load balancing that Lv et al’s ap-
proach does. It may be possible to extend our techniques to take both popularity and
capacity into account. Gia [4] is a system that combines several techniques, including
topology adaptation and biasing random walks toward high-capacity nodes. Their goal
is load balancing to improve efficiency. It may be possible to combine our techniques
with theirs.

Several investigators have examined peer-to-peer systems analytically; examples
include models for peer behavior [26], download traffic [27], data semantics [28], and
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so on. Gkantsidis, Mihail and Saberi [29] demonstrate analytically that random walks
are useful to locate popular content in two cases: a) when the topology forms a super-
peer network, and b) when the same search is issued repeatedly. We expand on their
work in several ways. First, our analysis holds for both popular and rare items; in fact,
the square root topology is specifically optimized to provide efficient searching over a
wide range of item popularities. Second, while their analysis and simulation is limited
to pure random walks, we demonstrate that the square-root topology is efficient for
a wide range of search techniques, such as biased random walks, random walks with
proactive replication, and so on. Third, we show that the square-root topology is useful
both in the case of super-peer networks and in flat networks.

Several investigators have proposed more structured peer-to-peer networks, some-
times known as distributed hash tables (DHTs). Examples include CHORD [1],
CAN [2], Pastry [3], and others. In these systems, the topology is structured accord-
ing to protocol rules in order to ensure high efficiency. Despite the advent of DHTs,
research in and deployment of unstructured systems continues. One reason is the con-
tinuing popularity of unstructured systems such as Gnutella and Kazaa, and another rea-
son is the difficulty experienced, at least until recently [5,30], with using DHTs for key-
word search. Chawathe et al [4] discuss several reasons why both unstructured networks
and DHTs are worthy of study. Loo et al [5,6] discuss a hybrid structured/unstructured
architecture for information discovery, and our work could impact the design of the
unstructured part of such a hybrid system.

In a previous workshop paper [31], we have examined a narrow application of
the square root topology in situations where it is not feasible to replicate data or in-
dexes. Here, we examine the usefulness of the square root topology for a wide range
of searching techniques (including proactive replication, supernode networks, and other
approaches to using replication).

7 Conclusions

We have presented the square-root topology, and shown that implementing a protocol
that causes the network to converge to the square root topology, rather than a power-law
topology, can provide significant performance improvements for peer-to-peer searches.
In the square-root topology, the degree of each peer is proportional to the square root
of the popularity of the content at the peer. Our analysis shows that the square-root
topology is optimal in the number of hops required for simple random walk searches.
We also present simulation results which demonstrate that the square-root topology is
better than power-law topologies for other peer-to-peer search techniques. Next, we
presented an algorithm for constructing the square-root topology using purely local
information. Each peer estimates its ideal degree by tracking how many queries match
its content, and then adds or drops connections to achieve its estimated ideal degree.
Results from simulations and our prototype show that this locally adaptive algorithm
quickly converges to a globally efficient square-root topology. Our results show that the
combination of an optimized topology and efficient search mechanisms provides high
performance in unstructured peer-to-peer networks.
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Abstract. The content-based publish/subscribe model has been adopted by many
services to deliver data between distributed users based on application-specific
semantics. Two key issues in such systems, the semantic expressiveness of con-
tent matching and the scalability of the matching mechanism, are often found
to be in conflict due to the complexity associated with content matching. In this
paper, we present a novel content-based publish/subscribe architecture based on
peer-to-peer matching trees. The system achieves scalability by partitioning the
responsibility of event matching to self-organized peers while allowing customiz-
able matching functionalities. Experimental results using a variety of real world
datasets demonstrate the scalability and flexibility of the system.

Keywords: publish/subscribe, matching, peer-to-peer.

1 Introduction

The deployment and application of event-based publish/subscribe services has
increased considerably over the past years. A number of emerging applications, rang-
ing from simple personal tools to large-scale and critical systems, benefit from this
paradigm. Examples include stock quote notification, Internet news feeds, real-time
traffic control, and various monitoring/management systems. Publish/subscribe systems
deliver events from publishers to subscribers based on their interests. Publishers and
subscribers can be completely unaware of one another and communicate via the mes-
sage brokers that match events to interested data users. This decoupling provides an
attractive communication mechanism for building large scale distributed systems.

The expressiveness of subscriber interests is a key factor in such middlewares.
Early publish/subscribe systems like TIBCO [20] and CORBA event channels [13] are
subject-based. Subscribers join a set of subject groups that they are interested in and
receive all messages associated with the subjects.

Content-based publish/subscribe systems allow more flexibility in specifying sub-
scriber interests. Subscriptions specify filters on event contents. Only those events with
attributes matching the filters are delivered to the subscriber. A typical application is
stock quote notification. The events carry attributes of prices and trade volumes of in-
dividual stocks. Subscribers may specify triggering ranges of price or volume for the
stocks that they are interested in. They get notification once events matching their sub-
scriptions occur. Another scenario is literature reference tracking. Researchers may sub-
scribe to new publications matching certain keywords in their titles, abstracts or bodies.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 102-123, 2005.
(© IFIP International Federation for Information Processing 2005
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They may also choose to track new papers from certain authors or citing certain previ-
ous works. In both examples, content-based filtering provides fine-grained control on
the relevance of messages.

However, the power of expressiveness introduces an additional cost of matching
events to the complex filters specified by subscribers. As the system scales with the
number of subscriptions and the volume of event messages, a centralized matching
solution cannot meet the computation and communication requirements. Therefore, we
seek a solution to the scalability issue by distributing the matching responsibility to
many machines. In particular, we leverage peer-to-peer overlay techniques to build a
highly scalable publish/subscribe system. In our system, broker nodes self-organize and
maintain a decentralized data structure that stores the subscriptions, match the events
to the subscriptions, and deliver the events to relevant subscribers. Broker nodes may
be added to or removed from the system without global coordination. A key problem
facing such a scalable system is how to partition the workload among participating peers
in a load-balanced fashion.

The flexibility provided by content expressiveness creates challenges to system scal-
ability. While a subject-based publish/subscribe system can easily partition the work-
load of event delivery to a large set of servers by hashing the subjects among the
servers, content-based systems have more complex subscription structures that impede
the workload partition. Three factors contribute to this difficulty:

1. High dimensionality of the content space: a general publish/subscribe system
might have to operate in a setting that involves a large number of attributes. To
make things even worse, subscribers and publishers do not always speak the same
schema. Subscribers seldom know in advance the schemas used by (potentially
many) publishers. Even if they do, they might be interested in only a subset of it.

2. Type flexibility: attributes may have various types that require different filtering
tests.

3. Skewed data distribution: is common in real world subscriptions and events. It
can create a load imbalance in the system that throttles the scalability.

Previous work on workload partitioning usually impose restrictions on the flexibil-
ity of subscriptions and events. In [22] and [19], the set of attributes and their values
are hashed to decide the servers managing the subscriptions. This requires events and
subscriptions to follow certain pre-defined schemas, and only works well with equality
tests. It is difficult to efficiently support range subscriptions in such systems. Megh-
doot [9] leverages CAN [15] to partition the multi-attribute space. Though it can support
range subscriptions, it is still confined to numerical attributes and also can not handle
skewed distributions efficiently.

Our Solution

In this paper, we propose a peer-to-peer architecture that achieves high scalability and
generality. We address the expressiveness problem with a modular matching tree struc-
ture. This tree organizes the subscriptions into hierarchical groups based on their sim-
ilarity. It supports flexible schemas and multiple attribute types in subscriptions and
events, and allows customization of new attributes and filtering types. We distribute
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this matching tree in a peer-to-peer system where each peer processor manages a small
fragment of the tree. They maintain the distributed tree by peer-wise communications
without global coordination.

Events can enter the system from any processor. A decentralized tree navigation al-
gorithm is used to forward the events to those tree fragments that may contain matching
subscriptions. In experiments using several real world data sets, the proposed system
demonstrates excellent scalability: the distributed event matching only visits a small
number of processors, processors maintain a small amount of state about peers, and the
workload is well-balanced across the processor set.

The next section gives a survey of related work. Section 3 details the structure of
the matching tree. Section 4 discusses how the tree is distributed and how to navigate
the tree in a decentralized manner. Section 5 focuses on how the distributed tree is
maintained in the face of churn and changing load conditions. Section 6 presents exper-
imental results.

2 Related Work

Several centralized algorithms for content-based publish-subscribe [8,7,2,10] have been
proposed to address the efficiency of the matching operation. Our matching tree bears
some similarity to previous work, such as [2,10], which also use search tree structures.
The key differences are: 1) Our matching tree is more flexible, partitioning the sub-
scriptions by both schema content and attribute value, while [2,10] only partition by the
attribute value specified in subscriptions. 2) We distribute the matching tree amongst
peer processors to address the scalability problem.

Distributed content-based publish/subscribe systems deploy a network of broker
servers to efficiently match and deliver events. Examples include Elvin [17], Siena [4],
and Gryphon [2]. Elvin uses a central server to store subscriptions and match events.
Therefore, it still imposes a bottleneck at the matching engine. Siena and Gryphon
distribute the responsibility of matching events to a set of distributed servers. Events
follow a multicast tree to reach all matching subscribers. However, they require the
subscriptions to be replicated on all servers. This causes a burden on server management
and is a stumbling block to scalability.

To address this scalability problem, several systems consider the partitioning of
content-space and the subscription set. Riabov ef al. have proposed clustering algo-
rithms that partition similar subscriptions into multicast groups. EDN [22] partitions
the content space subject to the restriction that the schema is fixed. For equality test, the
attribute IDs and values are hashed to generate a key to locate the server managing it.
For inequality tests, EDN uses an R-tree to decide offline how to assign subscriptions to
processors, and requires each processor to maintain a complete map of this assignment.
This approach is limited to small-scale systems with a fixed set of subscriptions, and it
is also unclear as to whether it works efficiently for high dimensional content space.

Peer-to-peer overlays have emerged as a promising approach to realizing highly
scalable distributed systems. Several systems provide application-level multicast [12,3]
that divides the data dissemination responsibilities amongst peers. They do not, how-
ever, address the selective delivery of events. Recently, Distributed Hash Tables (DHTs)
have been employed to build scalable publish/subscribe systems. Scribe [S] uses
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Pastry [16] to build a subject-based publish/subscribe service. It hashes each topic to a
peer, which then acts as the rendezvous point. The routing paths from subscribers to the
rendezvous point form a multicast tree for this subject. This approach, however, can not
be adapted to efficiently support the content-based publish/subscribe model.

A few previous projects have addressed content-based publish/subscribe in peer-to-
peer systems. [19] partitions the content-space by hashing a set of selected attributes
and their values into peer processors. The domain of attribute values are partitioned
into intervals for the hashing. A range subscription may need to be decomposed to
multiple intervals, resulting in storage and matching inefficiency. Furthermore, the sub-
scriptions and events are limited by the pre-selected attribute sets. Meghdoot [9] re-
laxes the restrictions on subscriptions. It uses CAN [15] to manage the multi-attribute
content-space. A subscription defines a rectangular region in the D-attribute content
space bounded by the minimal and maximal value specified. Unspecified attributes take
the whole value range. The hyper-rectangle is projected to a point in a 2D-dimension
CAN constructed from the minimal and maximal values of the D-dimension rectangle.
An eventis then mapped to a rectangle in the 2D space, and the mapping is performed in
a manner such that the rectangle covers all subscription points relevant to the event. This
novel approach reduces the subscription matching problem into a range query operation
in CAN. The drawback with this approach is that subscriptions are limited to numerical
comparisons. Other tests like keyword subset can not be supported. Furthermore, the
subscriptions are only mapped to the upper-left side of the diagonal hyper-plane of the
CAN space, which may create load imbalance.

3 Content-Based Event Matching

In this section, we start by describing the specification of events and subscriptions in our
system. We then present the main data structure, the matching tree, used in the system.

We also note that we focus primarily on the logical organization and navigation of
the matching tree in this section. The distributed operation and maintenance of the tree
will be presented in following sections.

3.1 Content-Based Publish/Subscribe Model

We adopt a general event-space model with multiple attributes, based on the models
used in previous systems [7,4,2]. The contents of an event message is represented by a
set of attribute-value pairs. Each attribute has a unique name or ID. We support several
types of attributes: numerical (integer, floating point, and date/time), string, and set.
The event message can be represented as e = {A; = vy, As = va,..., A = vV}
Events from different publishers may use different schemas, but we assume a consistent
assignment of unique attribute IDs and their types across the publishers to avoid naming
confusion. One could also employ hierarchical namespaces to achieve this coordination.

As an example, consider an event from a research reference database. Its con-
tents may be formulated as [title = TTT, date = YY/MM, authors = {A, B,C},
references = {D1, Da,...D,,}], where title has string type, date is numerical, and
authors and references fields are both of type sef, meaning they include an unordered
list of keys.
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Table 1. Predicates supported in the system

type tests
Numerical =<5,>,>
String =, <, <, >, >, prefix match
Set 3,2

A subscription is a conjunction of predicates over the attributes. Each predicate
specifies a boolean test over an attribute. The test specified by a predicate depends
on the type of the attribute. Table 1 lists the type of tests supported in our system.
Disjunction of predicates can be expressed by the “OR” of multiple conjunctions, so
we treat a disjunctive subscription as a set of independent conjunctive subscriptions.

We do not require events and subscriptions to use the same schemas. There may
be a large number of possible attributes, while any event and subscription may specify
only a subset of attributes. An event matches a subscription if every predicate specified
is satisfied by the attribute-value content of the event message. Not all attributes in
the event need to appear in the matching subscription. The additional attributes do not
affect the matching results, since the subscription does not care about the values of these
attributes. However, the event does not match a subscription if an attribute specified in
the subscription’s predicates is missing from the event. This semi-structured matching
capability is important for environments with heterogeneous publishers. Some systems,
like EDN [22], require all events to use the same schema. Such restrictions limit the
generality of the system and thus is not desirable.

3.2 Content-Space Partition with a Matching Tree

We propose a matching tree algorithm to partition a general event space. A hierarchical
tree structure is used to partition the set of subscriptions based on their predicates. Each
internal node partitions the subscriptions by a similarity test, so similar subscriptions
can be grouped to the same tree branch. In order to adapt to flexible attribute sets and
schemas, we build the similarity tests dynamically.

Two types of similarities are used in the tests. The first is the similarity of the at-
tribute set. The test takes an attribute from the subscriptions and hashes its name. The
subscriptions are assigned to one of two branches based on the hash value. After recur-
sive partitioning with several levels of internal nodes, each branch will have subscrip-
tions sharing the same attribute. The second type groups subscriptions having similar
value constraints for a common attribute. Depending on the type of this attribute, the test
assigns the subscriptions to two branches. For convenience, we label the child branches
of an internal node L and R. In addition, there is a wildcard branch, labeled as *, for
subscriptions that do not contain the attribute specified by the internal node.

Figure 1 gives an example of the matching tree used for subscriptions to research
publications. The root node partitions the subscriptions based on attributes specified
in their predicates. It takes the first attribute in the subscription (A1), hashes the name
(A1.name), and assigns the subscription to one of two branches based on the demarcat-
ing value of 5 for the result of the hash. The left child node of the root further partitions
the subscriptions based on the value of the date attribute. If a subscription has a predi-
cate that tests the date attribute, then it is stored in one or both of the L and R branches.
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- - - = navigation path of event {date=05/05, authors={Y, Z}}

H(A.name) <5 ?

i Aj.name == "authors’
H(A j.items[0]) <7 ?

Hi Aj.name == date’

Aj.value < 03/05 ?

< 2> £
N P

N - - ~
AY - ~
yZ N N

(date>12/04, refs > D) | | (dae>12004,refs> D) | [ fauthor>Y) [ (author>Z, refs> D} | | fiitle ==T)
{date==04/05, authors 53X}

Fig. 1. Matching Tree

For instance, if the range of the predicate on the ‘date’ attribute intersects with the
range (0,03/05), the subscription would be inserted in the left branch; if it intersects
with the range [03/05, o), it would be inserted in the right branch; and a subscription
that covers a broad range, like {date > 12/04, authors > X}, would be inserted in
both branches. If a subscription’s first attribute hashes to a value less than 5 and if that
subscription does not have any predicates referring to the date attribute, then it is stored
in the wild-card * branch. The right child of the root node partitions the subscriptions
based on how they test the authors attribute. Since authors is a set attribute, we pick
any of the keys specified in the predicate testing the authors attribute, and hash it to
decide the branch the subscription belongs to. The subscription {title == T} falls
into the default branch x, since it does not contain any predicates testing the authors
attribute.

Event messages also navigate the same matching tree to find matching subscrip-
tions. Figure 1 gives an example of how an event is handled. The event starts from the
root node. It is passed on to both branches, because the attributes in the event, date and
authors, hash to the L and R branches respectively. The event is further propagated
through the R branch at the left child node based on its date value. At the right child
node, both L and R branches are followed, because the elements in the authors field
hash to either side of the pivot value 7. At the leaf nodes, a centralized matching algo-
rithm like the counting algorithm [7] is used to match the event to the set of matching
subscriptions.

Next, we give further details regarding the two partitioning methods.

3.3 Partitioning the Attribute Set

The first type of partitioning tries to group together subscriptions that test similar at-
tributes. We first order the predicates of a subscription based on their selectivity. For sim-
plicity, we order equality tests before subset tests, and consider inequalities as the least
selective. More sophisticated techniques that take into account data distribution to order
predicates regarding their selectivity are also possible. We then take the most selective
predicate in the subscriptions, and hash the attribute name into a bin H (A;.name).
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Each child branch manage a sequence of hash bins and the subscriptions falling into
the sequence. A pivot value separates the hash bins of the left and right branches.

While a subscription only descends into either the left or the right branch of this
internal node, an event may follow both branches. Given an event {A; = vy, Ay =
va, ..., Ap = wvi}, the left branch is taken if any of the hash values H(A;.name)
corresponds to the bins on the left side of the pivot. Similarly, the right branch is taken
if any of the hash values corresponds to right-hand side bins. In general, when this
form of partitioning is performed iteratively at multiple internal nodes, an event with &
attributes navigates into at most k branches under attribute set partitioning.

Given a set of subscriptions in a leaf node, we choose the pivot value that evenly par-
titions the subscriptions. When the subscriptions’ most selective attribute is the same,
either because of user subscription pattern or due to prior partitioning of the attribute
set, we partition based on the second and third most selective attributes. Therefore, the
state information maintained in an attributed set partitioning node includes the order
of the attribute being hashed, the range of hash bins owned by this node, and the pivot
value used for partitioning.

3.4 Partitioning Attribute Content

After partitioning the attribute set, each branch of the matching tree contains subscrip-
tions with similar attributes. We can therefore partition further using the value ranges
of their common attributes. We apply different strategies based on the attribute’s data

type.

— Value range partition applies to numerical attributes. It splits the value range of
the attribute by a pivot value. The value range specified by predicates in the sub-
scriptions are compared to the pivot. If the whole range falls to the left/right of
the pivot, the subscription is assigned to the left/right branch. Otherwise, the sub-
scription is replicated into both branches. This strategy is therefore suitable for
subscriptions specifying narrow value ranges, for example, equality tests. The at-
tribute set partitioning policy that gives priority to highly selective predicates also
improves efficiency of value range partition. While subscriptions may be replicated
in both branches, an event only descends into one of them. So this approach reduces
matching cost by using additional storage.

— Min/max partition divides the set of subscriptions instead of the value space. The
minimal/maximal value in the constraints is used to decide the branch it belongs
to. Therefore, a subscription is only assigned to one of the left/right branches. Con-
sequently, an event may need to navigate into both branches to locate matching
subscriptions. Figure 2 illustrates differences between the three strategies used to
partition range constraints on a numerical attribute.

— String value partition is similar to value range partitioning. A subscription with
a prefix predicate may be assigned to both branches if the prefix includes the pivot
string.

— Set partition hashes the keys specified in the subscriptions and divides the hashed
key space into two halves across a pivot key. A subscription specifying several keys
for the set attribute may choose to follow the branch decided by any of the keys.
An event message would have to navigate into all branches that its set members
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Fig. 2. Partitioning options based on a numerical attribute

hash to. This is necessary to ensure that all related subscriptions can be reached.
Therefore, an event message specifying k keys for the set attribute may navigate
into up to k branches under multiple levels of set partitioning.

In all of the above mentioned types of attribute content based partitioning, the de-
fault * branch may be taken if a subscription does not specify the attribute. An event
always traverses into the * branch if it exists, unless the attribute being partitioned is
the only one specified in the event.

3.5 Choosing Partition Method

The matching tree grows by splitting leaf nodes. We aim at distributing the subscrip-
tions in the leaf node evenly to the branches of the newly formed internal node. The
two partitioning methods described above have different levels of effectiveness under
different situations. When the subscriptions carry sets of attributes that differ signifi-
cantly, partitioning the value space of any single attribute may only work on a small
part of subscriptions while leaving the majority in the wildcard branch. Attribute set
partitioning is more effective in this case. After subscriptions with the same attributes
are grouped together, partitioning the content of this attribute will yield more balanced
results.

When a leaf node needs to be partitioned, we scan the subscriptions in the node,
and count the number of subscriptions associated with each attribute. We try to partition
the attributes that appear in at least half of the subscriptions, and choose the partition
method that yields best load balance, defined as the largest number of subscriptions in
the branches after split. If such attributes do not exist, we partition the attribute set.

Besides the partitioning approaches discussed above, we also use a special “parti-
tion” method that replicates the set of subscriptions to both children branches. An event
may choose to follow any of the mirrored branches. As the branches are assigned to
different processors, this replication spreads out the load of event matching. We use
this method when the processor managing the leaf node is saturated by the event traffic
targeting the leaf node. Such event hot spots may be found in some subscriptions that
match a broad range of events, for example, {Volume > P} in stock quote notifica-
tion service (Section 6.1).

3.6 Extensibility

The above discussion illustrates that several different partitioning methods are used in
our system. Generally, for each data type, the system needs at least one partitioning
method to decide how the subscriptions and the events navigate the matching tree. Each
partitioning method is implemented as a module that provides three interface functions:
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— Subscription branching: given the state in the node, decide which branch(es) a new
subscription needs to take.

— Event branching: given the state in the node, decide which branch(es) an event
message needs to take.

— Node split: given the set of subscriptions in a leaf node, decide the best way to
partition the subscriptions once the leaf node gets overloaded.

This modular design allows new data and predicate types to be introduced into our
system, therefore ensuring generality.

4 Peer-to-Peer Matching Tree with Brushwood

In this section, we present the design of our peer-to-peer architecture. We distribute the
matching tree using peer-to-peer overlay techniques in order to achieve the following:

— Balanced distribution: We partition the matching tree into a set of subtrees, so
that the workload of managing subscriptions and matching events can be divided
among peer processors in a balanced manner.

— Locality and ability to support complex event filtering: Since the distribution
is at the granularity of subtrees, related subscriptions are stored on the same pro-
cessor. Furthermore, the generality of the matching tree ensures that our system
can handle subscriptions with range predicates and efficiently match events to such
subscriptions.

— Symmetric distribution that avoids hotspots: We ensure that no processor in
the system is subject to inordinately high load. We avoid distribution schemes that
assign the root of the matching tree to a single processor, which is then subject
to handling every new event or subscription. Instead, we make all subtrees self-
contained and independent. Each processor maintains the path from the root of the
matching tree to the root of the subtree in addition to maintaining the full set of
internal nodes and leaf nodes of the subtree. An event or subscription could be
routed to any one of the processors, which can either handle it locally or forward it
to the appropriate processor(s).

— Scalability: We require that processors maintain small amounts of state regarding
the current state of the system. In particular, each processor in our system keeps
track of a logarithmic number of peers in the system. Peers periodically exchange
information regarding their portion of the matching tree, so that they can maintain a
weakly consistent partial view of the global matching tree. This partial view allows
the processors to forward subscriptions and event messages to relevant matching
tree nodes.

4.1 Brushwood

We extend the Brushwood framework described in our position paper [24] to build
the peer-to-peer matching tree. Brushwood is a peer-to-peer search tree designed for
scalable indexing of high dimensional data. Here we adapt its distributed organization
for the publish-subscribe needs.
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Tree Distribution: Brushwood partitions a search tree into self-contained fragments
cooperatively managing the distributed tree. Figure 3 (a) illustrates our approach in
distributing a matching tree. The edges are labeled as ‘L, ‘R’ and “*’ for left, right and
default branches. We linearize the tree nodes by pre-order traversal and then partition
them into eight fragments separated by the dotted vertical bars. This partitioning method
preserves locality of similar subscriptions since the low level subtrees are not split. The
tree fragments are assigned to eight processors A - H, shown as the rectangles below
the tree. We identify the fragments, and the processors managing them, with its left
boundary. The left boundary is defined as the the left-most tree node in the partition
under pre-order traversal. This boundary can be uniquely identified by the sequence of
edge labels along the path from the root of the matching tree to the boundary node.
We use this sequence as the Tree ID of the tree fragment. The Tree ID of each of the
fragments are shown in the processor rectangles.

Data Structure Maintained by Each Processor: In a dynamic peer-to-peer system,
processor joins and departures are frequent events. Each join/departure changes the lo-
cation of some subtree. Therefore, we can not afford to replicate across all processors
the global map of which processor owns which portion of the tree. Instead, a processor
only maintains a partial tree view, which is a sub-graph of the global matching tree.
This partial tree of a processor consists of the following: 1) all the leaf nodes managed
by the processor, 2) the left boundary nodes of some selected peer processors, and 3)
all internal tree nodes along the paths from the root of the matching tree to the nodes
specified above in (1) and (2). Information about the peer boundary nodes are collected
by contacting peer processors. The construction of the partial view is, therefore, a lo-
calized operation with cost proportional to the number of peers. The selection of peer
processors is discussed later in this section. Figure 4 shows the partial view of A and D.

Event Handling: When a new event is received by a processor, the event is processed
using the partial tree view. The event is propagated through the partial tree view, starting
from the root of the partial tree, to determine which portions of the tree are related to the
event. During this process, one or more of the following types of actions are performed:

— The event is relevant to one or more of the local leaf nodes managed by this pro-
cessor. The matching can be then performed locally.

— The event needs to be routed to a remote leaf node managed by a peer.

— The event is relevant to some obscure nodes corresponding to unknown portions of
the matching tree that is not managed by any peer. The event is then routed to some
peer that is more likely to be aware of the obscure node.

Example: Now we show how to perform event matching in a distributed tree with an
example event message { A1 = 20, As = 90}. Assume the event enters the system from
processor A. A navigates its partial tree to find all subtrees that may contain subscrip-
tions matching this event. In this case, subtrees RR, R+ and * are involved. A forwards
the query to the processors managing these regions. RR is managed by peer D. Ob-
scure nodes Rx* and * have to be reached by overlay routing. We route the messages to
the peer that is farthest in the same direction as the obscure node (given the pre-order



112 C. Zhang et al.

mdx(A|)< 15 Aﬂ<87‘7

D%ﬁ%/\ ARRA

A B C F G H Al|B c| |p E| |[F||G||H
LL L* RL RRL R*L *L #R *¥ LL L* RL RRL R*L *L *R ok
(a) Partition of a Matching Tree (b) Skip Graph

Fig. 3. Peer-to-peer Matching Tree

D Local leaf node D Remote node i obscure node
* L < .
[A]<4‘7 maX(Al)< 157) (a<4?) mdx(Al)< 152 (A <87?)

b/b\ zﬁbé%b “@
n@ o e [

(a) Partial View of A (b) Partial View of D

Fig. 4. Partial Tree Views from Processor A and D

linearization of tree nodes) without passing over the target. In this example, all three
subtrees are forwarded to peer D for further matching. D further navigates its partial
tree to identify related regions to be searched. It performs local matching in subtree
RR, and forwards the message to E and G for further matching. Event matching is
therefore performed starting from any processor by “jumping” among the processors
instead of traversing a distributed tree path from the root to the target. Each forwarding
step refines the subtrees that need to be searched. The number of hops is logarithmic
in the number of processors, regardless of tree depth. Subscription insertion follows a
similar procedure.

4.2 Routing Substrate

We now consider the question of establishing peers. To ensure system scalability, we
limit the amount of state information managed by individual processors. Each proces-
sor only maintains log N peers and their partition boundaries in an /N-processor sys-
tem. Therefore, each node join and departure can be handled efficiently by contacting
only log N processors. A tree navigation can be done within log NV steps regardless of
the shape of the tree. We extend Skip Graphs/Nets [1,11] to achieve such an efficient
lookup.

Conceptually, a processor in a Skip Graph maintains log IV levels of peer pointers,
pointing to exponentially farther peers in the linear ordering of N processors. Figure 3
(b) depicts the overlay structure of the Skip Graph among the eight processors. Each
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processor uses a random membership vector to decide its peers. At level ¢, the peers are
the nearest processors on the left and right sides with membership vectors that match
the processor’s membership vectors for the first ¢ bits.

Brushwood routing depends on a linear ordering of partitions. In this sense, any
linear space DHT routing facility can be used. We choose Skip Graphs for two reasons.
First of all, Skip Graphs do not impose constraints on the nature and structure of keys. It
can work with complex keys, like the variable-length Tree IDs, as long as there is a total
ordering. Second, even if one can encode tree nodes into key values, such unhashed and
often skewed keys can cause routing imbalances in some DHTs, as they use key values
to decide the peering relation. Skip Graphs do not suffer from this problem because
its peering is decided by purely random membership vectors, even though the keys are
unhashed.

We simulated Chord [18] and Skip Graphs with a skewed key distribution to show
the imbalance in routing. Figure 5 (a) depicts the maximal processor degrees of Chord
and Skip Graphs with 1K~32K processors. The processor keys are derived from a nor-
mal distribution with standard deviation 0.125 in the range [0, 1]. With such unhashed
keys, Chord processors falling into the sparsely populated regions will manage larger
portions of the keyspace, and are therefore likely to have a large number of in-bound
peers. Furthermore, the imbalance in peer distribution also leads to imbalance in routing
costs. We route 1000 messages between random pairs of nodes. Figure 5 (b) shows the
imbalance as the ratio of maximal routing load to mean load. We observed similar rout-
ing imbalances in Meghdoot, which employs CAN for routing in (skewed) subscription
content space. We present this result in Section 6.

S Maintaining the Partition Tree

In this section, we discuss the maintenance of the dynamic matching tree in a peer-
to-peer setting. The major challenges are: 1) the frequent processor joins and depar-
tures, typically referred to as churn, and 2) balancing the workload among the dynamic
processor set. Our design leverages Skip Graphs to achieve efficient routing while
maintaining only a logarithmic number of peers. Therefore, the processor joins and
departures only result in small maintenance overheads. Balancing the workload asso-
ciated with publish/subscribe events is important for the scalability of the system. The
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challenges that it presents in the context of the distributed matching tree differ from
what previous work in DHTs have addressed. Therefore, we focus on this issue in this
section. Our solution is based on a limited, loosely consistent knowledge about global
load distribution. What is interesting about our scheme is that we use the distributed
matching tree to aggregate this information.

5.1 Gossip-Based Aggregation

In most peer-to-peer systems, periodical polling of peer nodes is necessary for detect-
ing failures. We piggyback load information in the pair-wise heart-beat traffic between
peers. Peer processors aggregate the global load information from these gossip mes-
sages. This approach is inspired by previous work [21].

Each processor maintains load summaries for the nodes in its partial tree view. This
summary corresponds to the workload of the matching subtree rooted at the node and
the resources available on the processors that maintain the subtree. In particular, it in-
cludes the following information: 1) the total number of subscriptions in the subtree; 2)
the total rate of events visiting the subtree; 3) the total capacity of processors managing
the subtree. The first two items show the load associated with subscription storage and
event matching. The third summarizes the resource devoted for managing the load. We
define capacity as the network bandwidth of the processor instead of storage, since this
is the limiting factor for matching and delivering events. This information reflects the
heterogeneity of participating processors. The load-to-capacity ratio in the summary
indicates whether the subtree is overloaded or underloaded.

Periodically, a processor sends to peers its load summaries about nodes along its
Tree ID path (Section 4.1). Recall that this path stretches from the root to the first node
(under pre-order) belonging to the processor. Figure 6 illustrates the Tree ID paths of
peer B and D, and the gossip messages they send to A.

A maintains the storage and event processing load for the subtree it manages lo-
cally. After receiving load summaries from its peers, A can aggregate the load for the
internal nodes in its partial tree. The summary about the root node gives the global load
information. This information is loosely consistent. It is easy to see that the aggrega-
tion converges within O(log V) steps in a N-processor system, because information
about one processor reaches all other processors within O(log N) forwarding steps, the

D Leaf nodes managed by A Summary sent by peer B Summary sent by peer D
A<4? max(A ) < 157 % max(A ) < 157
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Fig. 6. Gossiping and aggregation of load information
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diameter of a Skip Graph. With a typical heart-beat interval of 30 seconds, the aggrega-
tion converges within several minutes, during which time the overall load is unlikely to
change by a substantial amount.

5.2 Processor Join

When a new processor joins the system, it contacts a known processor P that is cur-
rently in the system. P uses the load summary in its partial tree view to direct the join
request. It navigates the tree, locally, to find a subtree with a high load level, as deter-
mined by the ratio of total load to capacity associated with the subtree. If this subtree
is remote or obscure (defined in Section 4.1), the join request is forwarded towards that
subtree, and eventually reaches a peer () with high load level. This forwarding process
is similar to the distributed tree navigation for inserting subscriptions and matching
events.

After receiving the join request, () divides the set of leaf nodes it manages and
hands over one half to the joining processor. If there is only one leaf node, or if one leaf
node has significantly higher load than others, this leaf is partitioned using algorithms
described in Section 3.5. The joining processor receives from () the leaf nodes, which
also determines the new Tree ID of the joining processor. The processor then joins the
Skip Graph and establishes its partial tree view by contacting the peers.

Section 3.5 describes two strategies of leaf node partitioning: split or replicate. If the
high load is caused by larger than average number of subscriptions, we choose one of
the various options to partition the set of subscriptions among the new branches. If the
load is caused by high event rate to the subscriptions, we may replicate the subscriptions
in the new branches to spread out the event processing load.

5.3 Processor Departure and Failures

Processors in the system may leave gracefully or fail/quit silently without warning. In
the former case, it notifies its peers of the intention to leave and hands over the set of
leaf nodes and subscriptions to its left-hand side peer, and the Skip Graph will route
corresponding messages to this peer after the processor’s departure.

Failures and non-cooperative departures are detected by periodic heart-beat mes-
sages. If a processor P does not hear from a peer for several consecutive heart-beat
intervals, this peer is marked as failed and is excluded from the partial tree view. If the
peer is the immediate right-hand side peer, P takes over the responsibility of managing
the leaf nodes of the failed peer. In order to avoid data loss, we can replicate subscrip-
tions to left hand side peers during normal operation. This replication strategy is used
in many peer-to-peer systems [16,18,15].

5.4 Reactive Load Balancing

Besides the load-balanced join process, reactive load balancing of heavily loaded pro-
cessors is also desirable. Such imbalance may be caused by insertion of new subscrip-
tion, transfer of data after peer departure, or change of event traffic pattern. Processors
in the system detect load imbalance from the global load information. If a processor
sustains significantly higher load than global average, it can start a load balancing pro-
cess by navigating the distributed tree to find an underloaded processor. This processor
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is forced to quit its current position, offload its work to its neighboring processor, and
rejoin the system as the overloaded processors’ neighbor in order to take over half of
the load from the overloaded processor.

6 Experimental Results

In this section, we present our experimental results. We use two very different real world
datasets for publish/subscribe workload. We also evaluate system scalability with larger
synthetic workloads. We start by describing the example applications and the datasets
before presenting the experimental results.

6.1 Example Applications

Stock quote alert is a popular publish/subscribe service. Users subscribe to events about
stock price changes and transaction volume fluctuations. Such services are usually im-
plemented with DBMS triggers in a centralized server. Similar subscriptions that spec-
ify numerical data ranges may be found in other systems like monitoring and sensor
networks. Therefore, we use stock quote alert as one of our representative applications.

We use the stock quote dataset collected by Gupta et al. to evaluate Meghdoot [9]. It
was obtained from Yahoo! Finance [23] by downloading the daily quotes of 100 stocks
from 2/Jan/1998 to 31/Dec/2002. This event set contains 115,353 events. The schema
and value range of the events are summarized in Table 2. The data distribution is highly
skewed. Most stock prices/volumes are within a relatively narrow range, except for a
few high price/volume stocks quotes.

We follow the method used in [9] to generate stock subscriptions. Subscriptions
randomly select one of five templates designed to model common user interests in stock
events. Table 3 lists the subscription templates and their probabilities. The parameters
are generated using random draws from uniform distributions over the data ranges of the
corresponding fields, while maintaining the constraints. The fifth template is a “rare”
case of a broad subscription that matches any stock with trading volume above a given
parameter. In the real world, users are usually interested in events specific to a narrow
group of stocks. Therefore, this template is assigned a relatively low probability.

While stock quote events exhibit a well-formed schema with numerical attributes,
a number of applications use semi-structured data representations. We use the CiteSeer
scientific literature digital library [6] as a representative data source for such applica-
tions. CiteSeer uses the Open Archives Initiative [14] protocol to publish the metadata
of its literature collection. This metadata is encoded in XML, which accomodates semi-
structured data and allows for efficient data manipulation. We parse the XML records

Table 2. Schema of Stock Quote Events

Attribute Date Symbol Open High Low  Close Volume
Type String String  Float Float Float Float Integer

Minimal ~ 2/Jan/98 aaa 0 0 0 0 0

Maximal 31/Dec/02  zzzzz 500 500 500 500 310000000
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Table 3. Templates of Stock Quote Subscriptions

Subscription Prob. Description

{Symbol = Py A P, < Open < P3} 20% Notify when stock P; opens with price between P and Ps.
{Symbol = P1 A Low < P} 35% Notify when the price of stock P; is at most Ps.

{Symbol = Py A\ High > P»} 35% Notify when the price of stock P is at least Ps.

{Symbol = P1 A Volume > Py} 5% Notify when stock P; is traded at least Ps.

{Volume > P} 5% Notify when any stock is traded more than P;.

published by CiteSeer to generate events one per publication, with the following ex-
tracted attributes: Date, Title, Authors, Subject, and References. We further extract Key-
words from the subject line by removing stop words and obtaining the stems of the re-
maining words. The Authors, Keywords, and References fields are represented with the
Set type defined in Section 3.1. Note that some fields, like References, might be miss-
ing in some cases due to incomplete records. A total of 574,128 events are extracted.

We generate three types of subscriptions for our experiments:

- {Authors > P}: notify when the author list of a newly published paper includes
P. We select parameter P from the list of authors appearing in the data set, with
probability proportional to the occurrence frequency.

- {Keywords 2 P}: notify when a newly published paper includes the keyword list
P. P is a set of one to three keywords selected randomly from the set of keywords
in the data set, with probability proportional to keyword occurrence frequencies.

— {References > P}: notify when a newly published paper cites another document
P. Again, P is randomly chosen according to data distribution.

Besides the above two publish/subscribe data sets, we also use a synthetic workload to
test system scalability, similar to that used in [4]. This workload uses events and sub-
scriptions that specify one of more of 1000 numerical attributes. This synthetic work-
load models a general purpose publish/subscribe system that does not limit the users to
a small set of pre-defined schemas. Each subscription specifies 1 to 10 predicates. Each
predicate randomly selects an attribute, a comparison operator of =, >, <, < or >, and
a value between 0 to 999. We use either an uniform or a zipf distribution (o = 0.8)
to select the attributes. The operator and value fields are chosen uniformly randomly.
Published events randomly specify between 1 to 20 attributes and their values, under
the same distribution as for subscriptions.

We compare Brushwood matching tree against Meghdoot for the stock quote alert
experiments. Meghdoot uses CAN to partition the multi-dimensional content-space to
peer nodes. Meghdoot does not support the CiteSeer data set (due to the presence of
set predicates) or the synthetic workload (due to the large number of attributes and the
flexible event schema). So for these datasets, the experiments only evaluate our system
under different parameters.

6.2 System Scalability

We first use the synthetic workload to evaluate system scalability. We simulate from
1024 to 16384 peer processors. The number of subscriptions is fixed at 1 million. The
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Fig. 7. Synthetic workload: cost vs. system scale

number of event messages is 110000. We start with a single processor and add the
remaining at random intervals, in order to simulate a peer join process. In the mean
time, we insert the subscriptions into the system. We count the number of messages for-
warded for inserting subscriptions and publishing events as a measure of the communi-
cation cost. Some of the messages require further processing at the recipients: to insert
a subscription or to match an event to local subscriptions. We measure this cost as the
number of processors processing the request. We refer to this number as the textitspan
of the operation, and the processors as visited by the operation. For subscriptions, it
is the number of sites the subscription is replicated to. For events, it is the number of
nodes that need to perform predicate evaluation or matching.

Figure 7 depicts the average number of processors visited and the average num-
ber of messages forwarded for a subscription/event. Even with 16384 nodes, a typical
publishing event spans less than 1% of the processors, showing good scalability. The
maximal span we observed is about 250.

When attributes are selected using the Zipf distribution, the span of publishing
events increases much faster than under uniform distribution. The reason is that a
skewed distribution generates many similar subscriptions and events. In order to balance
the load, these closely related subscriptions are partitioned across different processors.
Events matching such subscriptions have to visit more partitions.

An interesting trend in Figure 7 is that the event span decreases when the number of
processors increase from 12288 to 16384 (for Zipf distributed attributes). Meanwhile,
the degree of subscription replication (indicated by the number of processors visited for
subscription insertion) increases from 2 to 4. This is because that as more processors
join, while the total number of subscriptions remains the same, our tree partitioning
algorithm devotes the newly joined processors to store replicated subscriptions, thereby
decreasing the number of processors that an event has to visit.

6.3 Stock Quote Alert

Next we evaluate the performance of our system and Meghdoot using the stock quote
dataset. We scale the system from 128 processors to 8192 (the N parameters in the
graphs). We also scale the number of subscriptions proportionally to the number of
processors (100N).
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Figure 8 shows the number of messages forwarded by subscription insertion and
event matching as we increase the number of peer processors. Compared to Meghdoot,
our scheme shows a substantially lower cost for processing events. This is first because
we partition the subscription set based on data distribution. Meghdoot uses CAN’s par-
titioning method that splits a zone into halves of equal sizes (The reason for this regular
split is to avoid interleaving of the zone spaces that can significantly increase the num-
ber of peering zones.) Therefore it suffers load imbalance under the highly skewed
dataset. In order to alleviate this imbalance, Meghdoot replicates the overloaded nodes,
resulting in a higher number of subscription messages. Another reason is the flexible
value partitioning method used in the matching tree (Section 3.4). Meghdoot partitions
the subscriptions by Min/Max range specified for the attributes. This approach splits
the subscriptions into non-overlapping sets, but an event may need to visit both zones
after the split. We use value range partitioning method that allows events to visit only
one branch after the partition. Our approach also replicate some subscriptions, but only
limited to broad ones. So the subscription cost is still lower than that of Meghdoot.

Figure 9 shows the histogram of event spans (the number of processors visited by
the event). Under all three settings of system scale, our scheme demonstrates relatively
small and stable span, due to reasons discussed above.

Next, we compare the load balance of the two systems. We consider several aspects
of load balance: subscription storage, event matching, and routing state. Routing state
is represented by the number of peers that processors maintain.

Figure 10 (a) presents the cumulative distribution (CDF) of the number of subscrip-
tions managed by the processors. Our system exhibits evenly balanced storage loads,
while most of the subscriptions in Meghdoot are managed by a small number of nodes.
The imbalance in Meghdoot is due to the fact that only some of the zones (the portion
of the CAN space above the diagonal plane) are used to store subscriptions. Moreover,
the constraint of equal-space partitioning also limits its ability to achieve balanced load
under skewed data distribution.

Figure 10 (b) depicts the CDF of the percentage of events prcessed by the proces-
sors. Note that each event may be examined by multiple processors, so the total is higher
than the number of events submitted to the system. Our system shows better load bal-
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ance in event processing, because the subscriptions are more evenly partitioned among
the peers. Some of the subscriptions match very broad range of events (like those only
specifying Volume in Table 3), Both Brushwood and Meghdoot replicate some subscrip-
tions to share the event matching load. Therefore, there is not a significant difference
between the two schemes in balancing the loads associated with event processing.

We discussed the routing state balance problem in Section 4.2. In Skip Graphs,
the peering relationship is decided by random membership vectors, and hence is not
affected by skewed key distributions. Meghdoot uses CAN for overlay routing, which
decides peering by zone neighborhood. Therefore, larger zones may have more peers if
the zones are partitioned into different sizes under a skewed data distribution. In a high
dimensional space, this imbalance is more significant since zones can make contact
along more dimensions. Figure 11 confirms this intuition.

6.4 Literature Reference Notification

Now we present the results of the CiteSeer experiments. We use simulation settings
similar to the above tests, except that the subscriptions choose parameter values based
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on a real distribution derived from the data set, instead of using uniform random dis-
tributions. Figure 12 shows the CDF of the subscription storage and event matching
load on the processors. Although the contents of subscriptions and events have skewed
distributions, the load balancing mechanisms in Brushwood ensure good load balance.

Figure 13 (a) (b) shows the cost of inserting subscriptions and the cost of processing
events. Both the number of messages and the number of nodes visited are small. Since
the attributes Authors, Keywords, and References are of Set type, the span of subscrip-
tion and event messages is mainly decided by the number of items specified. In this
real-world data set, the number of authors, keywords and references are usually small.
Therefore the Brushwood approach performs well. However, we do observe a sharp in-
crease in publishing cost as the number of processors is increased from 4096 to 8192.
This is due to the dynamic load balancing mechanism discussed in Section 5.4. As the
peer population increases, popular subscriptions can receive a significant number of
subscribers. Therefore, peers maintaining them get overloaded and split their load to
more processors. As a result, events involving such subscriptions have to flood more
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peers, while each peer still maintains a reasonable share of load (Figure 13). We did
not observe such a trend in previous experiments because their subscription values are
drawn from a uniform distribution. Though there is an increase in publishing cost, we
do note that the reactive load balancing mechanism manages to balance load even in the
face of skewed subscription patterns.

7 Conclusions

In this paper, we propose a content-based publish/subscribe middleware built by dis-
tributing a matching tree over a peer-to-peer system. The main contribution is in the
decentralized navigation and management algorithms for the distributed matching tree
in peer-to-peer settings. Our system achieves efficient event matching while requiring
only small amounts of state to be maintained by the peers. Processors in the system build
partial views of the global tree based on information about only a logarithmic number of
peers. Therefore, the system provides high scalability. Compared to other peer-to-peer
approaches, it imposes no restrictions over the schemas associated with subscriptions
and events. The use of a matching tree provides more generality and extensibility in the
types of data and predicates that can be supported. The peer-to-peer tree also provides
aggregated load information that assists reactive load balancing. Experiments demon-
strate that the proposed design effectively supports real world subscription scenarios.
Besides publish/subscribe, we have used the Brushwood framework to build other ap-
plications, including high dimensional index and distributed file systems. We believe
that the combination of techniques brought together in Brushwood (such as the ability
to support search tree data structures, efficient decentralized navigation using partially
consistent views, load-balance using aggregated information) shows promise as a pow-
erful toolkit for building scalable distributed applications.

References

1. J. Aspnes and G. Shah. Skip Graphs. In Proceedings of Symposium on Discrete Algorithms,
2003.

2. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
efficient multicast protocol for content-based publish-subscribe systems. In /ICDCS, 1999.

3. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
SIGCOMM, 2002.

4. A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In SIGCOMM, 2003.

5. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE : A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
communications, 2002.

6. CiteSeer. http://www.citeseer.org/.

7. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algo-
rithms and implementation for very fast publish/subscribe systems. In SIGMOD, 2001.

8. J. Gough and G. Smith. Efficient recognition of events in a distributed system. In Proc. of
the 18th Australasian Computer Science Conference, 1995.

9. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-based pub-
lish/subscribe over p2p networks. In Proc. of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware, 2004.



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 123

E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate matching algorithm
for database rule systems. In SIGMOD, 1990.

N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In USITS, 2003.

Y. hua Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In SIGMETRICS,
2000.

Object Management Group. Corba event service specification (version 1.1), March 2001.
Open Archives Initiative. http://www.openarchives.org/.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-
able network. In Proceedings of ACM SIGCOMM, 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. In Proceeding of AUUGY97, 1997.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In SIGCOMM, 2001.

D. Tam, R. Azimi, and H.-A. jacobsen. Building content-based publish/subscribe systems
with distributed hash tables. In Internation Workshop on Databases, Information Systems
and Peer-to-Peer Computing, 2003.

TIBCO. http://www.tibco.com/.

R. van Renesse and K. P. Birman. Scalable management and data mining using astrolabe. In
IPTPS, 2002.

Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang. Subscription par-
titioning and routing in content-based publish/subscribe networks. In 16th International
Symposium on Distributed Computing, 2002.

Yahoo! Finance. http://finance.yahoo.com/.

C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood: Distributed trees in peer-to-peer
systems. In IPTPS, 2005.



WReX: A Scalable Middleware Architecture to
Enable XML Caching for Web-Services

Junichi Tatemura!, Oliver Po', Arsany Sawires*,

Divyakant Agrawal!, and K. Selcuk Candan?

! NEC Laboratories America,
10080 North Wolfe Road,

Suite SW3-350, Cupertino, CA 95014
{tatemura, oliver, agrawal, candan}@sv.nec-labs.com
2 Department of Computer Science,

University of California Santa Barbara,

Santa Barbara, CA 93106
arsany@cs.ucsb.edu

Abstract. Web service caching, i.e., caching the responses of XML web
service requests, is needed for designing scalable web service architec-
tures. Such caching of dynamic content requires maintaining the caches
appropriately to reflect dynamic updates to the back-end data source.
In the database, especially relational, context, extensive research has ad-
dressed the problem of incremental view maintenance. However, only a
few attempts have been made to address the cache maintenance problem
for XML web service messages. We propose a middleware solution that
bridges the gap between the cached web service responses and the back-
end dynamic data source. We assume, for generality, that the back-end
source has a general XML logical data model. Since the RDBMS technol-
ogy is widely used for storing and querying XML data, we show how our
solution can be implemented when the XML data source is implemented
on top of an RDBMS. Such implementation exploits the well-known ma-
turity of the RDBMS technology. The middleware solution described in
this paper has the following features that distinguish it from the existing
technology in this area: (1) It provides declarative description of Web
Services based on rich and standards-based view specification language
(XQuery/XPath); (2) No knowledge of the source XML schema is as-
sumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size
of the auxiliary data needed for the cache maintenance does not depend
on the source data size, therefore, the solution is highly scalable. Experi-
mental evaluation is conducted to assess the performance benefits of the
proposed approach.

Keywords: web services, caching, XML views, path expressions, XML-
relational mapping.

* This work has been done during the author’s summer internship at NEC.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 124-143, 2005.
© IFIP International Federation for Information Processing 2005



WReX: A Scalable Middleware Architecture to Enable XML Caching 125

1 Introduction

Performance degradation of a Web Service can significantly impact the response
times of front-end applications that use it. Especially for Web Services that
provide dynamic content to many users (such as product information services),
latency observed by the users is caused not only by the network transmission,
but mainly by server overload at the back-end application. Offloading processing
from the back-end applications is thus essential in providing Web Services scal-
ability. Therefore, caching is a key enabling technology for scalable Web Service
delivery.

A Web Service cache must handle request and response messages (typically
formatted using XML); thus the cache must process (e.g., parse XML content of)
a request message to identify the response message to be returned. Therefore, a
standard HTTP cache cannot be directly employed when caching Web Services.
Furthermore, in order to achieve loose coupling of remote services, Web Services
usually handle messages with coarser granularities than traditional distributed
object messaging such as CORBA. This fact makes it more difficult to map
data source updates to the cached messages. Caching messages for data-driven
Web Services thus requires middleware support for appropriate propagation of
updates from the source to the cache.

It is commonly understood that an XML data/query model can be imple-
mented on a relational model to leverage from the proven and highly-optimized
storage and query capabilities already provided by existing relational database
systems [15]. Thus, one approach to caching Web Service could be to apply ex-
isting technologies that manage data dependency between web content and data
in relational databases, such as Data Update Propagation (DUP)[3], view inval-
idation [2], invalidation based on query templates [4], and many other works on
view maintenance. However, these relational approaches will be very inefficient
because an XML query can involve too many join operations when translated
into SQL.

In this paper, we propose a middleware architecture, WReX, that bridges
the semantic gaps among Web Service messages, a relational data model, and
an XML data model, for caching Web Services. To make the proposed mid-
dleware solution applicable to various data sources, the WReX represents the
source data in the caches as XML views and provides a declarative way to de-
fine Web Services to access the data. The WReX architecture (Sections 3 and
4) aims at resolving the impedance mismatch between the cached data content
and the underlying database technology by applying recent XML-specific view
maintenance techniques transparently in a relational setting.

Consequently, the WReX introduced in this paper consists of two complemen-
tary components: (1) Web Service Content Description (WSCD) mechanism fills
the gap between Web Service messages and XML views of the source data and (2)
XML view maintenance mapped to relational storage fills the gap between XML
views and updates to the source data. This novel middleware architecture has
the following features that distinguish it from the previous works: (1) It provides
declarative description of Web Services based on rich and standards-based view



126 J. Tatemura et al.

specification language (XQuery/XPath); (2) No knowledge of the source XML
schema is assumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size of the aux-
iliary data needed for the cache maintenance does not depend on the source
data size, therefore, the solution is highly scalable. Experimental evaluation is
conducted to assess the performance benefits of the proposed approach. Exper-
imental evaluations presented in Section 5 establish the performance benefits of
the WReX middleware approach.

2 Cache-Enabled Service Middleware Architecture

Figure 1 illustrates WReX, a Web Service middleware architecture enhanced
with web service caching. WReX consists of a Web Service Application Server,
an XML Data Source, and an Update Manager, which are implemented on top
of a common Web computing platform (e.g., a J2EE application server and a
relational database server). WReX lets users describe and deploy Web Services
that deliver content generated from their own data sources. Given the description
of a Web Service, the middleware manages request/response message caches.

A Web Service application is deployed on top of the WS Application Server
and the XML Data Source as can be seen Figure 1. The application has three
major parts: (1) data (data source to be published), (2) content logic (descrip-
tion of message content to be generated from the data source) , and (3) man-
agement logic (user authentication, logging, and metering). The cache-enabled
Web Service application server consists of the following components: (1) Various
management components, (2) a message content cache component, (3) a con-
tent processor, and (4) an XPath cache. Management components manipulate
messages (e.g., insert data in the header) genereted by the content processor.

Management components handle management tasks such as user accounting
and monitoring with approprite transformation of message content. Web service

WS Application (Data Service)

Application Application oot .
Management Content Logic: App'l&cnaytl;)(r’:A[L)ata.
i Logic ¢ WSDL+WSCD

| oo

i Management |Content|__ | Content .XPath
i Components }| Cache | "Processor |Cache

Update Manager

sQL

WS
Client

WS Applicati

Fig.1. WReX: Web Service Caching Architecture
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messages that contain management information are much less reusable even if
actual content delivered to the user (e.g., product information) is reusable. By
separating management functions as these components, WReX lets the other
components focus on managing relationships between message content and the
source data and makes cache more applicable.

The content logic specifies how to generate content of a message in response
to a request message from a Web Service client. A shortcoming of the existing
technologies is that, the Web Service definition language (WSDL) only defines
interfaces (such as data types) of request/response messages, but does not pro-
vide content relationship between request and response messages [18]. To bridge
this gap, we introduce a description platform, Web Service Content Description
(WSCD), which provides a template of a response message that can contain ref-
erences to data in a request message and queries to the source data. When the
application server receives a request message, it generates a response message by
integrating a message template and content fragments retrieved from the data
source. Caching is applied to both generated response messages (Content Cache)
and retrieved content from the source (XPath Cache).

This approach is similar to JSP (Java Server Pages) or ESI (Edge Side In-
cludes). JSP provides a template of dynamic web pages and lets the application
server construct a page from the template and content fragments generated by
applications. Several application servers provide caching functionality for such
content fragments in order to reduce application overload. ESI is a markup
language used to define web content components for dynamic assembly and
delivery of web pages at edge servers. The edge server dynamically integrates
fragments into a web page and needs to retrieve only non-cacheable or expired
fragments from the original servers. Datta et al. [5] has extended this approach
to enable more flexible content composition on the edge server resulting in en-
hanced cacheability and reusability of content. In this sense, our approach can be
seen as an extension of the JSP/ESI concept from HTML to XML context with
XML cache update management. Another related example is the Weave manage-
ment system [19] that enables the user to create Web content using declarative
specification and caches various intermediary data such as views of relational
data, XML page fragments, and HTML pages. Although it supports XML con-
tent generation from relational databases, update maintenance between cached
XML content and data source is based on time stamps and specified with event-
condition-action rules.

To enable caching of XPath queries to the data source as well as the message
responses from the Web Service itself, the Update Manager needs to monitor
updates in the data source and identify changes in the cached results. Here, note
that an XML-aware data source is commonly implemented on an XML-aware
RDBMS, which can leverage from the maturity of RDBMS implementations,
extensive tuning, proven scalability, sophisticated query processing and query
optimizers. However, even though the underlying DBMS is relational, tradi-
tional view/cache management solutions for relational data can not be directly
applied to an XML data/query model. For example, CachePortal [2] automates
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cache update management based on a view invalidation technique in a relational
model. However, when a query involves many join operations, which is the case of
XML queries in a relational model, it is very inefficient due to costs from an ex-
tra database snapshot and over invalidation. Therefore, we introduce an update
management middleware component which benefits from the relational nature
of the back-end database, while deploying XML-specific view management tech-
niques (i.e., the Update Manager that accesses the data source through SQL
queries (Figure 1)).

2.1 Web Service Content Description (WSCD)

Given a service request, the Web Service generates response messages based
on the service logic. The interface between the request and response is usually
defined using WSDL (Web Service Definition Language). WSDL, on the other
hand, does not describe content relationships between request and response mes-
sages, which are needed for managing updates. We propose Web Service Content
Description (WSCD) language that describes how a response message is gener-
ated for a given operation specified in WSDL. Formally, the WSCD for a service
operation o consists of three parts: (V,T,.S), where V is the variable assignment
definition, T is the template definition, and S is the source references.

— The variable assignment definition V' defines how to extract data from a
request message. Mapping from a request message to variables is given by
pairs of name and XPaths: V' = {(name;, zpath;)}. Given a request message,
which can be seen as an XML document, V' generates a specific variable as-
signment v = {name; = value;}. In addition to the generation of a response
message, v is used as the identity of the message cache: the identity consists
of an operation name and a variable assignment (o, v).

— The template T defines the content of a response message with references to
the variables V. The template can contain XQuery expressions to dynami-
cally insert data derived from the data source.

— The source reference S maps URIs of data source service endpoints to doc-
ument URIs referred to by XQuery expressions in 7.

Figure 2 shows an example of a WSCD description. Elements <cd:Variables>,
<cd:Template>, <cd:ServiceEPR> correspond to (V, T, S), respectively.

A variable is defined with a part of the request message (i.e. input) of a
WSDL operation and an XPath expression that indicates data within the part.
Combined with WSDL binding information, it is translated to a full XPath
expression applied to a request message, for example:

“/Envelope/Body/GetBookRequest/Category/text ()”

in case of the SOAP literal binding. A template specifies an XML content of a
part of the response message (i.e., output) of a WSDL operation. It can contain
an XQuery specified in <cd:Query>. The query may refer to variables defined in
the variables part.
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<cd:WSCD xmlns:cd=... operation="GetBook">
<cd:Variables>
<cd:Let name="category" part="body"
path="/GetBookRequest/Category/text()"/>
<cd:Let name="maxprice" part="body"
path="/GetBookRequest/Max/text () "/>
<cd:Let name="minprice" part="body"
path="/GetBookRequest/Min/text ()"/>
</cd:Variables>
<cd:Template part="body">
<GetBookResponse>
<cd:Query>FOR ... LET... WHERE... RETURN...</cd:Query>
</GetBookResponse>
</cd:Template>
<cd:ServiceEPR .../>
</cd:WSCD>

Fig. 2. Example of Web Service Content Description

Note that WSCD is meant to provide a simple specification of message con-
tent in a request-response Web Service operation. If the user wants a full set
of programming functionality to create Web Service (such as event handling), a
special programming language for Web Services, such as XL [8], could be used
instead of WSCD. In fact, since XL uses XQuery expressions to access data,
a possible extension of WReX is to support the XL language, in addition to
WSCD, for services with complicated interactions.

Our WSCD approach is also related to “declarative web services” [1], used
for composing dynamic XML documents by importing fragments. For optimized
data management, a declarative web service that provides fragments is defined
as an XQuery on data sources. Although they focus on data replication issues in
a distributed environment, they also state possibility of querying cost reduction
through an update propagation mechanism, on which we focus in this paper.

2.2 Cache Management Using WSCD

The WSCD description of Web Service messages provides a framework to manage
Web Service caching. First, the system needs to identify the matching incoming
requests and cached response messages. This task is done by extracting values
from an incoming message with XPath expressions in the variable definition V'
since the cache identity is given as a variable assignment (o, v). Efficient filtering
[7] can be applied to process multiple XPath matching results in a scalable
manner. Then we focus on the second task: to manage update dependencies
between cached messages and the data at the source.

As described above, the WSCD template contains a set of XQuery expressions
XQ = {zq;} to insert dynamic data from the source into response messages.
Since an XQuery expression zq contains references to the variables V' and the
source S, what the system needs to manage is an XQuery instance (zq,v,S):
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when the result of an XQuery instance is updated, the message cache items that
contain this result must be updated or invalidated.

An XQuery statement accesses documents (i.e., the source data) through
XPath expressions. Thus, a set of XPath expressions X P = {xp;} is extracted
from XQueries X @ and is given to the XPath cache component, which caches
an XPath instance: (zp,v,S). The XPath Cache receives an XPath query from
XQuery Processor and returns the query result from the cache. If it is not cached,
the XPath Cache issues an XPath query to the data source. The data source
returns the query result and makes available auxiliary data required to maintain
XPath cache (Section 3).

When the Update Manager observes updates in the data source, it determines
the impact of the source update to cached XPath results. During this process, the
Update Manager uses the auxiliary data and update data to identify the cache
updates. It may also access the source data if needed. Then it maintains cached
results in the XPath Cache affected by the update. Consequently, message cache
items that refer to the affected XPath instances are also either invalidated or
maintained. In order to effectively manage update dependency between message
cache and the data source, the WReX uses our XML-specific view maintenance
techniques described next.

3 XPath Cache Maintenance

In this section we describe the data model and the incremental XPath mainte-
nance technique WReX relies on. Further details of both are presented in [13].

3.1 Data Model

As described earlier, the underlying logical model of the data source is XML.
Each XML data source is represented as an ordered tree in which every node n
is a pair (n.id, n.label) where n.id is a node identifier that uniquely identifies the
node and n.label is a string that describes the node type and/or value. We use
upper-case letters to represent the node labels. For example, A, B, and C are
node labels. We use numeric subscripts to distinguish different nodes that have
the same label. Thus, A; and A; refer to two distinct nodes with the same label
A. Figure 3 shows an example document tree and path expression that will be
used as a running example to illustrate the incremental maintenance technique.

3.2 Update Model

A source update is a transformation of the source XML document. Any source
transformation can be expressed in terms of the two primitive operations of
addition and deletion of leaf nodes. Thus, for simplicity, in this section, we
focus on the maintenance operations needed to handle these two types of source
updates. Formally, we model a source update U as a pair (U.type, U .path) where
U .type is the type of the update: Add (add a leaf node) or Delete (delete a
leaf node). U.path is the path of all the ancestors of the added or deleted node
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(a) XML Data

/A//B[Count(//E) > 1V Count(/D) > 1]//C[Count(//E) = 0]//D
(b) XPath Query

Fig. 3. (a) An Example XML Tree and (b) a path-expression &

starting with the document root and ending with the added or deleted node
itself. The added or deleted node itself is referred to as U.node. For example,
U = (Add, (R, X1, A1, B1, Z)) represents the addition of node Z as a child node
of node Bj in the XML document shown in Figure 3(a).

3.3 Query Model

Path expressions are the basic building blocks of XML queries and therefore are
fundamental to implementing Web Services in our framework. The cache content
is the result of applying path expression-based queries to the source document.
A path expression £ of size N is a sequence of N steps: (s1,S2,---Sn). A step
s; is a triple (s;.axis, s;.label, s;.pred) where (i) s;.axis is an axis test (child ’/’
or descendent ’//’); (ii) s;.label is a label test; and (iii) s;.pred is an optional
predicate test which can be any complex condition examining the labels and
the structure of the nodes in the subtree of the node being tested. Pred;(n) is
said to be true if and only if (1) Node n belongs to the source tree, and (2)
s;.pred evaluates to true at node n or step s; does not have a predicate test. For
example, Preds(C1) in the example is true because C; satisfies the condition
s3.pred since C has no descendants labeled E.

Given an expression £, a document tree D, and a sequence of context nodes
C (the set of staring nodes from D), a query, @ = ¢(€,C, D) returns a sequence
of nodes R as a result. For example, consider the query Q = ¢(&,C, D) where:
D is the document tree shown in Figure 3(a), C = (X1, X2, X3) are the shaded
nodes the same figure, and € is the path expression specified in Figure 3(b).
Given this query,
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1. the first step s1 (/A) starts at every node in C and selects all the children
with label A; this results in the first intermediate result Ry = (A1, Ag, A3).

2. s9 (//B[Count(//E) > 1V Count(/D) > 1]) starts at every node in R; and
selects all the descendants with label B that have at least one descendant
labeled E or at least one child labeled D; this results in the second inter-
mediate result Ro = (Bq, Bs, By, B4, Bs, Bs). Note that By - and also B -
occurs twice in Ry because it can be derived in two ways from nodes of R,
one from A, and another one from As.

3. starting at Raq, step sz (/C[Count(//E) = 0]) selects all the descendants la-
beled C' that have no descendants labeled FE; this results in R3 =
(C3,C4,C5,C5,C5).

4. finally, s4 (//D) starts at R3 and selects all the descendants labeled D.
Hence, the final result of Q is R = Ry = (D3, D3, D4, D4, Dy).

We differentiate between the multiple occurrences of the same node in a result
by using a numeric superscript. For example, we denote the result R as R =
(D3, D3, D}, D3, D3).

For a node n € R, the sub-sequence of the ancestors of a node n that matched
the steps of £, and thus caused n to appear in R is referred to as the result
path of n and denoted as ResultPath(n). ResultPath;(n), where ¢ > 0, is the
ith element in ResultPath(n). In the example query above, Result Path(D3) =
()(17 Al, BQ, 03, Dg) and ResultPath(D%)g = (X1, A1, Bg, 03, Dg) is Bg.

3.4 Incremental Maintenance of Path Expression Results

A source update U can affect the cached result R by adding or deleting nodes to any
ofthe intermediate results R;. The primary reason of such additions and deletions is
changing the truth values of the expression predicates at the steps of the expression:

If an update changes a predicate Pred;(n) from false(true) to true(false),
we say that the update directly adds (deletes) node n at step 4.

A direct addition (deletion) at step ¢ can induce other indirect additions (deletions)
in steps j > i. The final result R is affected if and only if the effect propagates all
the way to step N. For example, if U = (Add, (R, X1, A1, B1, E5)), then Preds(B;)
changes from false to true. The direct effect of this is to add B; to Ro. The resulting
indirect effects are the addition of C7 and Cy to R3 and then the addition of D1 and
D3 to R4. For each step, the incremental maintenance process first discovers all the
direct effects and then uses these effects to discover the indirect ones.

Discovering the Direct Effects of the Updates. We identify the direct effects
of the updates in two phases: Axis&Label test and the predicate test.

Phase I - Axisélabel test: Let us define 6? and 0; as the sequences of all nodes
that U directly adds/deletes at R; respectively. Let also 8; = &;" U 6; . The job
of this phase is to identify a sequence A; such that we can guarantee, without
any source queries, that §; C A4;.

In [13], we showed that every node n in §; must also belong to U.path. More-
over, for a node n to be directly added to be in ¢;, it must have an ancestor
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in every R;, j < ¢. Since n itself belongs to U.path, then all its ancestors also
belong to U.path. This suggests that U.path has much of the information needed
to identify the nodes of ¢;. In fact, applying the axes and labels tests to U.path,
ignoring the predicate tests, provides a sequence A; which is guaranteed to be
a supersequence of ¢;. This is because this process uses a relaxed selection con-
dition (it ignores the predicate tests, which evaluation requires querying the
source) over the branch U.path which is guaranteed to include all the nodes of
all the §;’s. Computing the A;’s from U.path proceeds very similar to computing
the R;’s from the source tree D. For example, consider an update U of adding
a node Dg as a child of Dy. In this case, U.path is the tree branch that starts
with the root R and ends with Dg. Computing the different A;’s as described
above results in: AO = ()(2,)(3)7 Al = (A27A3)7 AQ = (BS7B477B47B57BE')>7
Az = (C5,C5,C5), Ay = (D4, Dy, Dy, Dg, Dg, Dg). Note that the only nodes
that will be directly added are the three occurrences of Dg that appear in Ay;
all the other nodes n in all the computed A;’s will not be added or deleted
because U did not affect Pred;(n). Note that, because Dg did not exist be-
fore U occurred, the value Pred;(Dg), Vi is false before Y. Similarly, if an
update deletes a node n from the source tree, the value Pred;(n), Vi is false
after U.

Phase II - Predicate test: This phase identifies the exact sequence 6; by deter-
mining which nodes in A; had their predicate values changed due to the update.

To detect such changes we need to compare, for every node in ¢;, the values
of Pred;(n) before and after U occurred. Let us denote the value of the predicate
before the update occurred as Pred?®/°"(n) and the value after the update as
Pred®*" (n). The value of Pred® " (n) can be easily calculated by querying the
source. The value of Predi-’ef °"“(n), on the other hand, cannot be computed by a
source query because the update U has already been incorporated at the source.
Once again, in [13], we showed that we can deduce the value of Pred’*/*"®(n)
using the information of the result paths. Specifically, we showed that if we define
RP;(n) to be true if and only if n is the i*" element of the result path of some
node in R, then we can take Pred?efore(n) = RP;(n). Therefore, we keep the
result paths’ information as auxiliary data with the cached result R. With that,
we compute Pred?ef °"¢(n) without issuing any source queries. To compute the
size of this auxiliary data, recall that each result path is of length N + 1; if M
is the size of the cached result R, then the size of the auxiliary data is clearly
O(M * N). Thus the auxiliary data size is bounded by the expression size and
the result size and it does not depend on the source data size.

Discovering the Indirect Effects of the Updates To discover the indirect
effects from the direct ones, we need to handle two cases:

1. Indirect additions due to direct additions: when a node n is directly added
to R; then, in order to retrieve the indirect additions at R, the maintenance
algorithm issues a source query with context as n and with the steps sequence
(Sit+1,Si+2, "+, S$n). This query is denoted as ¢((s;+1, Si+2," -+, Sn), (n), D).
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Incremental Maintenance (Expression £, Update i)

1- Ao =CnNU.path
Rt =R~ =() //Empty sequences
i =1 // loop variable
2- WHILE (¢ < N AND A;_; is not empty)

21 j=14
WHILE (s; has no predicate test AND j < N) j++
2-2 Aj = q((si, Sit1,- -, 85).axis&label, A;j_1,U.path)

2-3 Let 7; = (n|n € A; A Pred;.’ft”(n) = true)

2-4 6; = (n|n € T; AN RPj(n) = false)

2-5 RY = RT Uq((sjt1, 8542, -+, 4n), 6/, D)

2-6 R~ =R~ U(n|n € R A ResultPathj;(n) € (4; — T;))
2-7 Ay =T; - &

2-8i=3j+1
3- R=RUR'
R=R-R~

Fig. 4. Incremental View Maintenance Algorithm for XML Path Expressions

2. Indirect deletions due to direct deletions: when a node n is directly deleted
from R;, then all the nodes » € R that came to R due to n belonging to
R; must also be deleted from R. These are the nodes » € R which have
ResultPath;(r) = n. Thus, using the auxiliary data described above, we can
discover the indirect deletions without issuing any source queries.

The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-
sented above. Step 1 initializes some algorithm variables. Rt and R~ are the
sequences of nodes to be added and deleted, respectively, in R. The loop in step
2 computes the different A’s. Step 2-1 assigns the value of j such that the range
1 : j spans all the expression steps starting at ¢ that do not have predicate tests.
For this range, no predicate tests are needed because all the predicates are known
to be true, by definition, before and after &. Thus, there are no direct effects
in this range. Therefore, the algorithm combines all the axis&label tests of this
range in one step, namely, step 2-2. Step 2-3 identifies 7; as the sequence of the
nodes of A; that have Pred?f " (n) = true. Step 2-4 then discovers the direct
additions at R;. These direct additions are then used by step 2-5 to discover
the indirect effects on R. Step 2-6 discovers all the ultimate deletions at R, it
implicitly discovers the direct deletions and uses them to discover the indirect
ones. Step 2-7 excludes from A; the nodes that will not have effects on later
iterations, this is formally proved in [13]. Step 2-8 increments the loop variable
to start after j in the next step. Finally, step 3 updates R using R and R™.

Note that the algorithm does not differentiate between source addition and
deletion updates, the only case that needs to make such distinction is when
U .node itself belong to Ay, this case is implicitly taken care of in the computa-
tion of Pred;(n) before and after U.

In addition to the result R, the auxiliary data also need to be maintained.
This is not shown here for simplicity.

In the following section, we show how this algorithm is implemented when the
source XML document is stored in an RDBMS and hence, queried by SQL queries.
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4 Implementation over RDBMS

Although there have been several efforts to build native XML database sys-
tems [10,11], a common consensus is to use RDBMS technology to leverage from
the proven and highly-optimized storage and query capabilities already provided
by existing relational database systems [15].

Therefore, in this section, we show how the incremental XPath maintenance
algorithm described in Section 3 can be implemented when RDBMS technology
is used for the storage of the XML source data, the auxiliary data, and the
cached results. This requires an update management middleware which bridges
the gap between the XML logical data model at one side, and the relational
database implementation at the other side.

First, we will describe the XML-to-RDBMS and XPath-to-SQL mapping
schemes the middleware uses (Section 4.1). Then we will describe how to employ
this relational framework for incremental view maintenance of XPath queries to
support efficient Web Service caching (Section 4.2).

4.1 Storing and Querying XML over RDBMS

XML Data to Relational Data Mapping. Given the mismatch between the
XML data model (which has a nested structure) and the relational data model
(which is flat), several techniques have been proposed for storing and querying
XML documents using relational database systems [6,9,16,15]. These approaches
typically work as follows. The first step is relational schema generation, where rela-
tional tables are created for the purpose of storing XML documents. The next step
is XML document shredding, where XML documents are stored by shredding them
into rows of the tables that were created in the first step. The final step is XML
query processing (XPath queries in our case), where XPath queries over the stored
XML documents are converted into SQL queries over the created tables.

One simple approach of shredding is to store each node in the XML tree as a
tuple in a relational table, which maintains all the necessary information, such as
the node label, and node type. Node identifiers are used to capture and represent
the structure of the XML source in the relational database. In order to efficiently
maintain path-expression views over XML documents, two essential properties
must be provided by node identifiers: First, element(s) updated in the source
XML document should be easily identified. Secondly, structural (parent, child,
descendent, sibling) relationships among the elements of the XML document
should be easily determined using the node identifiers. These are critical for
efficient query processing and also in facilitating effective view maintenance in
the presence of updates.

Several approaches are proposed to assign node identifiers to the nodes in
XML document. We apply one such approach called, the ORDPATH [12] scheme
(also used in the upcoming version of Microsoft SQL Server). ORDPATH iden-
tifiers can be assigned to the nodes of an XML tree without requiring a schema.
ORDPATHSs are conceptually similar to the Dewey Order introduced in [17].
The resulting identifiers have the property that ancestor relationships between
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id label type value parent
1 Manuscripts element NULL 0

1.1 Category attribute Fiction

1.3 Book element NULL 1
1.3.1 ISBN attribute 1-555860-438-3 1.3
1.3.3 Title element NULL 1.3
1.3.3.1 NULL value A Story 1.3.3
1.3.5 Author element NULL 1.3
1.3.5.1 Country attribute USA 1.3.5
1.3.5.3 NULL value John Doe 1.3.5
1.5 Monograph element NULL 1
1.5.1 ISBN attribute 1-888570-843-5 1.5
1.5.3 Title element NULL 1.5
1.5.3.1 NULL value Another Story 1.5.3
1.5.5 Author element NULL .5
1.5.5.1 Country attribute Canada 1.5.5
1.5.5.3 NULL value Tom Alter 1.5.5

Fig. 5. SrcTBL: The XML Document Table

the nodes is captured by the prefix relationship between the corresponding node
identifiers: ancestor(n;,n;) < prefiz(n;.nid, n;.nid).
Consider the following sample XML document:
<Manuscripts Category="Fiction">
<Book ISBN="1-555860-438-3">
<Title>A Story</Title>
<Author Country="USA">John Doe</Author>
</Book>
<Monograph ISBN="1-888570-843-5">
<Title>Another Story</Title>
<Author Country="Canada">Tom Alter</Author>
</Monograph>
</Manuscripts>

Figure 5 shows the table Sr¢TBL in which an XML document is stored in an
RDBMS

— id: The ORDPATH identifier originally proposed is implemented as a bit
string, and an RDBMS is supposed to implement primitive functions for struc-
tural relationships and query plans optimized for ORDPATHSs. In our proto-
type, we have implemented an ORDPATH id as a character string, as shown in
Figure 5, for experimental purpose without implementing primitive functions
in RDBMSs. The primitive ancestor(n;.id, n;.id) is implemented as a string
prefix matching: “n;.¢d LIKEn;.id | | %’”. Note that the node id column cap-
tures the order of the XML document, thus this XML order semantics are not
lost when the document is stored in an unordered relational system.

— parent: To identify a parent-child relationship effectively in our experimental
prototype, we additionally store the parent node id in the table. The primi-
tive parent(n;.id, n;.id) is in fact implemented as “n;.id = n;.parent”.

— label, type, value: A node type is specified in type , which is either an
element, attribute, or value. An element node has its tag name in label.
An attribute node has its name and value in 1abel and value respectively.
A value node has its value in value. Although our view maintenance algo-
rithm is presented on a simplified document model (i.e., (n.id, n.label)), it
can be easily mapped in this node model.
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With this table schema in place, XPath queries can be processed by translating
them into SQL queries against a table of this schema, as illustrated next.

4.2 XML Document Update Management

For each cached XPath expression, the system stores the following data required
for incremental maintenance (Section 3): (1) CntxtTBL: a table of the nodes
that comprise the query context, (2) Query Statement: an SQL representation of
the original XPath expression, (3) Individual query step: an SQL representation
of each step in the incremental maintenance algorithm, and (4) AuxTBL: the
auxiliary data (i.e. the result paths), whose schema is AuxTBL(id0, id1, id2, - -,
idN) (where N is the number of steps in the cached expression, each row in this
table stores a result path of the result, and the nodes in the last column idN
comprise R).

In the maintenance process, the whole auxiliary data (i.e., AuxTBL) needs to
be maintained, not only the final result R which is stored in the last column of
that table. We have implemented that simply by projecting more columns in the
SELECT clauses of the following SQL statements. With that, the rows resulting
from these SQL statements represent partial path expressions. Therefore, we use
join operations to concatenate these partial result paths to form full result paths
to maintain AuxTBL. For simplicity, we do not show the concatenation queries
here.

In addition to these tables, we maintain an update table (UpdtTBL) that
stores the source update being processed. As mentioned before, each update U
is represented by U.path which is a branch of the source tree. Thus, we use the
same schema as for the SrcTBL.

The View Maintenance Process. We illustrate the view maintenance process
with the folowing expression as an example:

/site/person[LIK E(Qid,” person%”)]/name

To construct the SQL query representing this expression, the hierarchical rela-
tionships between the nodes can be represented by either nested SQL queries
or as self-join operations on the source table, SrcTBL, shown in Figure 5. We
adopted the second option in our solution because it allows the query optimizer
to generate more efficient query plans. Thus, the expression is transformed into
the following SQL query by the middleware:

SELECT A.id, B.id, C.id, E.id

FROM CntxTBL A, SrcTBL B, SrcTBL C, SrcTBL D, SrcTBL E

WHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.id
AND parent(E.id)=C.id

AND B.type = ’element’ AND A.label = ’site’

AND C.type = ’element’ AND B.label = ’person’

AND D.type = ’attribute’ AND D.label = ’id’ AND LIKE(D.value,’person’)
AND E.type = ’element’ AND E.label = ’name’
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In this query, the final result is the set of nodes in the last projection E.id,
the other projections A.id, B.id and C.id represent the result path information
which is used as auxiliary data for the maintenance process.

The algorithm in Figure 4 starts by initializing Ag in step 1 by an intersection
operation:

CREATE TABLE A((id0) AS
(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)

Then, in the first iteration of the loop, step 2-1 assigns to j the value 2
because s; has no predicate test. Then, step 2-2 computes Ay by the following
SQL statement:

CREATE TABLE A»(idO, idl, id2) AS

SELECT A.id, B.id C.id FROM Ag A, UpdtTBL B, UpdtTBL C
WHERE parent(B.id)=A.id AND parent(C.id)=B.id

AND B.type = ’element’ AND B.label = ’site’

AND C.type ’element’ AND C.label = ’person’

The projection of A.id and B.id here are to get partial result paths.
In step 2-3, 73 is computed by:

CREATE TABLE 7> AS SELECT A.id FROM Ay A, SrcTBL B
WHERE parent(B.id)=A.id

AND B.type = ’attribute’ AND C.label = ’id’

AND LIKE(B.value,’personi’)

Then step 2-4 computes the direct additions at Ry as follows:

CREATE TABLE & AS
SELECT T.id FROM T T
WHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)

Step 2-5 then uses 65 to discover the ultimate additions at R, the SQL query
used to discover these additions is:

SELECT A.id, B.id FROM 65 A, SrcTBL B
WHERE parent(B.id)=A.id
AND B.type = ’element’ AND B.label = ’name’

(A.id, B.id) in this query result is a partial result path starting at Ro until Rs.
Then step 2-6 computes the ultimate deletions at R as follows:

SELECT DISTINCT A.id3 FROM AuxTBL A
WHERE A.id2 IN
SELECT id2 FROM A, DIFFERENCE SELECT id FROM 75

step 2-7 simply reduces As by a DIFFERENCE operator.

In the second (also, last) iteration of the loop, we have ¢ = j = 3. In step
2-2, Az is computed from the reduced As. Since this iteration is processing
the last expression step, then if U.node belongs to Az then the computation
of Preds(U.node) takes into account U.type. This is computed as follows: If
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U.type = Add, then Preds®’°™*(U.node) = false because U.node did not exist
in the source before U.node. If U.type = Del, then Predgfter(l/{.node) = false
because U.node does not exist in the source after U.node. These two cases are
implicitly taken care of in the algorithm without testing U.type in the compu-
tation of Preds(U.node) before and after . Finally, all the ultimate additions
and deletions in AuxTBL are determined by joining the partial result paths
discovered by the SQL queries shown above.

5 Experimental Evaluation

In this section, we experimentally show that the proposed scheme provides a large
performance impact, while incurring a small storage and processing overhead.
For this purpose, we used the XMARK benchmark [14] to generate a data set
of 325,236 nodes. Experiments are done using an Oracle 9i database on a PC
with Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluated
the caching performance by using the following XPath queries:

— XP1: /site/people/person[like(@Qid,” person%” )] /name/text()

— XP2: /site/closed auctions/closed auction[price>40]/price/text()
XP3: [site/ /item[contains(description,” gold” ) /name/text/()

XP/: /site/closed auctions/closed auction/annotation/description/
parlist /listitem /parlist /listitem /text /emph /ketword /text ()

Overhead of Auxiliary Data. Table 1 shows the overhead of auxiliary data
(i.e., AuxTBL) in terms of storage requirements and execution time. In addition
to cached XPath results (denoted as columns R-VAL and R-ID), the system
needs to store result paths as auxiliary data(AUX). As can be seen in the AUX
column, the storage overhead does not depend on the data size, but depends
on the number of steps in the XPath query and the cached data size. Then,
to observe the query processing in WReX, we compared the original full query
execution time with the execution time of the modified query that also retrieves
result paths to be used as auxiliary data. As shown in the Table 1, the overhead
is less than 10% in each case.

Table 1. Overhead in Auxiliary Data Maintenance: R-VAL: Result Set Value Stor-
age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: Storage
Overhead (=AUX/(R-VAL+R-ID)), FQ: Full Source Query Execution Time, FQA:
Full Source Query with Aux. Data Execution Time, EOV: Execution Time Overhead

(=FQA/FQ).

R-VAL R-ID AUX SOV FQ FQA EOV
(byte) (byte) (byte) (msec) (msec)
XP1 36538 30103 85199 1.28 532 551 1.04
XP2 2366 8312 24267 2.27 802 876 1.09
XP33080 2327 6096 1.13 3933 4019 1.02
XP4 964 752 5525 3.22 3520 3556 1.01



140 J. Tatemura et al.

Performance Impact of Cache-enabled Middleware. To observe the ben-
efit of WReX in reducing the execution time observed by the users, we have
compared the execution time requirements for incremental cache update and
full recomputation on the following cached queries:

— XP5: [site/people/person|like(@Qid,” person2%” )] /name/text()
— XP6: /site/people[person[like(@id,” person1%”)]]/
person([like(Qid,” person2%”)] /name/text ()

For each query, 100 source updates were randomly generated. The results of
the time comparison for all the updates are shown in Figures 6(a) and 6(b). In
short, full queries take 10 to 20 times longer to execute on average. The figures
clearly establish the advantage of the proposed incremental view maintenance
middleware.

Finally, consider Figure 7, which shows the caching impact analysis for query
XP4, which has 13 steps, but no predicate. Since there are no predicates in XP4,

Process Cycle Time Comparison
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Fig. 6. Incremental View Maintenance versus Full Re-Computation (Queries XP5,
XP6)
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Process Cycle Time Comparison
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Fig. 7. Incremental View Maintenance versus Full Re-Computation (Query XP4)

no queries to the source need to be issued for predicate checking. Therefore,
the time needed for incremental maintenance is rather constant, whereas the
need for accessing sources for predicate tests had introduced a higher variability
to the incremental maintenance time for queries XP5 and XP6 in Figures 6(a)
and 6(b). Nevertheless, since predicate evaluation is only a part of the overall
processing needed for reevaluation of queries XP5 and XP6, incremental main-
tenance was consistently cheaper even when sources are accessed for predicate
checking.

6 Conclusion

In this paper, we have proposed WReX, a Web Service middleware architec-
ture that enables cache management by bridging the gap between Web Service
message caching and updates in the source data. Our solution consists of two
components: (1) Web Service Content Description (WSCD) that fills the gap
between Web Service messages and XML views of the source data; and (2) XML-
specific view maintenance that fills the gap between XML views and updates in
the source data. Cache-enabled Web Services are easily described and deployed
on a common platform with proven RDBMS technology. Through experimental
evaluation, we have demonstrated the performance benefits of our incremental
view maintenance. Future work includes more effective maintenance of multiple
XPath views and multiple updates, extension of our approach to other XML-to-
RDBMS mapping schemes (such as schema-aware mappings), and more detailed
studies on the entire middleware performance.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In SIGMOD Conference, pages 527—
538, 2003.



142

2.

10.

11.

12.

13.

14.

15.

16.

J. Tatemura et al.

K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation for
dynamic content caching in multitiered architectures. In The 28th Very Large Data
Bases Conference, 2002.

. J. Challenger, P. Dantzig, and A. Iyengar. A scalable system for consistently

caching dynamic web data. In In Proceedings of IEEE INFOCOM’99, 1999.

. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-

generated web contents. In APWeb 2004, 2004.

. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.

Proxy-based acceleration of dynamically generated content on the world wide web:
An approach and implementation. ACM Trans. Database Syst, 29(2):403-443,
2004.

. A. Deutsch, M. Fernandez, and D. Suciu. Storing Semi-structured Data with

STORED. In Proceedings of the 1999 ACM International Conference on Man-
agement of Data (SIGMOD’1999), 1999.

. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and

predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst, 28(4):467-516, 2003.

. D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML programming lan-

guage for web service specification and composition. In WWW2002, International
World Wide Web Conference, 2002.

. D. florescu and D. Kossman. Storing and Querying XML Data using an RDBMS.

IEEE Data Engineering Bulletin, 22(3):27-34, 1999.

Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In Proceedings of
the ACM International Workshop on the Web and Databases (WebDB’99), 1999.

J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,
R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy andJ. Shanmugasun-
daram, F. Tian, K. Tufte, S. Viglas, C. Zhang, B. Jacksonand A. Gupta, and
R. Chen. The Niagara Internet Query System. IEEE Data Engineering Bulletin,
24(2), 2001.

Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMOD
Conference, pages 903-908, 2004.

Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant Agrawal, and K. Selguk
Candan. Incremental Maintenance of Path-Expression Views. In SIGMOD Con-
ference, 2005.

Albrecht Schmidt, Florian Waas, Martin L. Kersten, MichaelJ. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for xml data management.
In VLDB, pages 974-985, 2002.

Jayavel Shanmugasundaram, Rajashekhar Krishnamurthy, Igor Tatarinov, Eugene
Shekita, Efstratios Viglas, Jerry Kinman, and Jefferey Naughton. A General Tech-
nique for Querying XML Documents using a Relational Database System. In
Proceedings of the 2001 ACM International Conference on Management of Data
(SIGMOD’2001), 2001.

Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing
relational data as xml documents. In Proceedings of 26th International Conference
on Very Large Data Bases (VLDB’2000), September 10-14, 2000, Cairo, Egypt,
pages 65-76, 2000.



WReX: A Scalable Middleware Architecture to Enable XML Caching 143

17. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using a
relational database system. In Proceedings of the 20002 ACM International Con-
ference on Management of Data (SIGMOD’2002), pages 204215, 2002.

18. D. B. Terry and V. Ramasubramanian. Caching xml web services for mobility.
ACM Queue, 1(3):70-78, 2003.

19. K. Yagoub, D. Florescu, V. Issarny, and Patrick Valduriez. Caching strategies for
data-intensive web sites. In The VLDB Journal, pages 188-199, 2000.



Inflatable XML Processing

Rohit Fernandes' and Mukund Raghavachari?

! Department of Computer Science, Cornell University
rohitf@cs.cornell.edu
2 IBM T.J. Watson Research Center
raghavacQus.ibm.com

Abstract. The past few years have seen the widespread adoption of
XML as a data representation format in various middleware: databases,
Web Services, messaging systems, etc. One drawback of XML has been
the high cost of XML processing. We present in this paper InflateX; a sys-
tem that supports efficient XML processing. InflateX advances the state
of the art in two ways. First, it uses a novel representation of XML,
called inflatable trees, that supports lazy construction of an XML docu-
ment in-memory in response to client requests, as well as, more efficient
serialization of results. Second, it incorporates a novel algorithm, based
on the idea of projection [8], for efficiently constructing an inflatable tree
given a set of XPath expressions. The projection algorithm presented in
this paper, unlike previous work, can handle all axes in XPath, includ-
ing complex axes such as ancestor. While we describe the algorithm in
terms of our inflatable tree representation, it is portable to other repre-
sentations of XML. We provide experiments that validate the utility of
our inflatable tree representation and our projection algorithm.

Keywords: XML, XPath, Performance, Projection.

1 Introduction

The past few years have seen the widespread adoption of XML as a data in-
terchange format in various middleware: databases, Web Services, messaging
systems, etc. The popularity of XML has been accompanied by its main draw-
back — the high cost of XML processing. One of the factors affecting XML
processing is the memory footprint of XML documents — when documents are
large or many documents are processed simultaneously, XML processors may
operate inefficiently or not execute at all.

Consider the following (common) situation — a web service receives an XML
document over the network. In processing the document, the web service accesses
certain portions of the document (possibly by executing queries in a language
such as XQuery [14] or XPath [12] on the document). Based on the result of
processing, the web service constructs a new XML document and publishes it
over the network. In such a situation, the cost of loading an instance of the
XML document into main memory and serializing the constructed output can
dwarf the cost of query evaluation during the execution of the web service.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 144-163, 2005.
© IFIP International Federation for Information Processing 2005
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Fig. 1. Breakdown of query processing time in terms of parsing time, construction
time, query evaluation time, and result serialization time

Figure 1 presents a breakdown of the cost of executing a query on a DOM [13]
representation of an XML document.?

In this paper, we describe a system, InflateX, that addresses the high cost of
XML processing. At the heart of the InflateX system is a novel representation
of XML, called inflatable tree, that builds portions of an XML document lazily
in memory in response to traversals of the document initiated by clients. The
remaining portion of the XML document is stored in binary form, which can be
up to five times more concise than the DOM representation of XML [8]. To a
client, InflateX provides a DOM view of the XML document — the client may
manipulate this view as one would any DOM representation. We will show that
the inflatable tree representation is more efficient (in general) than full DOM ma-
terialization of a document in all aspects of XML processing : construction of an
instance of a document in memory, query evaluation, and serialization of output.

To optimize the lazy construction of inflatable trees, InflateX allows clients to
specify a set of XPath expressions with respect to which the document should
be projected [8]. In one pass over the document, the InflateX system materializes
those portions of the document that are relevant to the provided set of XPath
expressions and retains the remaining portions in binary form. Traversals of the
inflatable tree that are contained in the set of XPath expressions can be processed
efficiently (since those nodes are already materialized in memory). Traversals
that access portions that are not materialized will cause the InflateX system
to materialize those portions on-demand. We will provide a novel projection
algorithm that can handle all XPath axes — previous work could handle only
XPath expressions with child and descendant axes.

1.1 Contributions
The contributions of the paper are the following:

— A novel representation of XML, called inflatable tree, that supports lazy
construction of an XML document in memory. The representation allows for
more efficient construction, query evaluation and serialization of XML data.

! The figure reports the execution of the Java equivalent of the XQuery
for $i in /site/regions/namerica/item return $i on a 10MB XMark [11]
document.
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— A novel projection algorithm that can handle all XPath axes. We will show
that the definition of projection of Marian and Siméon is not sufficient when
axes other than child and descendant are used, and provide a general
definition of projection that is valid for all XPath axes.

— Experiments that demonstrate that the inflatable tree representation sub-
stantially reduces the construction and serialization time in XML processing.
Furthermore, the inflatable tree representation allows an XML processor to
handle larger documents than it might otherwise (approximately, 2-5 times
the corresponding DOM representation).

1.2 Related Work

Bohannon et al. [4] describe a virtual DOM interface that delivers navigable
XML views of relational data. Like inflatable trees, their interface supports
lazy materialization of an XML document. Their system, however, relies on
the existence of an underlying database that acts as a persistent store for the
XML data. The system also relies on the database for query execution. In
many situations, for example, for some web services, such a store may not
be available. Our inflatable tree representation provides a mechanism for effi-
cient XML processing in memory, without any requirements of an underlying
database.

Marian and Siméon have introduced the idea of projection which constructs a
DOM representation of a document based on a set of XPath expressions [8]. One
drawback to projection as defined by Marian and Siméon is that it assumes that
all queries that will be executed on the document are known in advance. The
inflatable tree representation is robust in that it can be used even when the full
set of XPath expressions that will be evaluated on the document is not known
in advance. Second, their projection algorithm cannot handle XPath expressions
involving axes such as parent and ancestor. Finally, their approach does not
reduce the cost of serialization of results which, as observed in Figure 1, can be
high.

Compressed XML [5] is a concise representation of an XML document. The
tree skeleton of an XML document — the portion of an XML document ob-
tained by ignoring all string information — is compressed. String information is
not stored directly, but if the queries are known in advance, compressed XML
encodes information about the strings that may be required to evaluate the
queries on the document. Unlike compressed XML, our representation retains
all information relevant to an XML document.

Streaming algorithms [3,6,7] reduce the memory overhead of XML processing
by not constructing the document in memory, but processing it as it is parsed.
They can be applied in constrained circumstances where all queries evaluated
in the document are known in advance and are independent of each other. As
with projection, streaming algorithms support only limited subsets of query
languages; for complex queries involving joins or nested queries, it is necessary
to manifest portions of the document in memory [8].
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1.3 Structure of Paper

The paper is structured as follows. In Section 2, we describe our system archi-
tecture and the inflatable tree representation. In Section 3, we present a new
definition of projection that is valid when all XPath axes are allowed. In Sec-
tion 4 we present our algorithm for document projection. In Section 5, we give an
overview of our implementation. In Section 6, we provide experimental results.
Finally, in Section 7, we conclude and describe future work.

2 System Architecture

The architecture of our system is depicted in Figure 2. A client passes a ref-
erence to a data stream, and optionally, a set of XPath expressions called the
projection set to the InflateX system. The projection set is an approximation
of the traversals that will be executed over the XML document; it is used as
a hint to optimize the construction of the inflatable tree representation of the
document. The projection set need not be complete — the client may execute
XPath expressions over the document that are not covered by the projection
set. The InflateX system uses the projection set and the XML data stream to
construct an initial inflatable tree representation of the XML document. The
client may determine the initial projection set using various mechanisms, for ex-
ample, static analysis of the client application, profiling information of the most
common XPath expressions or traversals used, etc. In this paper, we will focus
on mechanisms for building the inflatable tree efficiently given a projection set.
We now describe our inflatable tree representation and how a client interacts
with it in greater detail. For simplicity, we will focus on elements, though our
implementation can handle the other XML nodes, such as attribute nodes.

2.1 Inflatable Trees

Our representation of XML documents, inflatable tree, is based on the observa-
tion that the binary representation of an XML document (as a sequence of bytes)

Projection

XPath Inflatable Tree

=

DOM
[Traversals|

Fig. 2. System architecture
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can be 4-5 times more concise than constructing a DOM model instance of the
document. Given a reference to an XML document, we store the sequence of
bytes corresponding to the XML document in an array of bytes in memory. Our
representation of the XML document in memory consists of two sorts of nodes:
materialized nodes and inflatable nodes. A materialized node corresponds to an
element in the document and contains all information relevant to the element,
such as its tag. An inflatable node represents an unexpanded portion of the XML
document; it contains a pair of offsets into the byte array representation of the
document corresponding to the start and end of the unexpanded portion. For
example, Figure 3a depicts the inflatable tree representation of an XML docu-
ment tree. The materialized nodes are shown with a label, and the nodes that
have a dashed border are inflatable nodes. They contain offsets into the binary
array of bytes.

Fig. 3. (a) Inflatable tree epresentation of an XML document. Boxes with solid borders
represent materialized nodes. Boxes with dashed borders represent inflatable nodes. (b)
Representation of a constructed XML document.

2.2 Operations on Inflatable Trees
We now describe how a client may operate on an inflatable tree.

Inflatable Tree Refinement. Once an inflatable tree is constructed, a client
may operate on the tree as with any other DOM representation of an XML
document, for example, by executing an XPath expression with respect to a
node of the inflatable tree. If the client accesses a portion of the tree that has
not yet been materialized, the runtime system inflates that portion of the tree
automatically in response to the client’s request. If desired, the client may pass
a new projection set to the InflateX system, which will be used by the system to
inflate portions of the tree corresponding to the new provided set of XPaths.

Construction of XML. A client may construct new nodes and trees, which
are always constructed in materialized form. When construction refers to sub-
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trees from existing documents, InflateX constructs an inflatable node with the
appropriate offsets. For example, Figure 3b shows the result of constructing a
tree based on the input XML document of Figure 3a. The children on the Pubs
element in Figure 3b are the two Publisher subtrees in Figure 3a.

Serialization of Results. Since the byte array representation of the input XML
documents is retained in memory, portions of the results that are derived from
the input document can be serialized directly from the byte array. As we will
show in Section 6, this direct serialization can be substantially more efficient than
explicit traversal of a tree to perform serialization. For example, in Figure 3b,
the inflatable nodes corresponding to the Publisher elements can be serialized
directly from the input document byte array.

3 Preliminaries

We define the abstractions of XML documents and XPath expressions that will
be used in this paper. We will then provide a definition of projection that is valid
when all XPath axes are supported.

3.1 Tree Model of XML Documents

An XML document can be represented as a tree whose nodes represent the
structural components of the document — elements, text, attributes, etc. Parent-
child edges in the tree represent the inclusion of the child component in its parent
element, where the scope of an element is bounded by its start and end tags. The
tree corresponding to an XML document is rooted at a virtual element, ROOT,
which contains the document element. We will discuss XML documents in terms
of their tree representation; D represents an XML document, and Np and Ep
denote its nodes and edges respectively.

For simplicity of exposition, we focus on elements in this paper, and ignore
attributes, text nodes, etc. The tree, therefore, consists of the virtual root and
the elements of the document. We refer to the nodes of the document tree as
elements to avoid confusion with vertices of the tree representation of an XPath
which we will discuss shortly. We assume that the following functions are defined
on the elements of an XML document:

— IDp : Np — Integer: Returns a unique identifier for each element in a
document. We will assume that IDp is a total order on the elements in D,
such that the assignment of identifiers to elements corresponds to a depth-
first preorder traversal of the tree (that is, document order in XML).

— TAGp : Np — String: Returns the tag name of the element.

We also assume functions, CHILDp, DESCp, SELFp, FSp, and FOLLOWING p,
each with the signature Np x Np — {true, false}. The semantics of these
functions is straightforward, CHILD p (v1, v2) returns true if vq is a child of v1 in D,
and FSp (v, v2) returns true if v; and vy share a common parent, and moreover,
IDp(v2) > IDp(v1). FOLLOWINGp(v1,v2) returns true if IDp(v2) > IDp(vy) and
v9 is not a descendant of v;1. Finally, SELFp(v1,v2) returns true if v; = vs.
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3.2 XPath Subset

The grammar of XPath expressions accepted by our projection algorithm is
provided below. In the grammar, the non-terminal Azis includes all axes defined
in the XPath specification [12]. For simplicity, we will only consider elements
and not consider the namespace and attribute axes.

AbsLocPath :="/" RelLocPath

RelLocPath := Step'/" RelLocPath | Step

Step := Axis :: NodeTest |Step ']’ PredExpr ']’

PredExpr := RelLocPath and PredExpr |AbsLocPath and PredExpr |
RelLocPath | AbsLocPath

NodeTest := String|x

An absolute path expression corresponds to one that satisfies AbsLocPath
and is evaluated with respect to the root node of the tree. A relative XPath
expression corresponds to RelLocPath and is evaluated with respect to a provided
set of elements in the tree.

3.3 XPath Expression Trees

An XPath expression can be represented as a rooted tree T' = (Vr, Er) with
labeled vertices and edges. The root of the tree is labeled ROOT. For every
NodeTest in the expression, there is a vertex labeled with the NodeTest. Each
vertex other than ROOT has a unique incoming edge labeled with the Axis spec-
ified before the NodeTest. The vertex corresponding to the rightmost Node-
Test which is not contained in a PredFEzpr is designated to be the output
vertex. There are functions, LABELy : Vp — String, and AXiSp : Epr —
Axis that return the labels associated with the vertices and edges respectively.
Figure 4 provides an example of the tree representation of the XPath expression
//book[title and author]/ancestor::publisher.?

Fig.4. Tree representation of the XPath expression //Book[Title and
Author] /ancestor: :Publisher. The output vertex has a thick border.

The semantics of an absolute XPath expression is defined in terms of embed-
dings [9].

2 We will use the abbreviated XPath syntax in the paper for conciseness.
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Definition 1. A pair of elements (n1,n2) in a document, D, ni,n2 € Np sat-
isfies an edge constraint (v, vs) in the tree representation T of an XPath expres-
sion if the relation between ny and nz in the document matches AX1St (v, v2). For
example, n1,ne satisfies (v1,v2) if AX1Sy(v1,v2) =child and CHILDp(nq,ng) =
true, or, if AXisy(v1,v2) =ancestor and DESCp(na,ny) = true.

Definition 2. An embedding of an absolute XPath expression T into a docu-
ment D is a function £ : Vi — Np such that:

1. € maps the ROOT wvertex of the XPath expression to the ROOT element of the

document.

2. Labels are matched, that is, for eachv € Vp, LABELy(v) = * or LABELT (v) =
TAGp(E(v)).

3. Edges are satisfied, that is, if (vi,ve) € Ep, then (E(v1),E(v2)) satisfies
(v1,v2).

Let o be the output vertex of the tree representation of an absolute XPath
expression. The output of an XPath expression is defined as all n € Np such
that there exists an embedding where £(0o) = n. The definition can be extended
easily to relative XPaths by replacing the embedding of the ROOT element with
the context node.

For example, an embedding of the XPath expression tree of Figure 4 into the
XML document from Figure 5 is the following : E(ROOT) = {1}, £(Book) = {5},
E(Author) = {6} , E(T'itle) = {8} and E(Publisher) = {3}.

3.4 Projection

A projected document is defined by Marian and Siméon in terms of an input
document D and a set of XPath expressions P, where some of the expressions
may be marked with the special output flag # [8]. Each XPath expression in
P is an absolute XPath expression (that is, it is evaluated with respect to the
root of the document). Only uses of the child and descendant axes are allowed
(predicates and backward axes are not allowed). Given P and D, the projected
document D’ is defined as follows: The projected document contains all elements
that are in the result set of an XPath expression in P, as well as, their ances-
tors. All subtrees rooted at some result of an XPath expression marked # are
materialized as well. The definition guarantees that the projected document D’
satisfies the key property that the evaluation of any XPath expression in P on
D' returns the same result as the evaluation of that XPath expression on D. As
a result, one can substitute D’ for D without changing the behavior of query
evaluation with respect to P.

For example, consider the XPath expression, //Title, and assume that it is
marked with a #. Figure 5 depicts the elements that would be constructed in
the projection of the document with respect to this XPath expression.

When XPath expressions with axes other than child and descendant are
allowed in P, projection as defined in [8] can no longer be applied; the evaluation
of an XPath expression on the projected document D’ may differ from that on
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Fig. 5. Tree representation of an XML document. Highlighted nodes depict nodes

selected by the algorithm of Marian and Siméon.

D. Consider the XPath expression, //Author/ancestor: :Publisher//Title
executed on the document in Figure 5. Only the elements highlighted in Figure 5
belong to the projected document D’. The result of the XPath expression on D’
will be the empty set since it does not contain any Author elements.

The embeddings of XPath expressions into a document D can be used as the
basis for a general definition of projection when complex axes such as ancestor
are allowed. The definition we provide subsumes that of [8] and serves as the
basis for the algorithm presented in Section 4.

Definition 3. Let D be a document and P be a set of absolute XPath expres-
sions, where some XPath expressions in P are marked with a special flag #. The
projected document D’ is composed of the set of all elements n in D that satisfy
at least one of the following conditions:

— For some XPath expression p in P, there is an embedding € of p into D such
that E(v) = n, where v is some vertezx in p, or

— For some XPath expression p in P, there is an embedding € of p into D such
that E(v) = n’, where v is some vertex in p, and n is an ancestor of n’ in
D, or

— For some XPath expression p in P marked with the symbol #, n is the
descendant of an element in the result set of the evaluation of p on D.

In other words, the projected document consists of all elements that partic-
ipate in an embedding and their ancestors. Moreover, for each element in the
result set of the evaluation of a specially marked XPath expression, that element
and all its descendants belong to the projected document.

4 Inflatable Tree Construction

In this section, we present an algorithm for constructing an inflatable tree from
a given set of XPath expressions while parsing the document. The challenge is
in being able to handle complex XPath axes such as ancestor efficiently in a
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single pass over the input document. Our algorithm may be imprecise in that
it may materialize some elements that do not satisfy any of the conditions of
Definition 3. The algorithm is, however, careful in limiting the construction of
these inessential nodes.

Our algorithm works in two stages. First, the set of input XPath expressions
P is normalized into a canonical form. In the second stage, a document (or a
subtree of the document) is traversed to build the inflatable tree. Our algorithm
will not distinguish XPath expressions marked “#” from those that are not. Since
the bytes corresponding to the document are readily available, there is no need
to inflate the subtrees under output nodes, unless portions of these subtrees
may participate in an embedding (that is, satisfy the first two conditions of
Definition 3).

4.1 Normalizing XPath Expressions

The XPath axes following, preceding, following-sibling and preceding-
sibling are order-based axes (the result set for these axes depends on the order
between sibling tree nodes). The first step in our normalization is to rewrite in-
stances of these axes in XPath expressions into order-blind axes (such as parent
and ancestor). The rules for rewriting XPath expression trees are shown in
Figure 6. In the figure, v; and vy are vertices in a given XPath expression tree,
connected by an edge labeled with one of the order-based axes. The rewriting
rules may introduce new vertices. The rules are ordered so that the rules of Fig-
ure 6a and Figure 6b are applied until there are no instances of following and
preceding in the XPath expression tree. The rules of Figure 6¢ and Figure 6d
are then applied to the XPath expression tree.

For example, for the following-sibling axes, we replace instances of the
pattern vi/following-sibling: :ve with instances of vi/parent::x/vy. The
rewritten XPath expression is an approximation of the original one — it chooses
v elements that both precede and follow vy elements. The rewritings guaran-
tee that for any document, if an element n participates in an embedding of
the original XPath expression tree into the document, n also participates in an
embedding of the rewritten tree into the document.

4.2 Constructing an Inflatable Tree

The inflatable tree construction algorithm can be invoked by the client in one
of two states. In the first case, the document is being processed for the first
time and must be read from an external source. In the second case, an inflatable
tree already exists for the document in question, and the inflatable tree must be
modified to account for the new projection set of XPath expressions. In either
of the two cases, the algorithm traverses the document in a depth-first manner
and generates events similar to SAX [10]. A start element event is generated
when the traversal first visits an element, and an end element event once the
traversal of the subtree rooted at that element is finished. We will assume that
an event contains all information about the relevant element, such as its tag and
unique identifier (we will use the offset in the byte array for this purpose). At
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(a) Rule for rewriting following edges. (b) Rule for rewriting preceding

preceding-sibling edges.

each of these events, an event handler is invoked to perform actions related to
the construction of the tree.

In the case where a document is read for the first time from an external
source, the traversal records the bytes corresponding to the XML document
into an array. It simultaneously parses the document and generates appropriate
events. In the other case, where an inflatable tree already exists, the document
traverser walks over the inflatable tree and generates events. When it reaches
an inflatable node, it parses the portion of the byte array corresponding to that
node and generates appropriate events.

Definitions and Data Structures. The description of our algorithm will use
the following definitions.

Definition 4. The backward vertex set, B(v), of a vertex v € Vp in an XPath
expression tree is defined as {v'|(v,v') € Erp,AX1s(v,v") €{parent, ancestor,
ancestor-or-self, self } U{v"|(v",v) € Erp,axis(v”,v) €{ self, child,
descendant, descendant-or-self }. A backward constraint is an edge between
v and a vertex in its backward vertex set.

In other words, the backward vertex set with respect to a vertex v consists of
those vertices to which an outgoing edge from v is labeled with a backward axis
and those from which an incoming vertex into v is labeled with a forward axis.
We have a dual definition for a forward vertex set with respect to a vertex v.
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Definition 5. The forward vertex set, F(v), of a vertex v € Vp in an XPath
expression tree is defined as {v'|(v,v") € Ep,AX1S(v,v’) €{child, descendant,
descendant-or-self, self } U{v"|(v",v) € Er,Ax1s(v”,v) € { self, parent,
ancestor, ancestor-or-self }. A forward constraint is an edge between v and
a vertex in its forward vertex set.

Our algorithm maintains an active stack, which contains, at any time, the
list of elements for which a start event has been received, but no end event has
been received yet. For each element e in the stack we maintain and update the
following information as we traverse the document:

— TAG (e) which corresponds to the tag of the element.

— Sets of vertices from the XPath expression tree: SELF(e), ANCESTORS(e),
PARENT(e), CHILDREN(e), and DESCENDANTS(e). A vertex v is in SELF(e)
if e may embed into v. v is in PARENT(e) if the parent element of e may
embed into v. v € CHILDREN(e) implies that some child of e may embed into
v; v € DESCENDANTS(e), if some descendant of e may embed into v, and
finally, v € ANCESTORS(e) implies that some ancestor of e in the tree may
embed into v.

— An ordered set SUBTREES(e) of inflatable trees. This set corresponds to the
inflatable trees constructed for the children of e.

For each vertex v in the XPath expression, the algorithm maintains COUNT(v),
which represents how many elements e in the active stack contain v in SELF(e).

Algorithm Overview. We first describe our algorithm with respect to a pro-
jection set that contains a single XPath expression, and then, discuss how to
extend the algorithm for multiple XPath expressions. The essence of the algo-
rithm is simple — materialize an element if it could participate in an embedding.
As a tree is traversed and events are generated, for each vertex in the tree repre-
sentation of the input XPath expression, the algorithm keeps track of the forward
and backward constraints that have been satisfied. The following two conditions
are used to determine whether a given element may participate in an embedding:

— Satisfaction of Backward Constraints: Let an element e belong to an embed-
ding &£ of T into D such that for some vertex v, £(v) = e. For each vertex
v" in B(v), there must be some ancestor of e, e’ such that £(v') = €/, and
the relation between e and e’ satisfies the edge constraint between v and v'.
This is a straightforward consequence of the definition of embeddings. At a
start element event for an element, we verify that if the label of e matches
some vertex v, then for each vertex v’ € B(v), one can find such a candi-
date e’. The vertex sets SELF(e), PARENT(e) and ANCESTORS(e) are used
for this purpose. For example, if AXIS(v,v’) = ancestor, we require that
ANCESTORS(€e) contains v'. Otherwise, e cannot participate in an embedding
for v. For ancestor-or-self constraints, we require that v’ be present in
the ANCESTORS(e) or SELF(e) vertex sets.

— Satisfaction of Forward Constraints : A similar statement can be made for
forward vertex sets. Let an element e belong to an embedding £ of T into D
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such that for some vertex v, £(v) = e. For each vertex v’ in F(v), there must
be some descendant of e, ¢’ such that £(v’) = €/, and the relation between
e and €’ satisfies the edge constraint between v and v’. At the end element
event, the algorithm can verify that if the label of e matches some vertex
v, then such a candidate e’ exists for all vertices v’ € F(v). The vertex sets
SELF(e), CHILDREN(e) and DESCENDANTS(e) are used for this purpose in a
similar manner to the use of the SELF(e), PARENT(e) and ANCESTORS(e) sets
for backward constraints.

At an end element event, the algorithm determines (given the current infor-
mation) whether the current element e or some node in its subtree is a possible
candidate for an embedding. If so, the algorithm materializes the element; oth-
erwise, it creates an inflatable node for the element. The COUNT data structure
is used to prune information, as will be described shortly.

The handling of multiple XPath expressions is a straightforward extension
to the handling of a single XPath expression — the algorithm evaluates each of
them in parallel. An element is materialized if it is required by any of the XPath
expressions.

Algorithm Details. The inflatable tree construction algorithm processes a
given XPath expression T' = (Vp, Er) and a document D = (Np, Ep) to con-
struct the inflatable tree in a bottom-up manner — at each end element event
for an element, the algorithm decides whether to build a materialized node or
an inflatable node for that element based on decisions taken for its children.

— Initially, set the active stack to be empty.
— At a start element event for an element e, push e on to the active stack.

1. Set ANCESTORS(e), CHILDREN(e), DESCENDANTS(€e) to be empty.

2. If e is the root of the document, set PARENT(e) to be empty, otherwise
set PARENT(e) to equal SELF(e’), where €’ is the parent of e in the tree.

3. Set SELF(e) to be all vertices v in the XPath expression tree such that
TAG (e) matches LABEL(v). For each vertex v in SELF(e) try to satisfy all
the constraints in B(v) using SELF(e), PARENT(e) and ANCESTORS(e) as
described previously. If all constraints for v cannot be satisfied, remove
v from SELF(e). Continue this process until no further vertices can be
removed from SELF(e). For each vertex v remaining in SELF(e), increment
COUNT(v).

— At an end element event for an element e:

1. If SELF(e) is non-empty, for each vertex v in SELF(e), check for the
satisfaction of forward constraints using the SELF(e), CHILDREN(e) and
DESCENDANTS(e) vertex sets. If the forward constraints cannot be satis-
fied for v, remove v from SELF(e) and decrement COUNT(v). If COUNT(v)
becomes 0, we can prune DESCENDANTS(e). If DESCENDANTS(e) does not
contain v, and COUNT(v) is 0, then all vertices v’ that are descendants of
v in the XPath expression tree can be removed from DESCENDANTS(e).
Consider a v that is in DESCENDANTS(e) such that v’ is a descendant
of v in the XPath expression. For an element ¢’ in the subtree rooted at
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e to be mapped to v’ in some embedding, there must be an element e’
that is mapped to v in that embedding. Since v’ is a descendant of v in
the XPath expression tree, ¢’ must be an ancestor of e’. If COUNT(v) is
0 and DESCENDANTS(e) does not contain v, then observe that there can
be no such €’ in the tree.

2. Repeat Step 1 for vertices in SELF(e) until no more vertices can be re-
moved from SELF(e).

3. If SELF(e) and DESCENDANTS(e) are both empty, construct an inflatable
node for e (and the subtree rooted under it), and discard the contents
of SUBTREES(e).

4. If SELF(e) is not empty and DESCENDANTS(e) is empty, construct a ma-
terialized node for e. If SUBTREES(e) is not empty, construct a single
inflatable node that represents all the children of e and insert this inflat-
able node as a child of the materialized node corresponding to e.

5. Otherwise, construct a materialized node for e and insert SUBTREES(e)
as the children of this materialized node.

6. Let €’ be the parent of e in D. Update CHILDREN(e’) to CHILDREN(e’) |
SELF(e). Set DESCENDANTS(€’) to DESCENDANTS(€’) | J DESCENDANTS(€)
|J sELF(e). For each vertex v remaining in SELF(e), decrement COUNT(v).

In all cases, once the node for e is constructed, e is popped off the active stack
and the node corresponding to e is appended to SUBTREES(e’), where €’ is
the current head of the stack (corresponds to e’s parent in the document). If
the node corresponding to e and the tail of SUBTREES(e’) are both inflatable
nodes, the two nodes are merged.

5 Implementation

We use a custom parser to generate the start and end element events corre-
sponding to the depth-first traversal of the document. A key characteristic of
the parser is the ability to support controlled parsing over a byte array — we
can specify the start and end offsets of the byte array that the parser should use
as the basis for parsing. This property is essential for the parsing of subtrees cor-
responding to inflatable nodes. Another feature of the parser is that at element
event handlers, it provides offset information rather than materializing data as
SAX does. For example, rather than constructing a string representation of the
element tag’s name, it returns an offset into the array and a length.

One challenge in the implementation of a projection algorithm is efficiency
when complex axes are used. For example, Marian and Siméon report that
document instance construction can degrade when XPath expressions involv-
ing descendant axes are used [8]. As we will demonstrate in Section 6, our
algorithm scales well even in the presence of complex axes. The main reason for
the efficiency of our implementation is a careful design of the data structures
used to implement the algorithm of Section 4. We use bitmaps to represent much
of the information that is necessary — set containment and union operations are
encoded using efficient bitmask operations. As an optimization, our algorithm
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skips processing a subtree if it can detect that the subtree below the element
cannot participate in any embedding. This happens if all the paths in the XPath
set contain prefixes without any ancestor or descendant axes. For example, if
the set of XPath prefixes is {/a/b/c, /a/d}, then if we encounter a start tag of
a followed by an f, we can skip processing the subtree rooted at f.

Our system is implemented in Java. We use the Xerces [2] DOM repre-
sentation as the underlying representation for the inflatable tree. Materialized
nodes are represented as normal DOM nodes. Inflatable nodes have a special
tag “ INFLATABLE ” and they contain two attributes indicating the start
and end offsets in the byte representation of the document. The ability to use
DOM as our underlying representation is a key advantage — we are able to run
DOM-based XPath processors without modification on our inflatable trees; the
semantics of projection guarantees that the inflatable nodes do not affect the
result of evaluation of any XPath in the projection set!

6 Experiments

We used the queries of the XMark [11] benchmark set to evaluate the perfor-
mance of our algorithm. In our experiment, the same benchmark code was used
for both DOM and InflateX; the only difference being that for InflateX, the docu-
ment was first projected with respect to a set of XPath expressions derived from
the queries using the rules in [8]. In both cases, we used Xalan [1] as our XPath
engine. We used a custom parser to generate appropriate events to construct
both the inflatable tree, and in the DOM version, the full DOM data model
instance. We used a custom parser rather than a standard XML parser such
as Xerces [2] because our parser generates appropriate byte offset information
in the events. We compared the performance of our parser for the construction
of a full DOM instance with that of Xerces and found them comparable.® All
experiments were run on a 1GHz IBM ThinkPad with 256MB of memory — the
Java heap size was set at 128MB.

We will explore the efficiency of InflateX versus DOM in several dimensions:
document construction time, query evaluation time, memory requirements, se-
rialization, and dynamic projection. For both InflateX and DOM, the document
is read from a file in the file system, the query is evaluated, and the results
are serialized to a file. We will use the 20 original queries of the XMark bench-
mark. Since the XMark query set does not include queries that use axes such as
parent and following-sibling, we have added two additional queries consist-
ing of XPath expressions that use these axes. The projection sets corresponding
to these two queries, which we refer to as Q21 and Q22 are provided in Table 1.
All experiments were run on a 10 MB XMark file.

Construction Time. Figure 7 compares the time taken to construct the in-
memory projection using InflateX with that for constructing a DOM instance.

3 The cost of constructing a DOM instance from a 10MB XMark file using our parser
was 1312ms compared to 1612ms for Xerces.
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Table 1. Projection sets involving uses of axes other than child and descendant

Q21 {//item[ancestor: :africal /name[following-sibling: :payment]//mailbox//from}
Q22 {/site/closed auctions/closed auction/itemref [preceding-sibling: :buyer],
/site/person/name [ancestor: :peoplel,
/site/regions//item[parent: :europe] /name }

1800
1600 -
1400 -
1200 -
1000 -
800 +
600
400 -
200 4

Time in ms

XMark Query

Fig. 7. Comparison of document construction time on a 10MB XMark file. The first
column shows the cost of constructing a DOM in-memory instance. The remaining
columns provide times for projection construction on the various queries.

As can be seen from the figure, our scheme is 2-3 times more efficient than DOM
depending on the size of the projection. In Marian and Siméon, the document
construction performance degrades with the presence of the descendant axis [8].
Our scheme is robust for descendant axes and performs well even when axes such
as ancestor or preceding-sibling are used (as can be seen from the results
for Q21 and Q22). The reason for the robustness is in the implementation of
our algorithm. Our algorithm does not maintain much state apart from the
projection tree that is being constructed; we encode much of the state using
compact bitmaps.

Query Evaluation. As in Marian and Siméon, our projection scheme improves
query evaluation because the queries are evaluated over a smaller document.
Figure 8 compares the execution of the XMark queries with that of a similar
evaluation over a full DOM instance. Most of the XMark queries contain only
child axes. The performance of these queries improves marginally as such XPaths
can be efficiently evaluated without having to search subtrees. In the presence
of descendant axes (Q7, Q19), we obtain factors of improvement of 13 and 2.5.
This is because the XPath processor searches entire subtrees to match descendant
nodes.

Memory Requirements. In terms of the absolute memory sizes that can be
handled, for DOM, the largest document that could be constructed in memory
was 25 MB on our system (irrespective of the query). The amount of data that
InflateX was able to handle depends on the projected set. For the projection path
Q21 in Table 1, and for most other XMark queries, our projection scheme was
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Fig. 8. Comparison of query evaluation time on a 10 MB XMark file

able to handle documents of size upto 100 MB. For other queries, the largest
document we could process was somewhere between 50 and 100MB. The size
of the projection is small relative to the overhead of storing the byte array in
memory.

Figure 9 measures the number of nodes in the inflatable trees for each of
the XMark queries. On average, we materialize about 10% of the nodes. The
number of inflatable nodes that we construct is of the order of the projection,
and therefore, does not add much overhead.

Serialization. Many queries return large result sets that need to be serialized
out as a sequence of bytes to a client. The definition of projection by Marian
and Siméon would construct all nodes that might have to be serialized. These
nodes would be traversed to generate the bytes corresponding to the result. Our
inflatable trees allow for efficient serialization directly from the byte array when
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Fig. 9. Comparison of memory overhead on a 10MB XMark file. The total height of
a column is the percentage of nodes in the original tree that are constructed (the tree
contains 510946 nodes). Each column shows the breakdown in terms of materialized
nodes and inflatable nodes constructed.
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Table 2. Comparison of inflatable tree query execution time to the scheme that con-
structs the subtrees of all output nodes

Inflatable Tree Output Projection

Construction 470ms 680ms
Serialization 70ms 380ms
Number of Nodes 5119 78923

possible. Furthermore, we avoid the cost of having to construct all elements that
are materialized solely because they are required for the output.

Table 2 compares the cost of query execution of the XPath expression /site/
regions/namerica/itemusing different projections. The first uses our algorithm
to build a projection based on inflatable trees. The second, Output Projection,
constructs the subtrees of all output nodes in the document (as in Marian and
Siméon).

The presence of the byte array corresponding to the document allows for a
drastic reduction in the size of the projection, which in turn, reduces construction
time. Furthermore, the cost of serialization reduces by a factor of four. The
serialization of XML from a data model instance can be slow since the serializer
must traverse the entire data model instance and output the appropriate XML
constructs. The byte array allows our serialization mechanism to avoid this cost.

Dynamic Projection. One advantage of the inflatable tree representation over
projection as defined by Marian and Siméon is that it allows clients to ex-
pand portions of the tree dynamically. For example, a client may choose to
expand with respect to one set if an if branch is taken and another if the
corresponding else branch is taken. Figure 10 explores the performance of dy-
namic projection in the common situation where a client first issues a query and
then refines the query based on the results. In the experiment, the document is
first projected with respect to the XPath expression /site/regions/namerica,
and subsequently, the client refines the query with respect to XPath expression
/site/regions/namerica/item. We compare the cost of dynamic projection
over the inflatable tree to the cost of constructing a new projection (as would be
done in Marian and Siméon). As can be seen, there can be a significant advantage
to dynamic projection.

7 Conclusions

In this paper, we have proposed the inflatable tree data structure as a viable
in-memory representation of XML. Our representation also supports dynamic
projection of XML documents and efficient serialization of results to clients.
We have also developed a projection algorithm that can handle complex axes
such as ancestor and following-sibling Our experiments demonstrate that
our algorithm constructs inflatable trees that are small compared to the full
data instance, even when these complex axes are used. In addition to reducing
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Fig. 10. Comparison of dynamically projecting a subtree of the document rather than
projection over the entire document

the memory overhead of the in-memory representation of XML, our algorithm
is efficient and can reduce the cost of constructing the instance significantly.

In the future, we plan to explore the use of schema information to drive the
derivation of projections. Schema information in conjunction with the projection
set of XPath expressions can be used to prune projections more precisely. An-
other area of interest is the exploration of automatically deflating trees, that is,
determining from an XQuery expression, when a subtree in the XML document
is no longer required.
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Abstract. The emergence of handheld devices associated with wireless tech-
nologies has introduced new challenges for middleware. First, mobility is be-
coming a key characteristic; mobile devices may move around different areas
and have to interact with different types of networks and services, and may be
exposed to new communication paradigms. Second, the increasing number and
diversity of devices, as in particular witnessed in the home environment, lead to
the advertisement of supported services according to different service discovery
protocols as they come from various manufacturers. Thus, if networked services
are advertised with protocols different than those supported by client devices,
the latter are unable to discover their environment and are consequently iso-
lated. This paper presents a system based on event-based parsing techniques to
provide full service discovery interoperability to any existing middleware. Our
system is transparent to applications, which are not aware of the existence of
our interoperable system that adapts itself to both its environment across time
and its host to offer interoperability anytime anywhere. A prototype implemen-
tation of our system is further presented, enabling us to demonstrate that our
approach is both lightweight in terms of resource usage and efficient in terms of
response time.

1 Introduction

The home environment now embeds networked devices, possibly wireless, from vari-
ous application domains, i.e., home automation, consumer electronics, mobile and
personal computing domains. The networked home shall then enable an open sponta-
neous network in which authorized devices are discovered and connected, as in par-
ticular investigated in the Amigo IST project [1].

Service discovery protocols enable finding and using networked services without
any previous knowledge of their specific location. Several Service Discovery Proto-
cols (SDP), like Jini [2], SLP [3], UPnP [4] and Salutation [5], are now available.
With the advent of both mobility and wireless networking, SDPs are taking on a ma-
jor role in networked environments, and are the source of a major heterogeneity issue
across middleware. Furthermore, once services are discovered, applications need to
use the same interaction protocol to allow unanticipated connections and interactions
with them. Consequently, a second heterogeneity issue appears among middleware.
Summarizing, middleware for the networked home environment must overcome two

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 164 — 183, 2005.
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heterogeneity issues to provide interoperability, i.e.: (i) heterogeneity of service dis-
covery protocols, and (ii) heterogeneity of interaction protocols between services. In-
teroperability is also difficult between devices made by different manufacturers, as
they can implement differently a standardized protocol.

Distributed systems for the networked home must provide efficient mechanisms to
detect and interpret protocols used by the networked devices, which are not known in
advance. Furthermore, detection and interpretation must be achieved without increas-
ing consumption of resources that are limited on a number of devices (e.g., handheld).
New techniques must be used to both: (i) offer lightweight systems so that they can be
supported by resource-constrained devices, and (ii) support system adaptation accord-
ing to the dynamics of the open networked environment. Middleware solutions,
designed to cope with the above issues, have been introduced, as surveyed in [6].
From this pool of existing middleware, more or less adapted to the constraints of the
networked home, reflective middleware seem to be flexible enough to provide inter-
operability among networked services. However, solutions to interoperability based
on reflective techniques, like ReMMoC [7,8], do not bring simultaneously interopera-
bility and high performance, as discussed in [9]. SDP interoperability needs to be
revisited to improve efficiency of SDP detection, interpretation and evolution. More-
over, to provide interoperability, we need a fine-grained control over protocols. Our
approach is to decouple components from protocols with the use of concepts inherited
from software architecture enhanced with event-based parsing techniques [10,11].

The originality of our approach comes from the trade offs achieved among
efficiency, interoperability and flexibility. Our interoperability system, called INDISS
(INteroperable DIscovery System for networked Services), may further be integrated
with any existing middleware platform. Hosting INDISS enables the networked home
system to discover and interpret all the services available in the home environment, in-
dependent of underlying middleware technologies. One key feature of INDISS is to
provide efficient interoperability without altering the existing applications and services.

Based on conceptual similarities among SDPs, we are able to provide a generic
mechanism supporting discovery protocol interoperability, as presented in Section 2.
According to user activities, the networked home can become a highly dynamic net-
work formed by the random arrival of devices based on different middleware.
Whatever the networked home configuration/composition, interoperability must be
maintained transparently without requiring to change the applications and/or services.
In this context, INDISS must adapt itself to the evolution of the home environment
across time. Section 3 discusses both the self-adaptation and context-awareness capa-
bilities of INDISS. To validate the INDISS design, in particular in terms of efficiency,
we have developed a first prototype, which is flexible enough to consider several use
cases. Section 4 provides performance results, which demonstrate the efficiency of
INDISS. Finally, Section 5 summarizes our contribution and discusses our future
work on achieving middleware interoperability.

2 Service Discovery Protocol Interoperability

According to the architectural style of service-oriented computing systems, a majority
of SDPs support the concepts of client and service. In order to find needed services,
clients may perform two types of request: unicast or multicast. The former implies the
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use of a repository, equivalent to a centralized lookup service, which aggregates
services information from service advertisements. The latter is used when either the
repository's location is not known or there does not exist any repository in the
environment. Similarly, services may announce themselves with either unicast or
multicast advertisement, depending on whether a repository is present or not. From
the aforementioned approaches, two SDP models are identified, irrespectively of the
repository's existence: (i) the passive discovery model, and (ii) the active discovery
model. When a repository exists in the network environment, the main challenge for
clients and services is to discover the location of the repository, which acts as a man-
datory intermediary between clients and services [3]. In this context, using the passive
discovery model, clients and services are passively listening on a multicast group
address specific to the SDP used and are waiting for multicast advertisements from a
repository. On the contrary, with an active discovery model, clients and services send
multicast requests to discover a repository that sends back a unicast response to the
requester to indicate its presence. In a “repository-less” context, a passive discovery
model means that the client is listening on a multicast group address, which is specific
to the SDP that is used to discover services. Obviously, the latter periodically send out
multicast announcement of their existence to the same multicast group address. In
contrast, with a repository-less active discovery model, the roles are exchanged.
Thereby, clients perform periodically multicast requests to discover needed services
and the latter are listening to these requests. Furthermore, services send unicast
responses directly to the requester only if they match the requested service. Summa-
rizing, most SDPs support both passive and active discovery with either optional
or mandatory centralization points. The following details our solution to SDPs
interoperability, which is compatible with both the passive and active discovery
models.

The following sections introduce the architectural principles of INDISS that builds
on [9] and decomposes into mechanisms for: (i) SDP detection (§2.1) and (ii) SDP in-
teroperability (§2.2). Specifically, SDP interoperability is achieved through transla-
tion of SDP functions in terms of events coordination (§2.3). This translation process
is then outlined through a concrete example (§2.4).

2.1 SDP Detection

All SDPs use a multicast group address and a UDP/TCP port that must have been as-
signed by the Internet Assigned Numbers Authority (IANA). Thus, assigned ports and
multicast group addresses are reserved, without any ambiguity, to only one type of
use. Typically, SDPs are detected through the use of their assigned address and port.
These two properties form a unique pair and may be interpreted as a permanent SDP
identification tag. Furthermore, it is important to note that an entity may subscribe to
several multicast groups simultaneously. These only two characteristics are sufficient
to provide simple but efficient environmental SDP detection. We discover passively
the environment by listening to the well-known SDP multicast groups. In fact, we
learn the SDPs that are currently used from both services’ multicast announcements
and clients’ multicast service requests. To achieve this feature, a component, called
monitor component, embeds two major behaviours:
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— The ability to subscribe to several SDP multicast groups, and
— The ability to listen to all their respective ports.

Figure 1 depicts the mechanism used to detect active and passive SDPs in a reposi-
tory-less context. The monitor component, which may be deployed on the client side
and/or service side, joins both the SDP1 and SDP2 multicast groups and listens to the
corresponding registered UDP/TCP ports. We assume that SDP1 is based on an active
discovery model. Hence, SDP1 clients perform multicast requests to the SDP1 multicast
group to discover services in their vicinity. The monitor component, as a member of the
SDP1 multicast group, receives client requests and thus is able to detect the existence of
SDP1 in the environment as data arrival on the SDP1-dedicated UDP/TCP port identi-
fies the discovery protocol. Assuming SDP2 is based on a passive discovery model,
SDP2 services advertise themselves to the SDP2 multicast group to announce their exis-
tence to their vicinity. Similarly to SDP1, as soon as data arrive at the SDP2-dedicated
UDP/TCP port, the monitor component detects the SDP2 protocol. The monitor compo-
nent is able to determine the current SDP(s) that is(are) used in the environment upon
the arrival of the data at the monitored ports without doing any computation, data inter-
pretation or data transformation. It does not matter what SDP model is used (i.e., active
or passive) as the detection is not based on the data content but on the data existence at
the specified UDP/TCP ports inside the corresponding groups.

~UDP/TC ports The monitor component passively scans

z=-" == he environment on the SDP-IANA-
SD];J{' /;egistered UDP/TCP ports.
7 —
/ < Vbl e SDP 1 detected
| ~~ ~ Multicast R o e SDP 2 detected
SDP2 _---===22__ Component
\\ A ~ _ Multicast group .7
o ST . N
’{\ Service YTl Z - .
~_Multicast Advertisements.. £~ < _ _ Monitored Environment
B Passively scanned

Fig. 1. Detection of active and passive SDPs through the monitor component

The monitor component is easy to implement, as both subscription and listening
are solely IP features. Hence, any middleware based on IP support the monitor
component, which simply maintains a static correspondence table between the IANA-
registered permanent ports and their associated SDP. Hence, SDP detection only
depends on which port raw data arrived. Therefore, the cost of SDP detection is
reduced to a minimum.

2.2 SDP Interoperability

SDP detection is just a first step towards SDP interoperability. The main issue is still
unresolved: the incoming raw data flow, which comes to the monitor component,
needs to be correctly interpreted to deliver the service descriptions to the application
components. To effectively support SDP interoperability, we reuse event-based pars-
ing concepts.
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Upon the arrival of raw data at monitored ports, the monitor component detects the
SDP that is used (Figure 2, Step®), and forwards the input data to the appropriate
parser (Step®), to successfully transform the raw data flow into a series of events.
The parser extracts semantic concepts as events from syntactic details of the SDP de-
tected. Then, the generated events are delivered to composers that are locally de-
ployed (Step®). Finally, the composer delivers a SDP message understood by the tar-
get application (Step®). The communication between the parser and the composer
does not depend on any syntactic detail of any protocol. They communicate at a se-
mantic level through the use of events. Indeed, a fixed set of common events has been
identified for all SDPs (see §2.3). And, a larger, specific set of events is defined for
each SDP. For example, a subset of events generated by a UPnP parser are success-
fully understood by a SLP composer, whereas specific UPnP events, due to UPnP
functionalities that SLP does not provide, are simply discarded from the SLP com-
poser, as they are unknown.

239.255.255.250:1900 : UPnP
239.255.255.253:1848 : SLP

1900 = = ——— — — — s — — 1

SDP2

\ message ‘
Monitored Composer
Environment. SDP2
Tt pplication
Return path *\Native SDP2
‘answer

Fig. 2. SDP detection & interoperability mechanisms

Event streams are totally hidden to components outside INDISS, as they are as-
sembled into SDP-specific messages through composers. Consequently, interoperabil-
ity is guaranteed to existing applications tied to a specific SDP without requiring any
change to applications. Similarly, future applications do not need to be developed
with a specific middleware API to benefit from SDP interoperability. In general, ap-
plication components continue to use their own native service discovery protocol; in-
teroperability is achieved through a transparent integration of INDISS. It is further
important to note that the system may be deployed on either the service provider or
client application side. It may even be distributed among both parties or deployed on
some intermediate (e.g., gateway) networked node (see §4.2).

Parsers and composers are dedicated to specific SDP protocols. Then, to support
more than one SDP, several parsers and composers must be embedded into the sys-
tem. Embedded parsers and composers are dynamically instantiated.

SDP interoperability comes from the composition of parsers and composers dedi-
cated to different SDPs. As depicted in Figure 3, an incoming SDP1 message is suc-
cessfully translated into an SDP2 message that is then forwarded to an SDP2-related
application. According to several SDP specifications, an incoming message is often
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followed by a reply message. In this context, two cases may be considered: (i) the re-
ply is directly sent by the native SDP (Figure 2, Step @), which requires the receiver to
translate the message into a message of the hosted SDP, (ii) the reply is translated into
a message of the destination’s SDP (Figure 3). The former solution leads to the shar-
ing of the interoperability tasks among all participating nodes. However, this requires
all the nodes to embed INDISS. As a result, nodes that do not integrate the necessary
interoperability mechanisms are likely to be isolated. Therefore, this specific configu-
ration must be considered as a special case but cannot be assumed nor enforced in
general. Instead, we consider that a node embedding INDISS is able to take care of
the complete interoperability process, i.e., both receiving and sending messages
from/to non-native SDPs. Thus, interoperability among nodes is achieved without re-
quiring all the participant nodes to embed INDISS. SDP interoperability is achieved if
the proposed interoperability system is embedded in at least one of the following
nodes: client, server or even gateway.

INDISS

Semantic
Events

SDP1
Parser

SDP1
SDP1 4¢* - Composer

Reply

Fig. 3. Coupling of parser and composer

From the above, it follows that within INDISS, a parser is coupled with a composer
that does the reverse translation process, in a way similar to the marshal-
ling/unmarshalling functions of middleware stubs. Furthermore, depending on the
SDP specification, the parser and composer may have to share one bi-directional ses-
sion. Such a coupling occurs when, e.g., once the parser has received a request mes-
sage, the composer has to send some acknowledgement or control message to simply
maintain or validate a communication session with the requester. In general, SDP
functions like service request, service registration or service advertisements, are com-
plex distributed processes that require coordination between the actors of the specific
service discovery function. It follows that the translation of SDP functions that is real-
ised by INDISS is actually achieved in terms of translation of processes and not sim-
ply of exchanged messages, further requiring coordination between the parser and
composer. This is realized by embedding the parser and composer within a unit that
runs coordination processes associated with the functions of the supported SDP. The
unit is further self-configurable in that it manages the evolution of its configuration,
as needed by the SDP specifics and the evolution of the environment. The behaviour
of the unit may easily be specified using finite state machines, as detailed in the next
section.
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2.3 Event-Based Interoperability

A unit implements event-based interoperability for a specific SDP by: (i) translating
to and from semantic events associated with service discovery, messages of the spe-
cific SDP, and (ii) implementing coordination processes over the events according to
the behaviour of the SDP functions.

The overall coordination process implemented by the SDP unit is specified using a
Finite State Machine (FSM). A SDP state machine is a graph of states connected by
transitions. A SDP state machine is a Deterministic Finite Automaton (DFA) and is,
as usual, defined as a 5-tuple (Q, >, C,T, q0,F), where Q is a finite set of states, ) is
the alphabet defining the set of input events (or triggers) the automaton operates on, C
is a finite set of conditions, T: Q x Y. x C — Q is the transition function, q0 € Q is the
starting state and F — Q is a set of accepting states. States keep track of the progress
of the SDP coordination process. Transitions are labelled with events, conditions and
actions.

Table 1. Mandatory events

Event set Event type
SDP Control Events SDP_C_START
SDP_C_STOP

SDP_C_PARSER_SWITCH
SDP_C_SOCKET_SWITCH
SDP Network Events SDP_NET_UNICAST
SDP_NET_MULTICAST
SDP_NET_SOURCE_ADDR
SDP_NET_DEST_ADDR
SDP_NET_TYPE

Service Events SDP_SERVICE_REQUEST
SDP_SERVICE_RESPONSE
SDP_SERVICE_ALIVE
SDP_SERVICE_BYEBYE
SDP_SERVICE_TYPE
SDP_SERVICE_ATTR

SDP Request Events SDP_REQ_LANG

SDP Response Events SDP_RES_OK
SDP_RES_ERR
SDP_RES_TTL,

SDP_RES_SERV_URL

The occurrence of an event may cause a transition if the event matches both the
event and the condition of the transition. When a transition is engaged, several actions
may be executed, relating to translation of events to/from message data, coordination,
and configuration management (see Section 3). A SDP DFA is dedicated to one pro-
tocol to account for the protocol’s specifics and consequently realize some optimisa-
tion. Events are basic elements and consist of two parts: event type and data. What-
ever their types, events are always considered as triggers for the unit components to
react and eventually activate some coordination rule. We define the mini-
mal/mandatory set of events that is common to all SDPs and sets of specialized events
that are specific to SDPs. The set of mandatory events )’ is defined as the union of a
number of subsets (see Table 1):
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>w= “SDP Control Events”  “SDP Network Events” < “SDP Service Events”
“SDP Request Events” _ “SDP Response Events”.

The set “SDP Control Events” contains events that may be generated by compo-
nents embedded in INDISS (See section 3) to notify their listeners of their internal
states. For instance, it enables either the unift to control the coordination of its regis-
tered components (i.e., parsers, composers) or any other components, registered as a
listener, eventually from an upper layer like the application layer, to trace, in real
time, SDP internal mechanisms. This is a useful feature, not only for debugging pur-
poses, but also for a dynamic representation of the run-time interoperability architec-
ture. The set “SDP Network Events” is related to network properties and, for instance,
defines events to determine if the SDP messages are either unicast or multicast, to in-
dicate the SDP used and to specify the source or target address. Then, “SDP Service
Events” enriches the above set with necessary events to describe the functions that are
common to the different SDPs: service search request, service search response, ser-
vice advertisements and the type of the service searched. Then, “SDP Request
Events” and “SDP Response Events” contain events respectively dedicated to the de-
scription of SDP requests with richer descriptions, and to specific events to express
possible common SDP answers (e.g., positive or negative acknowledgement, URL of
the searched service etc).

All SDP parsers must at least generate the mandatory events. Conversely, all SDP
composers must also understand them. The mandatory events result from the greatest
common denominator of the different SDP functionalities. Nevertheless, a given SDP
parser may generate additional events related to its advanced functionalities. Simi-
larly, a SDP composer may manage these additional events. However, SDP compos-
ers are free to handle or ignore them. For instance, SLP does not manage UPnP ad-
vanced functionalities. Consequently, the SLP composer ignores UPnP-specific
events generated by the UPnP parser. On the other hand, a JINI-related composer may
support some of the UPnP-specific events. In fact, events added to the mandatory
ones enable the richest SDPs to interact using their advanced features without being
misunderstood by the poorest. The behaviour of the latter is unchanged as they dis-
card unknown events and consider only the mandatory events. Moreover, INDISS is
extensible and integration of future SDPs is rather direct. In particular, the possible in-
troduction of new events to increase the quality of the translation process will not
trigger a whole cascade of changes of SDP components. This is a direct consequence
of building INDISS upon the event-based architectural style. We introduce three
open, extension sets for the definition of additional events: “Registration Events”,
“Discovery Events” and “Advertisement Events”. For instance, specific SDP mes-
sages involved in the registration of services are translated to events belonging to the
“Registering Events” set, which enriches both “SDP Requests Events” and “SDP Re-
sponses Events”. The same applies for the “Discovery Events” set. On the other hand,
“Advertisement Events” enriches only “SDP Responses Events” since an advertise-
ment is a one-way message to spread service location.

States of the DFA (or coordination process) of a unit are activated according to
triggers that define the event types that can cause transitions between states. Transi-
tions imply that the unit executes some actions or coordination rules among its com-
ponents (i.e., composer, parser). According to the unit’s current state, incoming events
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are filtered and may be dispatched to different listeners (i.e., composer, parser or other
units) until new incoming triggers cause a transition to a new state and so on. Reply
messages generated through the composer may rely on data associated with events
generated previously by its associated parser. Thus, events data from previous states
are recorded using state variables. Conditions are written as Boolean expressions over
incoming and/or recorded data and may test their properties, whereas actions are a se-
quence of operations that a unit can perform to: dispatch events to components, record
events, or reconfigure the composition of its embedded components (e.g., changing
dynamically the current parser or composer). Actions that may be performed by a unit
are specific to the SDP that it manages. However, all units have to support mandatory
actions.

2.4 Example

We illustrate our solution using a scenario where a SLP client is searching, e.q., a
clock service. The clock service is based on UPnP and interoperability is enabled
through the transparent use of INDISS (See Figure 3 with SDP1=SLP and
SDP2=UPnP). Our aim, in this scenario, is to outline the different steps involved in
the interoperability process and more particularly, to describe how messages are suc-
cessfully transformed to events and vice-versa, during a search session initiated by a
SLP client, to discover a service based on UPnP. However, for brevity, we describe
only the most meaningful events that occur during this scenario.

First, the client broadcasts a SLP search request to discover its environment in or-
der to find a clock service. As presented in Sections 2.1 and 2.2, INDISS catches the
request as a raw data stream and forwards it to the parser of the SLP unit that gener-
ates a stream of events, which is dispatched to the composer of the UPnP unit as de-
picted in Figure 4,step®. The event stream always starts with a SDP_C_START event and
ends with a SDP_C_STOP event to specify the events belonging to a same message. On
the other hand, the SDP_NET_MULTICAST, SDP_SERVICE_REQUEST, SDP_SERVICE_TYPE
events are used to generate a corresponding UPnP search request. SDP_REQ_VERSION,
SDP_REQ_SCOPE, SDP_REQ_PREDICATE and SDP_REQ_ID are events specific to SLP and
are thus discarded by the UPnP unit’s composer. The SDP_NET _SOURCE_ADDR 1is di-
rectly forwarded to the SLP composer embedded into the SLP unit to prepare the re-
ply. The routing of events and related actions are specified by the DFA of the units as
presented in §2.3.

Once the UPnP service has received the UPnP search request from INDISS, it re-
sponds to it with a corresponding UPNP search answer (Figure 4, step @), which is
then parsed by the UPnP unit. An event stream is generated and dispatched to the SLP
unit’s composer. However, thanks to its DFA, the UPnP unit detects that it does not
get enough events from the UPnP service. The SDP_RES_SERV_URL event, which indi-
cates the URL of the searched service, has never been generated. Therefore, the UPnP
unit needs to recursively generate additional requests to the remote service until it re-
ceives the expected event. To achieve this task, the UPnP-specific events generated
by the UPnP unit are consumed internally by the composer to generate other UPnP
requests. For instance, the SDP_DEVICE_URL_DESC event gives the URL of the descrip-
tion of the remote service that contains the URL of the remote service endpoint.
Therefore, once the composer of the UPnP unit receives this event, it generates a
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corresponding request to get the description. As previously, the next answer from the
service is parsed (Figure 4, step ©) but the reply contains a XML body that the current
UPnP parser, which is dedicated to the SSDP protocol, does not understand. There-
fore, the current parser generates a SDP_C_PARSER_SWITCH event to ask its unit to
switch to a XML parser to continue the parsing to get finally the expected
SDP_RES_SERV_URL event. The XML description is converted to several SDP_RES_ ATTR
events. As soon as the composer of the SLP unit has received all of them (as indicated
by SDP_C_STOP), a SLP answer is generated (the SDP_RES_ ATTR are translated to tradi-
tional SLP attributes) and received by the SLP client.

Step | Request Generated Events Composed request
SDP_C_START .... From the previous events, the UPnP unit multi-
SDP_NET_MULTICAST | casts a UPnP search request to discover UPnP
SDP_NET_SOURCE_ADDR | services in its vicinity:
SDP_SERVICE_REQUEST

0 SLP | SDP_REQ_VERSION M-SEARCH * HTTP/1.1
Search | SDP_REQ_SCOPE SERVER: 239.255.255.250:1900
SDP_REQ_PREDICATE ST: urn:schemas-upnp org:device:clock
ggllz_Rs%%\IIII)CE TYPE MAN: ssdp:discover
_ _ : MX: 0
SDP_C_STOP
Step Reply Parsing Generated Events Composed re-
quest
HTTP/1.1 200 OK As the UPnP unit
CONTENT-TYPE: text/html; did not get the lo-
SERVER: UPnP/1.0 CyberLink/1.3.2 SDP_C_START cation of tﬁe re-
CONTENT-LENGTH: 0 SDP NET TYPE mote service it
(2] ] IR SDP_SERVICE_TYPE must generate
ST: upnp.clock ) SDP_DEVICE_URL_DESC additional UPnP
USN: uuid: ClockDevice:upnp:clock |~ = — requests:
LOCATION:
http://128.93.8.112:4004/description.xml GET
/description.xml
HTTP/1.1
Step Reply Generated Events Composed reply
jZ:‘;Zf ‘o g‘;; ;,S ;greer;e‘ratedf rom the SrvRply: sevice:clock:soap://128.93.8.112:4005/
thé GET pL: service/timer/control
request: SDP_C_PARSER_SWITCH ;major:"1 .;mglorz 0 ;frlen(‘ilyNaTe: CyberGare}'ge
e SDP RES ATTR Clock Device"; modelDescription:"CyberGarage";
HTPP SDP RES ATTR manufacturerURL:"http://www.cybergarage.org";
Repl SDP RES SERV URL modelDescription:"CyberUPnP Clock Device";
ply SDP_C S'EOP - modeName:"Clock";modelNumber:"1.0";
- modelURL: "http://www.cybergarage.org";

Fig. 4. SLP-UPnP interoperability in action
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3 Context-Aware, Self-adaptive Interoperability

INDISS is based on a specialization of the event-based architectural style. Advantages
of using an event-based architecture are: increasing the degree of decoupling
among components and of interoperability, and providing a dynamic and extensible
architecture. Since interactions among components are based on events, components
operate without being aware of the existence of other components and consequently
parsers, composers and units may change dynamically at runtime without altering the
system (see Figure 5). INDISS is consequently defined as a set of event-based
components. We distinguish between these components that are inside the system,
and other components that are outside INDISS and are therefore considered as
application components.

System specification at design time Instantiation
System SDP = { w
Component Monitor ={ . INDISS lem
ScanPort = { 1900; 1846; 4160 ; 427 } 3 (_f) SLP
i > Monitor [ T Unit
Component Unit SLP(port=1846,427) ; = . T
Component Unit UPnP(port=1900); a) P "[ ) IJ;mt .
Component Unit JINI(port=4160); } e ) UPnP .. ez
\ _\. U/nit

INDISS Jini ’_\ .
e Unit \ Dynamic
UPn.P ) —— < Composition
v g INDISS
Unit =T
(0 Monitor () i Dotonir (D (1) 77 1)
b) onitor \_‘. Unit \-F
INDISS —=—==~ ,====
T (0(0 SLP UPnP
‘g; ':f = Unit Unit
Ve = Jini i ——
A SLP ) Unit \ S C)
4—lﬁ . ;
\S _Uftt_ essage Event
d) Streams Streams

Fig. 5. Evolution of INDISS configuration

The INDISS internal architecture has to evolve across time due to two main
reasons. First, as devices joining the network, whether mobile or stationary, evolve
over time, the current SDP that is used and/or the SDPs with which interoperability is
required may change accordingly. Second, some SDPs are actually based on a combi-
nation of protocols. For instance, UPnP uses alternatively SSDP, HTTP, and SOAP.
To support these two types of changes, we need to define rigorous composition rules
to describe the specific architecture of a given instance of INDISS. Configuration of a
INDISS instance is initially defined in terms of supported SDPs and the correspond-
ing units that need be instantiated. As illustrated in Figure 5.a, specification of the
system configuration does not describe when and how to compose units. Indeed, unit
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composition is achieved dynamically according to both the context and the hosted
application components. The context is discovered with the help of the monitor com-
ponent, as presented in Section 2.1. At run-time, embedded units of different types are
instantiated and dynamically composed depending on the environment
and the applications used. Thus, several configurations may occur (e.g., see
Figure 5.b, c, d).

At the system level, SDP interoperability is achieved through the correct composi-
tion of some units. As depicted in Figure 5.c, the translation from SLP to UPnP dis-
covery corresponds to the composition of a SLP unit with a UPnP unit. At this level, a
unit is only considered as a computational element that transforms messages to events
and vice versa. The unit’s internal mechanisms are totally hidden. Referring to event-
based architectures, components can be either event listeners or event generators or
both. The same applies for units; they are both event generator and listener. Units are
composed and communicate together through events, whereas they use messages to
interact with components that are outside INDISS. Therefore, the use of events is in-
ternal to INDISS.

At the unit level, coordination and composition rules among embedded SDP com-
ponents are specialized with respect to a given SDP, according to the unit’s state-
machine. The unit is then in charge of dispatching event notifications to its registered
listeners. However, there are some variations applied to the traditional event-based
style. First, the unit does not systematically forward incoming events to all subscrib-
ers. The unit filters events, and may additionally react to them through actions to
modify its current configuration. Events delivery and executed actions are dependent
upon the unit’s state machine described earlier. A notable feature of our solution is
that SDP interoperability components that are developed are not necessarily specific
to a SDP. Customization of a unit with respect to a SDP results from the specific con-
figuration and in particular the embedded FSM.

As a result, interoperability components may be reused in various units, even if not
related to the same SDP. For instance, at the implementation level, HTTP or XML
parsers developed for one SDP may be reused for another. Definition of a unit then
relies upon specifying embedded components, as exemplified below for a UPnP unit:

Component Unit UPnP = {
setFSM(fsm, UPNP);
AddParser(component, SSDP);
AddComposer(component, SSDP);
et
The state machine’s description is itself considered as a part of the system specifi-
cation. Hence, a new operator is introduced to define state machines:

Component UPnP-FSM ={
AddTuple(CurrentState,triggers,condition-guards,NewState,actions)

In the above tuple, CurrentState and NewState are labels to name different states,
triggers are taken from the set of previously defined events, condition-guards are
Boolean expression on events and actions are those provided by the unit’s interface.
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4 Prototype Implementation and Performance

We have implemented a first prototype of INDISS. Currently, it includes a UPnP unit
and a SLP unit. Although our prototype is not yet optimised, it is robust enough to as-
sess the performance of our approach in different use cases. The following discusses
key elements of the prototype. We first outline its small size requirements compared
to existing solutions (§4.1). We then discuss how it improves interoperability within
the networked home according to the nodes on which it is deployed and the usage
context (§4.2). Finally, we evaluate INDISS performance by comparing response
times with native service discovery (§4.3).

4.1 Prototype Implementation

The prototype is implemented in Java to take advantage of cross platform portability.
We are, in particular, able to deploy our solution on any mobile device that embeds
J2ME [12], which provides a Java virtual machine customized for devices with lim-
ited resources. However, INDISS is not constrained to be written in Java, and may be
developed as well in C or in any other programming language closer to the embedded
operating system, to get a smaller code-size foot print and better execution speeds.
Nevertheless, in Java, we get already very encouraging results. We compare the size
required by INDISS with common open-source library like OpenSip' and Cyberlink
for Java®.

As depicted in Table 2, currently, the overall INDISS system consists of 39 Java
classes, and 2910 lines of Non Commented Source Statements Classes (NCSS). The
overall system size is 218 Kbytes. This includes 125Kbytes for the UPnP Unit and
49Kbytes for the SLP one. To be interoperable, nodes running UPnP (resp. SLP)
applications need to host native UPnP (resp. SLP) library plus INDISS. This is to
be contrasted with a device that is not equipped with our interoperable system,
which needs: (i) to host both the full UPnP stack and the SLP library and, (ii) some
engineering effort to develop and host an additional SLP (resp. UPNP) client that is
equivalent in terms of functionalities to the UPnP (resp. SLP) client.

Still in Table 2, without INDISS, the size requirements of a middleware that needs
to be interoperable for hosting one simple service is 514Kbytes. Conversely, the size
requirement for a middleware dedicated to UPnP (resp. SLP) equipped with INDISS
is 598Kbytes (resp. 352Kbytes). Moreover, the size requirements increase proportion-
ally with the number of hosted services. Therefore, according to the number of hosted
services, the size requirements of an interoperable middleware without INDISS in-
creases faster than the one equipped with INDISS simply because, for the former,
each time we add a service we are multiplying its size by two (e.g., SLP service size +
UPnP service size).

Thus, the small size overhead introduced by INDISS with UPnP applications dis-
appears with the number of hosted services. Last but not least, a middleware
that needs to host different services, in terms of both functionalities and SDP used,

! http://www.openslp.org/
2 http://www.cybergarage.org/net/upnp/java/
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Table 2. Size requirements in KBytes for known libraries and INDISS

177

INDISS size requirements
Size (KB) | Classes | NCSS Overhead
Core framework 44 15 789 -
UPnP Unit 125 18 1515 -
SLP Unit 49 6 606 -
Total 218 39 2910 -
SDP library size requirements
OpenSlp Library 126 21 1361 -
Cyberlink UPnP 372 107 5887 -
Total 498 128 7248 -
Size requirements to provide interoperability with and without INDISS
SLP &UPNP Library + 514 - - -
SLP & UPnP clients
UPnP client & Library + INDISS 598 - - 14%
SLP client & Library + INDISS 352 - - -31.5%

must have all the corresponding native libraries irrespectively of the use of INDISS.
How ever, in this case, the latter still provides efficient interoperability: it reduces
drastically both the number of hosted services and, in the long term, the overall mid-
dleware size since you do not have to develop and deploy services for each existing
SDP.

4.2 Interoperability Scenarios

One of our objectives is to provide service discovery interoperability to applications
without altering them. Hence, applications are not aware of interoperability mecha-
nisms and actually have the illusion that the remote applications that they discover
(and/or discover them) use the same SDP. In this context, several use cases may be
considered, according to both the nature of the SDPs that are used and the location of
INDISS, which can be localized on the client, server, both or gateway.

Another of our other objectives is to save resources on resource-constrained de-
vices and the bandwidth that is shared among devices in the network. It is thus impor-
tant to examine the impact of INDISS on resource consumption. This may in particu-
lar vary according to the system’s location (i.e., where it is deployed) and usage
context. The usage context of the system depends on the SDP model used by the cli-
ents and services. Referring to Section 2, there exist two SDP models: passive and ac-
tive. We need thus to distinguish cases where the client (resp. service provider) acts as
listener and as a requester. Moreover, we obviously assume that either the client or
service node hosts INDISS. As a result, for each possible scenario, two uses cases are
possible, according to the location of INDISS.

Consider first that both clients and services are based on the passive discovery
model (see Figure 6). In this context, clients are listeners and services are requesters.
The most optimised location for INDISS is to be hosted on the client side. Thereby,
clients are able to intercept all messages generated by the remote service whatever its
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specific multicast group or message format (see left-top of Figure 6). In contrast, if as,
INDISS is localized on the service side, it will never intercept messages from clients
INDISS is localized on the service side, it will never intercept messages from clients
by definition of the passive discovery model, clients are listeners and never generate
messages. We get a blocked situation as depicted in the right top of Figure 6.

Service

discovered ( -
£) Service

\ INDISS
(G-~ )™ |

¢ INDISS belongs to the service’s multicast
group.

¢ Translated to any known SDPs and multi-
casted to the respective multicast groups.

The client does not understand
anything

SDP detected, trans-
lated, and forwarded
to the client

Fig. 6. SDP interoperability and passive service discovery

Consequently, we must define a network traffic threshold below which INDISS,
hosted on the service host, must become active so as to intercept messages generated
from the local services in order to translate them to any known SDPs according to the
embedded units (see bottom of Figure 6). Although this specific use case illustrates
the high flexibility of INDISS to adapt itself to the context, it has non-negligible im-
pact on resource consumption. Indeed, dynamic reconfiguration of the system has a
processing cost and service advertisements following the enactment of the active
model increases bandwidth usage. However, interoperability is enforced without
really saturating the bandwidth, as INDISS is switched to the active model only when
the network traffic is low.

Consider now the case where both clients and services are based on the active
discovery model, i.e., clients are requesters and services are listeners. In order to
optimise the bandwidth usage and computational resources, the most suitable location
for INDISS is to be on the service side. Otherwise, in a way similar to the previous
scenario, ineffective SDP interoperability may arise when INDISS is located on the
requester side. In general, when the clients and services are based on the same discov-
ery model, the most convenient location for INDISS is on the listener side.

It may be the case that the clients and services are based on different discovery
models. If the clients are based on the active model and services are based on the
passive model, then both clients and services generate SDP messages. Interoperability
is guaranteed without additional resources cost. Nevertheless, some subtleties arise.
Hosting INDISS on the client side means that the client benefits from the advertise-
ments of remote services. But, the client’s requests will not reach remote services that
are based on different SDPs if they are not interoperable (i.e., they do not host our
interoperability system). On the contrary, if services embed INDISS and not the
clients, requests from the latter will be taken into consideration from services,
whereas clients will not be aware of services’ advertisements originating from SDPs
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different than the one hosted on the clients. Although, in this case, interoperability is
not as effective as expected, clients and services do interact. Furthermore, interopera-
bility effectiveness may be improved if the bandwidth is under-utilized, thanks to
INDISS reconfigurability

Conversely, when clients are based on the passive model and services are based on
the active model, both clients and services are listeners. Once again, we are faced with
the recurrent ineffective discovery interoperability. However, in this particular case,
dynamic reconfiguration of INDISS does not resolve the clients’ inability to discover
services, since there is no node initiating SDP-related communication. There is no
way to resolve this issue, considering our constraint to not alter the behaviour of
SDPs, clients and services. On the other hand, this specific case is unlikely to happen.
Nowadays, in practice, clients are always able to generate requests.

Summarizing, irrespective of the service discovery model used by clients and ser-
vices, we are able to guarantee a minimum level of interoperability. Depending on the
environment, the bandwidth usage may be increased to enable interoperability. The
basic idea is to provide a quasi-full interoperability as long as the bandwidth-usage
enables it. Then, interoperability degradation may occur according to the traffic. Fur-
thermore, by design, INDISS is independent of its host. Thus, it is not mandatory for
INDISS to be deployed on the client or service host. INDISS may be deployed on a
dedicated networked node, depending on the specific network environment. Such a
dedicated node may in particular translate messages generated in one environment
from any SDP to messages handled by any other SDP, according to the traffic condi-
tion. Obviously, this specific configuration generates additional traffic and is only
valid as long as there is enough bandwidth.

4.3 Experimental Results

We evaluate the performance of our interoperability mechanisms by investigating the
response time of INDISS when enabling a client dedicated to one SDP to discover a
service based on another SDP. Specifically, the experiments consider the case where a
SLP (resp. UPnP) client searches a SLP (resp. UPnP) service. We then compare the
native client waiting time to get an answer from a native service, with its waiting time
to get an answer from an INDISS-translated service. The impact of INDISS on per-
formance varies according to its location, on either the client or the service side. Thus
in the following, we consider the two cases. In addition, as interoperability is
achieved without generating additional traffic, we have not evaluated the network
bandwidth consumption. Indeed, the generated traffic is well known since we are nei-
ther providing a new service discovery protocol nor altering native protocols.
Although our solution is dedicated to various devices, including resources con-
strained ones, all tests are performed on workstations equipped with 256Mbytes RAM
on Intel PIV processor rated at 1.8GHz. In fact, currently, to the best of our knowl-
edge, there does not exist any UPnP profile for J2ME devices in the open source com-
munity. Thus, the operating system, the Java virtual machine and the performance
tools platform used are respectively Linux from Redhat Fedora Core 2, JDK1.4.2
from SUN and the Hyades platform from Eclipse Foundation. Moreover, the SLP
(resp. UPnP) client and SLP (resp. UPnP) service are hosted on different hosts con-
nected to a LAN at 10Mb/s. The SLP client and service are based on OpenSlp
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whereas UPnP client and service use Cyberlink for Java. The given measurements are
in ms and are the median of 30 successful tests to avoid a mean skewed by a single
high or low value.

- Slp Messages
SLP Client ( g——-———-< ¥ )SLP Service SLP ->SLP | UPnP -> UPnP
| Median value 0.7 40

'UPnpP Messages
UPnP Client (ms)
1

Fig. 7. Native clients & services

In Figure 7, we first give the response time of a search request generated by a na-
tive client to get a successful answer from a native service: for SLP, we get 0.7 ms,
whereas for UPnP, we get 40ms. It is clear that using SLP is much more efficient than
UPnP, which is a higher-level protocol than SLP. These results are considered as ref-
erences values to enable us to interpret the following results.

Consider now the case where INDISS is located on the service side to enable the
latter to be interoperable with any client independently of its SDP (Figure 8). In the
context where the client is SLP and the service is UPnP, the client gets an answer in
65 ms. The translation between SLP and UPnP is not direct. For instance, UPnP and
SLP search responses are semantically different: a SLP client expects a direct refer-
ence to interact with the service discovered whereas a UPnP client expects a reference
to a description file corresponding to the service found. Consequently, INDISS has
translated the SLP request into two local UPnP requests to get the information that is
necessary to generate on the network the corresponding SLP response. This means
that INDISS has waited and parsed successively two UPnP responses increasing thus
the SLP responsiveness latency. On the service side, it is clear that INDISS simulates
a UPnP client and therefore we cannot interfere on the native time taken to get UPnP
response from the service. In this context, the INDISS result is pretty good.

Still in Figure 8, when the client is UPnP and the service is SLP, the response time
to get an answer is 40ms. In fact, it corresponds exactly to a search request generated
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Slp Client ( ==-%) INDISS T Median value (ms) el 115)5 :
UPnP Client
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Network’ Local

Fig. 8. Performance with INDISS located on the service side
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on the network from a native UPnP client to a native UPnP service. On the service
side, the response time to a SLP request is negligible as the latter is generated locally.

When INDISS is located on the client side (Figure 9a), the latter becomes interop-
erable and can discover any service whatever its SDP. If the client is SLP and the ser-
vice is UPnP the SLP client gets the answer to its search request in 80ms. It corre-
sponds globally to two native UPnP responses from a native UPnP service. It is
obvious since, as previously, INDISS has translated the SLP request into two network
UPnP requests to get the necessary information to generate locally the corresponding
SLP response. Once again, INDISS result is encouraging. It is important to note that
compared to the case depicted in Figure 8, the response time is higher than previously
simply because the UPnP traffic goes across the network between INDISS and the
UPnP service, increasing by 15 ms the response time. In the same context, the lack of
speed inherent to the UPnP protocol is confirmed as a UPnP client gets a response
from a SLP service in only 0.12ms (Figure 9b). This is due to the fact that first the
UPnP traffic is local and then the only traffic that goes across the network is SLP,
which is particularly fast. In addition, the necessary information to generate a search
response for UPnP is tiny. We can consider this case as the best case.

From the above results, we have shown that INDISS is particularly efficient in pro-
viding interoperability in all possible context use.

5 Conclusion

INDISS overcomes the heterogeneity of service discovery in the networked home and
decomposes into two mechanisms: SDP detection and SDP interoperability, allowing
therefore any networked home system to discover and interpret all the services avail-
able in the home environment, independent of underlying middleware technologies.
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Our solution is specifically designed for highly dynamic home networks, which
requires both minimizing resource consumption, and introducing lightweight mecha-
nisms that may be adapted easily to any platform. INDISS is composed of a set of
event-based components and their composition/configuration is performed dynami-
cally at run-time according to both the context and the host on which INDISS is de-
ployed. As a result, service discovery interoperability is provided to applications
without altering them: applications are not aware of the existence of INDISS, which
adapts itself to the context. In particular, INDISS may be deployed on a client, a ser-
vice or a gateway. As demonstrated by the first INDISS prototype, experiment results
are encouraging. The response time of INDISS when enabling a client dedicated to
one SDP to discover a service based on another SDP is close to request/response
among related native clients/services.

Once services are discovered, applications further need to use the same interaction
protocol to allow unanticipated connections and interactions with them. In this con-
text, the ReMMoC reflective middleware introduces a quite efficient solution to inter-
action protocol interoperability. The plug-in architecture associated with reflection
features allows mobile devices to adapt dynamically their interaction protocols (i.e.,
publish/subscribe, RPC etc.). Furthermore, [13] proposes to use ReMMoC together
with WSDL [14] for providing an abstract definition of the remote component’s func-
tionalities. Client applications may then be developed against this abstract interface
without worrying about service implementation’s details. However, the solution dis-
cussed in [13] suffers from a major constraint: service and client must agree on a
unique WSDL description. But, once again, in a dynamic network, the client does not
know the execution context. Therefore, it is not guaranteed to find exactly the ex-
pected service. Client applications have to find the most appropriate service instance
that matches the abstract requested service. In addition, this leads to the dynamic
composition of services. This issue is addressed by the WSAMI middleware devel-
oped in the context of the Ozone project [15], which introduces enhanced WSDL
specification for mobile services and a dedicated middleware to allow a service in-
stance to be automatically selected and composed upon a user request, according to
the services that may be retrieved in the environment. However, it WSAMI provides
interoperability to Web services in the mobile environment, it is still a SOAP based
middleware, and hence does not deal with interoperability among components using
heterogeneous interaction protocols. We are currently investigating solutions to this
issue to complement our solution to SDP interoperability and thus support middle-
ware interoperability, as required by today’s network environments [1].
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Abstract. This paper introduces dual-quorum replication, a novel data
replication algorithm designed to support Internet edge services. Dual-
quorum replication combines volume leases and quorum based techniques
in order to achieve excellent availability, response time, and consistency
the references to each object (a) tend not to exhibit high concurrency
across multiple nodes and (b) tend to exhibit bursts of read-dominated
or write-dominated behavior. Through both analytical and experimen-
tal evaluation of a prototype, we show that the dual-quorum protocol
can (for the workloads of interest) approach the excellent performance
and availability of Read-One/Write-All-Async (ROWA-A) epidemic al-
gorithms without suffering the weak consistency guarantees and resulting
design complexity inherent in ROWA-Async systems.

1 Introduction

This paper introduces dual-quorum replication, a novel data replication algo-
rithm motivated by the desire to support data replication for edge services
[1,3,10,29]. As Figure 1 illustrates, the Internet edge service model attempts
to improve service availability and latency by allowing clients to access the clos-
est available edge servers rather than a centralized server (or a centralized server
cluster). But as Figure 1 also indicates, in order to provide a single service from
multiple locations, service logic (code) replicated on all edge servers must access
a collection of shared data. Thus, support for data replication is a key problem
in realizing the promise of Internet edge services.

By exploiting object-specific workload characteristics, we seek to design a
replication system for edge services that offers optimized trade-offs among avail-
ability, consistency, and response time. Although it is impossible to simultane-
ously provide optimal consistency, availability, and performance for general-case
wide-area-network replication [5,17], we can, perhaps, provide nearly optimal
behavior for specific objects by taking advantage of a given application’s work-
load characteristics. For example, our previous studies show how to provide
nearly optimal replication for information dissemination applications such as
news [22] and e-commerce applications such as TPC-W [10]. In particular, we
developed customized consistency protocols for three categories of objects: (1)

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 184-204, 2005.
© IFIP International Federation for Information Processing 2005
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Fig. 1. Internet edge service architecture

single-writer, multi-reader objects like product descriptions and prices; (2) multi-
writer, single-reader objects like customer orders; and (3) commutative-write,
approximate-read objects like the inventory count of each product.

However, a key limitation of our previous efforts to support edge services
was our decision to use weak consistency—and thereby introduce undesirable
complexity—for a fourth category of objects: multi-writer, multi-reader objects
such as TPC-W’s per-customer profile information (e.g., name, account num-
ber, recent orders, credit card number, and address.) We, like several other sys-
tems [24,26,33], made use of a Read-One, Write-All-Asynchronously (ROWA-
Async) protocol based on local reads and asynchronous epidemic propagation of
writes. ROWA-Async protocols provide excellent read performance and availabil-
ity; and although ROWA-Async protocols allow applications to observe incon-
sistencies between reads and writes, such inconsistencies should be rare because
multi-reader, multi-writer shared objects often have workloads with low concur-
rency to any given object. For example, in our edge-server TPC-W application,
reads and writes to a given customer’s profile typically come from just one edge
server for some interval of time, until the customer is redirected to a differ-
ent server. Unfortunately, although inconsistencies are rare for the workloads of
interest, these rare cases introduce considerable complexity into the system de-
sign, because all cases must be handled no matter how rare they are and because
reasoning about corner cases in consistency protocols is complex. Furthermore,
because reads can always complete locally, these protocols provide no worst-case
bound on staleness (i.e., it is possible for a read to return stale data arbitrarily
long after a write) which can be unacceptable for some applications.

By introducing dual-quorum replication, this paper provides the key missing
piece to achieve highly-available, low-latency, and consistent data replication
for a range of edge services. In particular, dual-quorum replication optimizes
these properties for data elements that can be both read and written from many
locations, but whose reads and writes exhibit locality in two dimensions: (1) at
any given time access to a given element tends to come from a single node and
(2) reads tend to be followed by other reads and writes tend to be followed by
other writes. For other workloads, our algorithm continues to provide regular
consistency semantics [16], but its performance and availability may degrade.

Our dual-quorum replication protocol combines ideas from volume leases [30]
and quorums [11,12]. The protocol employs two quorum systems, an input
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quorum system (/QS) and an output quorum system (OQS). Clients send their
writes to the IQS and they read from the OQS. The two quorum systems syn-
chronize the state of replicated objects among them when necessary. By using
two quorum systems, we are able to optimize construction of the OQS’s read
quorums to provide low latency and high availability for reads while optimizing
construction of the IQS’s write quorums to provide modest overhead and high
availability for writes. In particular, OQS nodes cache data from the QS servers
using a quorum-based generalization of Yin et al.’s volume lease protocol [30],
which invalidates individual cached objects as they are updated. The protocol
uses short-duration volume leases to allow writes to complete despite network
partitions and aggregates these leases across large numbers of objects in a volume
to amortize the cost of renewing short leases. Using our dual-quorum protocol,
workloads with large numbers of repeated reads (or writes) perform well because
reads (or writes) can often be supplied by a read-optimized OQS read quorum
(or write-optimized IQS write quorum) without requiring communication with
the IQS (or 0QS).

Through both analytical and experimental evaluations, we compare the avail-
ability, response time, communication overhead, and consistency guarantees of
the dual-quorum protocol against other popular replication protocols: the syn-
chronous and asynchronous Read-One/Write-All (ROWA) protocol family,! ma-
jority quorums, and grid quorums [7]. For the important special configuration
of single-node OQS read quorums, average read response time can approach
a node’s local read time, making the read performance of this approach com-
petitive with ROWA-Async epidemic algorithms such as Bayou [26]. But, the
dual quorum approach avoids suffering the weak consistency guarantees and re-
sulting complexity inherent in ROWA-Async designs. Additionally, the overall
availability of the dual-quorum protocol is competitive with the optimal majority
quorum protocol for the targeted workloads. Finally, for the targeted workloads,
the communication overheads of this approach are comparable with existing ap-
proaches. However, in the worst-case scenario in which the workload consists
of only interleaved reads and writes, the dual-quorum protocol requires signifi-
cantly more message exchanges than traditional quorum protocols to coordinate
internal nodes.

The main contribution of this paper is to introduce the dual-quorum algo-
rithm, a novel data replication algorithm targeted at a key workload for Internet
edge service environments. Note that although our work is motivated by a spe-
cific replication scenario, we speculate that it will be more generally useful. In
particular, we believe that it may not be uncommon for systems that can, in prin-
ciple, have any node read or write any item of data to, in practice, experience
sufficient locality to benefit from our approach.

Our paper is organized as follows. Section 2 presents our system model and
a set of assumptions on which our system is built. In Section 3, we present our
system’s design. We compare our system with existing ones in Section 4 with

! Note that ROWA protocols are, in fact, a special case of quorum protocols, but they
are often treated separately in the literature.
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both analytical and experimental evaluations. In Section 5, we discuss related
work. Concluding remarks are presented in Section 6.

2 System Model and Definitions

Our edge service environment consists of a collection of edge server nodes that
each play one or more of the following three roles: (a) front end nodes that
handle application client requests from across the Internet, execute application-
specific processing, and act as service clients to the dual-quorum storage system;
(b) Output Quorum System (OQS) nodes that process read requests; and (c)
Input Quorum System (IQS) nodes that process write requests. We assume a
request redirection architecture that directs application clients to a good (e.g.,
nearby, lightly loaded, or available) front end edge server; a number of suitable
redirection systems are discussed in the literature [15,31]. Note that application
clients are unaware of the underlying data storage system and never contact the
0Q@S or IQS interfaces directly.

In an edge service environment, servers typically process sensitive or valuable
information, so they must run on trusted machines such as dedicated servers in
a hosting center. We therefore assume a fail-stop model in which servers may
crash but cannot issue incorrect requests or replies. The network may delay,
duplicate, or reorder messages. We assume secure communication among nodes
and that if the network corrupts a message, this corruption is detected by low-
level checksums and the message is silently discarded. Each node can read a
local real-time clock and there exists a maximum drift rate mazDrift between
any pair of clocks.

For performance, our system assumes that concurrent reads and writes to a
given object by different nodes are rare. But, for correctness, we must define the
system’s consistency semantics in the presence of concurrent reads and writes
to the same object. The dual quorum design provides regular semantics [16]: a
read r that is not concurrent with any write returns the value of the latest write
that completed before r began and a read r that is concurrent with one or more
writes returns one of (a) the value of the last write that completed before r
began, or (b) the value of one of the writes concurrent with r.

For convenience of exposition, we describe interactions with a quorum sys-
tem in terms of a QRPC (quorum-based remote procedure call) operation [18].
replies = QRPC(system, READ /W RITE, request) sends request to a collec-
tion of nodes in the specified quorum system (e.g., the IQS or OQS ). The
QRPC call then blocks until a set of replies constituting the specified quorum
(READ or WRITE) on the specified system have been gathered. The call then
returns the set of replies that it received. The QRPC operator abstracts away
details of selecting a quorum, retransmissions, and timeouts, but our protocol
does not depend on any specific QRPC implementation. In particular, different
implementations may choose different ways to select which nodes from system
to send requests to, and they may select different retransmission strategies: our
simple prototype implementation always transmits requests to the local node if
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the local node is a member of system; it then randomly selects a sufficient num-
ber of additional nodes to form a READ or W RITE quorum and transmits the
request to them; retransmissions are each to a new randomly selected quorum
using an exponentially-increasing retransmission interval. A more aggressive im-
plementation might send to all nodes in system and return when the fastest
quorum has responded or might track which nodes have responded quickly in
the past and first try sending to them.

3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum replication system and the
key ideas for achieving our design goals. The basic idea is to separate the read
and write quorum into two quorum systems so that they can be optimized indi-
vidually to improve response time and availability for read-dominated or write-
dominated workloads. The read and write quorums of the OQS and IQS can
be separately configured in any way desired, but we would expect one common
configuration to be to optimize read performance by having the OQS span all
nodes in the system with a read quorum size of 1 and to get good write availabil-
ity by having the IQS span a modest number of nodes with any majority of the
1QS nodes forming a write quorum. As Figure 2 illustrates, in the dual quorum
system service clients retrieve objects from a read quorum in OQ.S and send ob-
ject updates to a write quorum in 7QS. The two quorum systems conditionally
synchronize with each other to maintain the consistency of data replicated on
them when processing both reads and writes.

0 server OoQsS 1QS
(| m |
Client Reads RO ~ |-
L 1| = m wo
I:l - Client Writes
wo < | 1
[ =
Client Reads ~ RQ — -4 wo
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Fig. 2. Dual quorum architecture overview. Note that client reads and writes are issued
by the service clients, not the application clients.

To simplify the discussion, we present the protocol in two steps. First, we
will discuss the basic dual-quorum protocol, a simplified asynchronous protocol,
in Section 3.1. This protocol allows separate optimizations of read and write
quorums, but because it assumes an asynchronous system model, a write can
block for an arbitrarily long period of time. Then, in Section 3.2 we describe
how we introduce volume leases to improve write availability while retaining
good read performance.
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3.1 Dual Quorum Protocol

High level overview. The basic idea of the dual quorum protocol is to process
reads and writes in two different quorum systems, IQS and OQS , and use
a cache invalidation strategy to synchronize the state of objects replicated in
1QS nodes and cached in OQS nodes.

Clients perform similar tasks for reading and writing data as in the conven-
tional quorum based protocols. When a client read arrives in OQS , two possible
scenarios can happen, as illustrated in Figure 3 (a) and (b). In a read hit case,
the OQS read quorum contains a valid cache copy of the requested object, which
is immediately sent back to the client. When there is a read miss, i.e. the cache
copy on the OQS read quorum is invalid, the OQS read quorum validates the
cache copy by querying an IQS read quorum for the latest update. Once the
cache copy of the OQ@S read quorum is validated, the OQS read quorum sends
the updated value to the client. There are also two scenarios when processing
client writes, as illustrated in Figure 3 (c¢) and (d). In a write suppress case, the
cache copy in an OQS write quorum is already invalid. The IQS write quorum
can just apply the write to the local object and send the completion acknowl-
edgment to the client. In the case of a write through, an OQS write quorum
may hold a valid cache copy. Therefore, the IQS write quorum that receives the
client write has to invalidate the cache copy on one OQS write quorum before
the write can complete.

For workloads consisting of read bursts, the first read forces all OQS nodes
of the read quorum to validate their cached copies. Therefore, all subsequent
reads via that quorum are read hits. If we configure the OQS read quorum to
contain only one node, reads becomes local, and the protocol can yield near
optimal read response time and availability for read-dominated workloads. For
workloads consisting of write bursts of the same data, the first write invalidates
cached copies in an OQS write quorum, making all subsequent writes write
suppresses. Naturally, we can configure IQS as a majority quorum system to
provide near optimal write availability for such workloads.

Protocol details. The following paragraphs provide the details of the basic
dual-quorum protocol by describing the actions taken at individual nodes.
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Fig. 3. Request processing scenarios
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Data structures. Each I1QS node maintains the following state for each object o:
lastWrite LC, stores the logical clock of the last write to o, last ReadLC,, stores
the value of lastWriteLC, from the time of the last read of o, lastAckLC, ;
stores the logical clock contained in the highest invalidation reply from OQ@S

node j for o, and value, stores the value of 0. Each node in IQS maintains a
logical clock logicalClock whose value is always at least as large as the node’s
largest lastWriteLC, for any object o. Each node in OQS maintains the fol-
lowing per-object o per-IQS-node i state: logicalClock, ; indicates the highest
version number (logical clock) of o for which an invalidation or update has been
received from 7, and wvalid, ; is true if logicalClock, ; corresponds to an update
(false if it corresponds to an invalidate). Finally value, stores the update body
for the highest logical clock received in any update message for o from any node.

Object validity. The system maintains the following key invariant: If node j in
OQS has from node ¢ in IQS a valid object o (j.valid, ;) then node ¢ in IQS knows
node j in OQS has a valid object callback (i.lastReadLC, > i.lastAckLC, ;).

Client read. From the client’s point of view, a dual-quorum read is the same
as a standard quorum read [11,12]. client sends a read request to the OQS via
QRPC. After receiving replies from a read quorum in OQS, client selects the
value with the highest logical clock.

A node j in OQS that receives a client read request first checks whether the
object o is valid. This check is done by first finding the IQS nodes i that sends
the highest logicalClock, ; to j. Object o is valid if valid,; = TRUE, invalid
otherwise. If o is valid, j returns the object’s locally-stored logical clock and
value. If not, j renews the object by sending object renewal messages to IQ.S
using Q RPC. After receiving replies R from a read quorum in 1Q S, j updates its
local state (Vi, s.t.i € R: if R.r,;.lc > logicalClock, ;, then logicalClock,; =
R.r, ;.lc and valid, ; := true). Then, j updates value, with the value in the reply
with the highest logical clock and returns both the value value, and the highest
logical clock to the client. Each IQS server that receives an object renewal
message returns to the OQ.S server value, and lastWrite LC, and then updates
lastReadLC, = max(lastReadLC,, lastWrite LC,).

Client write. Just like the standard quorum write protocol [11,12], client first
queries IQS using QRPC to retrieve the highest logical clock from a read quo-
rum in 1QS. Next, client advances the logical clock and embeds it in the write
request that is then sent to the QS via QRPC'. The write completes after client
receives acknowledgments from a write quorum in IQ.S.

An IQS server i that receives a client request for the highest logical clock
of the last completed write responds with its logical clock logicalClock. When
1 receives a client write whose logical clock is larger than that associated with
the last completed write of 0 on i (lastWriteLC,), i updates lastWriteLC, and
value, with those in the write. Then, to ensure that a write quorum in OQS is
unable to read the old version of the data, ¢ performs one of the following tasks:
(a) if no OQS server has renewed since the completion of the last write, (e.g.
Vi, st.j € 0QS, lastReadLC, < lastAckLC, ;), i suppresses invalidations to
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0QS; (b) otherwise, i sends invalidations with the logical clock of the write to
0QS using QRPC'. The write completes after receiving invalidation replies from
a write quorum in OQ.S, at which point ¢ updates lastAckLC, ; for all j in the
QRPC reply and returns to the client.

An OQS server j that receives from node i in IQS an invalidation with
a logical clock lc,; compares lc,; with logicalClock, ;. If the invalidation has
the higher logical clock, j updates the local state (logicalClock,; = lc,,; and
valid, ; = false). Finally, j sends an invalidation acknowledgment back to 1.

3.2 Dual Quorum with Volume Leases (DQVL)

The basic protocol just described allows one to vary read and write quorum
sizes independently. However, our application would benefit from using a read
quorum size of 1 so that reads can be serviced locally; any larger read quorum
size introduces a network delay to every read and provides qualitatively worse
read response time. However, a read quorum size of 1 could lead to unacceptable
write availability because it could require a write to contact all nodes in the OQS
to invalidate cached data. We therefore adapt Yin et al.’s volume lease proto-
col [30] to support very small read quorums in OQS while retaining acceptable
availability on writes.

High level overview. We group objects into collections called volumes. To
process a read, a read quorum in OQS must hold both a valid volume lease and
a valid object lease for some read quorum in 1QS. A lease represents permission to
access some object that expires at some specified time [13]. Similar to the basic
dual quorum protocol described in the previous section, when an OQS read
quorum holds both valid leases, all client reads processed by this read quorum
are read hit. A read miss implies that either or both leases are invalid - they can
be renewed by querying from an IQS read quorum. Similarly, a write suppress
occurs when either or both leases are invalid in at least one OQS write quorum.
To process a write in the write through scenario, the IQS write quorum can (a)
invalidate the object lease in an OQS write quorum or (b) wait for the lease to
expire on the volume containing the requested object in an OQS write quorum.

The key challenge in introducing volume leases is to manage the callback state
when invalidations are suppressed at IQS when the volume lease expires in an
0QS write quorum. When an I(QS write quorum processes a write to o while
the lease expires for the volume v containing o in an OQS write quorum, i.e. a
write suppress scenario, the IQS write quorum has to enqueue the invalidation
of 0 as a delayed invalidation [30]. All delayed invalidations of objects under v
must be processed by the OQS write quorum before v’s lease can be renewed so
that all required callbacks to IQS are installed on OQS . Those callbacks ensure
that OQS queries IQS to retrieve possible updates suppressed at IQS.

A final implementation detail we take from Yin et al. [30] is to bound the
size of the list of delayed invalidations for OQS using epochs. Volume lease re-
newals are marked with an epoch number, and when this epoch number changes,
0QS conservatively assumes all object callbacks have been revoked by IQS.



192 L. Gao et al.

In this case, OQS suspects that all objects under this volume are updated at
IQS and OQS needs to query an IQS read quorum to validate the cache copy
before sending any object to a client.

The key benefit of volume leases is that they can be of short duration while
object leases are of long duration.? This combination yields good read response
time; nodes in OQS can cache objects locally for a long time, and although
they must frequently renew volume leases, this cost is amortized across many
objects in a volume. This combination also yields good write responsiveness and
availability: a write can complete by invalidating nodes caching data or waiting
for a (short) volume lease to expire.

Protocol details. The protocol details at the node level are similar to the basic
dual quorum protocol except that each QS node tracks the volume lease and
callback state on all OQS nodes. The pseudo-code describing actions at an IQS
and an OQS node is shown in Figures 4 and 5.

Data structures. Each node in IQS maintains a real time clock currentTime
(with bounded drift with respect to the other clocks as described in Section 2)
and a logical clock logicalClock. Each 1QS node also maintains the following
per-volume v, per-OQS-node j state: expires, ; which indicates when v expires
at j, delayed, ; which contains a list of delayed invalidations that must be de-
livered to j before v is renewed, and epoch, ; which indicates j’s current epoch
number for v. Finally, each IQS node maintains the following per-object o state:
lastWrite LC, stores the logical clock of the last write to o, last ReadLC,, stores
the value of lastWriteLC, from the time of the last read of o, lastAckLC, ;
stores the logical clock contained in the highest invalidation reply from node j
for o, and value, stores the value of o.

Each node in OQS maintains a bounded-drift real time clock currentTime. In
addition, it maintains the following per-volume v per-IQS-node ¢ state: epoch,, ; is
the highest epoch number for which a valid volume lease from ¢ was held on v and
expires, ; is the time when the lease on v from ¢ will expire. And, it maintains the
following per-object o per-IQS-node 7 state: epoch,, ; indicates the last epoch for
which a valid object lease on o from ¢ was held, logicalClock, ; indicates the highest
version number (logical clock) of o for which an invalidation or update has been
received from 7, and valid, ; is true if logicalClock, ; corresponds to an update
(false if it corresponds to an invalidate). Finally value, stores the update body for
the highest logical clock received in any update message for o from any node.

Volume and object validity. The system maintains the following key invariant: If
node j in OQS has from node ¢ in IQS both a valid volume v (expires,; >
currentTime) and a valid object o (epoch,; = epoch,; && walid, ;) then
node 4 in IQS knows node j in OQS has a valid volume lease (expires, ; >
currentTime) and valid object callback (lastReadLC, > lastAckLC, ;).

2 For simplicity, we will assume infinite-length object leases or callbacks [14]. Gener-
alizing to finite-length object leases is straightforward and can help optimize space
and network costs [9].
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1 processLCReadRequest () { 24 processVLRenewal (Volume v, Sender j,
2 sendMsg (CLIENT LC READ REPLY, logicalClock); 25 RequestorTime ty o) {
j 26 expires,, j := L + currentTime;
5 processWriteRequest (Object o, Value v, 27 sendMsg (VOLUME RENEW REPLY, delayedy j ,
6 LogicalClock Ic){ 28 L, epochy j, ty,0);
7 if (Ic > lastWriteLCo) { 29}
8 valueg :=Vv; 30
9 lastWriteLCo := Ic; 31 processVLRenewalAck (Volume v, Sender j,
10 //ensure an invalid OQS write quorum 32 LogicalC Ic){
11 while (!isOWQInvalid (o, Ic)){ 33 //remove delayed invals already
12 invalidateOWQ (o, Ic); 34 //applied at the sender
13 //see text for descriptions 35 vk, 5-(-inva|k,j Edelayedv,j{
ig N ¥ 36 if (Ie > invaly j.Ic) {
16 sendMsg (CLIENT WRITE ACK, o, Ic); 37 delete invaly j;
17} 38 }
18 39 }
19 processInvalAck (Object o, Sender j, 10 }
20 LogicalClock lIc){ 41
21 //update the last inval ack in 42 processObjRenewal (Object 0){
22 //the record for the sender 43 //update last—read logical clock
23 1astAckLCg j := MAX(lastAckLCy j. Ic) ; 44 lastReadl Cg := lastWriteLCo;
214} 45 sendMsg (OBJECT RENEW REPLY, valueg ,
46 lastWriteLCq) ;
a7}

Fig. 4. IQS server operations (pseudocode) — Dual quorum with volume leases

Client read. As detailed by processReadRequest in the pseudo-code, a node j
in OQS processes a client read of object o by ensuring Condition C': there exists
a read quorum irqg in IQS such that j holds both a valid volume lease and valid
object lease from irq. If C' is already true, then j can immediately return the
value value, and the associated logical clock M AXv; s ic1qs(logicalClock, ;).

If C' is not true, then j performs a variation on QRPC. QRPC as defined
in Section 2 sends and resends a request to different nodes until it receives
a quorum of replies. This variation sends different requests to different nodes
and processes replies until condition C' becomes true. In particular, for each
target node 4 selected, j sends one of three things: (a) if the volume from 4 has
expired and the object from i is invalid, it sends a combined volume renewal
and object read; (b) if just the volume has expired, it sends a volume renewal;
or (c) if just the object is invalid, it sends an object read. As detailed in the
pseudo-code processVLRenewReply, j processes replies to volume renewal
requests from IQS node 7 by applying the delayed invalidations included in the
reply (in the same way as applying normal invalidations as described below)
and updating expires, ; as well as epoch, ;. To account for worst-case clock
drift, j conservatively sets expires,; = t, + L * (1 — mazDrift) where t, is the
time that j sent the volume lease renewal request, L is the volume lease length
granted in the reply, and mazDrift is as defined in Section 2. Finally, j sends
i a volume lease renewal acknowledgment (which 4 uses to clear its delayed
invalidation queue.) As detailed in the pseudo-code processRenewReply, j
processes object renewal replies from ¢ by updating epoch,, ;, logicalClock, ;, and
valid, ;; furthermore, if valid, ; is true and logicalClock, ; exceeds the logical
clock of any other wvalid logical clock for this object, 7 updates value,. The
repeated sends and the processing of replies in this QRPC variation ensure that
C' eventually becomes true, at which point j returns value, and the associated
logical clock (logicalClock, ;,,,.) as the result of the read.

On the IQS side, node i in IQS processes volume renewal messages for vol-
ume v from node j as described in the pseudo-code processVLRenewal: i
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1  processVLRenewReply (Volume v, Sender i,
2 Lease L, Epoch e, DI di, 27  processReadRequest (Object 0){
3 RequestorTime ty o){ 28 //ensure valid local object and volume
4 expires,, j := MAX(expires, j,ty o + L * (1 — maxDrift)) 29 while (!isLocalValid (0)){
5 30 //renew invalid volume and object
6 epochy, j := MAX(epochy, j,e); 31 validateLocal(0);
7 apply delayed invals in th 1 32 )
s é'/(‘”";%’ KA A the reply 33 //send reply to cilent
s s-tinval e di { 34 Ic = MAXyi s.t.value. : —true(logicalClock )

9 if (invaly j.lc > logicalClocky j){ iy b !

. q , i 35 sendMsg (CLIENT READ REPLY, valueo , Ic);
10 logicalClocky j := invaly j.lc; 36 } N
11 validy ; := false; 37
12 ) 38 processRenewReply (Object o, Sender i,
13 } 39 Epoch epoch, LogicalClock lc,
14 sendMsg (VOLUME RENEW REPLY ACK, 40 ObjectValue value) {
15 v, MAX(di.lc)) ; 41 epochg j := MAX(epochg j. epoch);
16} 42 if (logicalClockg j < Ic) {
i ) . 43 logicalClockg j = Ic;
18 processInval (Object o, Sender i, i g
19 LogicalClock Ic){ 44 validg j := true;
20 //update the local logic clock 45 }
21 //and object status 46 if (validg j = true &&
22 if (logicalClockg j logicClockg j > MAXyj kel Qs (logicalClocke k)
23 logicalClockg j a7 ){
24 validg j := false 48 valueg := value;
25 } 49
26 sendMsg (INVAL ACK, lc); 50}
27}

Fig. 5. OQS server operations (pseudocode) — Dual quorum with volume leases

sends the delayed invalidations delayed, ; and the volume renewal, containing
the epoch number epoch, , and lease length L. 7 then records the volume ex-
piration time (expires, ; = L + currentTime). When i receives a volume lease
renewal acknowledgment for volume v and logical clock lc from j, as detailed
in the pseudo-code processVLRenewalAck, i clears all delayed invalidations
with logical clocks up to lc from delayed, ;. As processObjRenewal indicates,
when i in IQS processes a read of object o from OQS node j, it replies with
value, and lastWriteLC, and updates lastReadLC, = lastWriteLC,. Note
that lastReadLC,, lastAckLC, ;, and lastWriteLC, allow i in IQS to track
which nodes 7 in OQS may hold valid object callbacks. Finally, if an IQS server
i wishes to garbage collect delayed invalidation state for j, i advances epoch,, ;
and deletes the delayed invalidations delayed, ;. Note that if j receives from i
a volume lease with a new epoch, then epoch, ; # epoch, ; for all o. So all pre-
viously valid object leases from ¢ immediately become invalid. Thus, if j misses
some object invalidations from ¢ when its volume lease from ¢ has expired, a
volume lease renewal from i can resynchronize j’s state by either (a) updat-
ing valid, ; with the missing delayed invalidations or (b) advancing epoch,, ; by
sending a volume renewal with a new epoch number.

Client write. A client first determines the highest logical clock of any com-
pleted write by calling IQS’s processLCReadRequest. A node ¢ in IQS re-
sponds to such a call for object o by returning the node’s global logical clock
logicalClock. A client then issues the actual write of object o. As detailed in
processWriteRequest in the pseudo-code, if the write’s logical clock exceeds
that of the highest write seen so far (lastWriteLC,), node i stores the write’s
logical clock and value. ¢ then ensures that a write quorum in OQS is unable
to read the old version of the data by performing a variation on QRPC that
“sends” differently to different nodes depending on whether their volume and
object leases are valid. There are three cases for ¢ to consider for node j, object o,
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and volume v: (a) if ¢ knows o is invalid at j (e.g., lastReadLC, < lastAckLC, ;)
then 7 need take no action for j; (b) otherwise if o is valid at j but v is invalid at
Jj (e.g., expires, ; < currentTime) then i enqueues an invalidation in delayed, ;
which will be processed at j when it renews its volume; or (c) both the ob-
ject and volume are valid (e.g., lastReadLC, > lastInvalLC, ;) then j sends
an object invalidation containing the write’s logical clock (lastWriteLC,) to j.
In this last case, if j receives an invalidation from ¢ for object o with logical
clock [c, then as the pseudo-code in processInval describes, j applies the in-
validation: if the invalidation is the newest information about o from i (e.g.,
le > logicalClock, ;) then j updates the logical clock and validity information
({logicalClock,,; = lc;valid; = false}). Finally, if ¢ receives an invalidation-
acknowledgment from j for logical clock [c, then as the pseudo-code in process-
ClientInvalAck describes, ¢ updates lastAckLC, ; = max(lastAckLC, ;,lc).

3.3 DQVL Correctness

Because of space constraints, we omit the proof  that the system has regular
semantics [16]. In particular, the proof shows (1) a read of o that is not con-
current with any writes of o can return only the value and logical clock from
the completed write of o with the highest logical clock and (2) a read of o that
is concurrent with one or more writes of o can return only (a) the value and
logical clock from the completed write of o with the highest logical clock or (b)
the value and logical clock from some concurrent write of o.

To give intuition for why DQVL provides regular semantics, consider the
invariant: If node j in OQS has from node i in IQS both a valid volume v
(expires,; > currentTime) and a valid object o (epoch,; = epoch,;, &&
valid, ;) then node i in IQS knows node j in OQS has a valid volume lease
(expires,; > currentT'ime) and valid object callback (lastReadLC, >
lastAckLC, ;).

For a read that is not concurrent with any writes: This invariant is established
by having j renew its volume v and (or) object o from i. Therefore, j contains
the last completed write value, on node ¢ when j has both a valid volume v
and a valid object o from node ¢. Furthermore, j will contain the last completed
write value, on a write quorum in IQS (iwq) when j has both a valid volume
v and a valid object o from a read quorum in IQS (irq) (because an OQS read
quorum (orq) and an OQS write quorum (owq) intersect by at lease one node).
Because a client write is performed on an iwgq, value, held on j is actually the last
completed client write in the system. Because j can not process any client read
unless it holds both a valid volume v and a valid object o from a read quorum
irq, j guarantees to always return the value value, of the last completed write
in the system.

For a read that is concurrent with some writes: Assume that the last com-
pleted write has logical clock lcyg and a read r that is concurrent with some
writes with logical clock lcy...le,, (Iey > lep) is sent to an orq. If the invariant is

3 The details are presented in Chapter 4 of Lei Gao’s dissertation available at
www.cs.utexas.edu/users/lgao/papers/dissertation.pdf.
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established in the orq, r returns the value associated with lcy. Otherwise, the orq
will try to establish the invariant by querying an irq. Because some writes are
being processed in IQ.S, the irq may return to the org the value associated with
any of the logical clock o0.l¢cg...0.lc,,. Meanwhile, some iwq may send invalidations
with logical clock inval.lcy...inval.lc, to the orq as the result of the concurrent
writes. When the maximum logical clock received in the renew replies is less than
that of any invalidations on any server j of the org, this server keeps renewing
from some irq. As long as those concurrent writes terminate, j will eventually
receive o.l¢,, (the highest logical clock among all concurrent writes) from some
irq. Therefore, r may return the value associated with any of the logical clock
leg...ley,.

4 Evaluation

Through both analytical and experimental evaluations, we compare the availabil-
ity, performance, and communication overhead of DQVL against other popular
replication protocols. We show that DQVL yields a read performance competi-
tive with ROWA epidemic algorithms and overall availability competitive with
the majority quorum protocol.

4.1 Response Time

A prototype has been implemented by using DQVL and other popular repli-
cation protocols, such as primary/backup, majority quorum, ROWA-Async and
ROWA, to compare their response times. The prototype is similar to a
read/write register in that it allows clients to read and write the value of a
single object. But our prototype supports reads and writes on multiple objects
and ensures a consistent view of all objects on every server.

All the prototypes are built in Java. In our prototype experiment, we set the
“LAN” delay between an application client and its closest edge server to 8 ms.
The “WAN” delay between the application client and other edge servers is 86 ms.
And the network delay among edge servers is 80 ms. Because the experiments
focus on how various protocols can minimize WAN delays by taking advantage
of having an edge server near every application client, we assume a constant
processing delay on every edge server for both reads and writes. An application
client sends requests to the system with a specified write ratio. The application
client sends the next request only after it receives the response of the current
request. We run up to nine edge servers and three application clients in the
experiment.

This section compares the response time of five protocols under our target
workloads. We show that DQVL yields better response time than protocols pro-
viding strong consistency guarantees and competitive response time to protocols
with relaxed consistency guarantees.
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Fig. 6. Response time vs. write rate

Write ratio. We first evaluate the response time by fixing the write rate to 5%,
which is the update rate for TPC-W* profile object, i.e. a workload with a low
update rate and strong access locality. Accesses to the profile object consist of
95% reads on a customer’s purchase history, credit information, and addresses
and 5% writes on a customer’s shipping address when processing an online pur-
chase. When the profile is replicated on edge servers, a customer is routed to the
closest edge server to access its profile information.

As illustrated in Figure 6 (a), DQVL provides at least a six times read re-
sponse time improvement over primary/backup and majority quorum protocols
that are used to provide strong consistency guarantees. DQVL yields compara-
ble read response time to ROWA and ROWA-Async protocols because it allows
most client reads to be processed locally at the client’s closest edge server while
maintaining the same level of consistency guarantees as both primary/backup
and majority quorum protocols by running the dual-quorum protocol between
the closest replica and the rest of the replicas in the system.

Figure 6 (b) is the sensitivity graph illustrating the response time as we
vary the write rate. As writes dominate the workload, DQVL’s response time
approximates that of the majority quorum protocol and becomes higher than
those of primary/backup and ROWA. The main reason is that DQVL clients,
following the same procedure as the majority quorum protocol, need to obtain
the latest timestamp from a read quorum before sending the write to a write
quorum in I@QS. Two round trips are required for both the majority quorum
protocol and DQVL while only one round trip is needed for primary/backup
and ROWA protocols. For this reason, the average response times of both DQVL
and the majority quorum protocol are worse than that of ROWA although both
protocols do not require every write to be processed by all nodes.

Access locality. In this subsection, we evaluate response time when some por-
tion of client requests are routed to replicas other than the client’s closest one.
Under normal circumstances, requests are routed to the client’s closest server.

* TPC-W is a transaction processing benchmark for the web [8].
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But the unavailability of the closest replica or the geographical movement of the
client can sometimes result in a request being routed to a distant replica.

Figure 7 (a) illustrates the protocols’ response times at our target 5% write
rate and at 90% access locality (i.e. 10% of client requests are sent to distant
replicas and 90% of client requests are sent to the client’s closest replica). The
90% access locality is a pessimistic measure for Internet edge servers given typical
network failure rates below 10% and infrequent mobility by most end users.
DQVL outperforms both primary/backup and majority quorum protocols for
the workload while preserving the same consistency level in cases where client
requests are directed to distant replicas. Note that that ROWA-Async protocol
yields the optimal response time at the cost of serving reads with potentially
inconsistent data when requests are directed to the distant replicas.

In the DQVL protocol, the response time of reads at distant replicas is
higher than the normal response time experienced when reading from the closest
one. As the access locality varies, the overall response time changes accordingly.
Figure 7 (b) indicates the relationship between the access locality and the over-
all response time of five protocols. DQVL suffers when access locality is low
because both reads and writes need to contact replicas in both input and output
quorum systems. But DQVL’s response time keeps improving as the access local-
ity becomes higher. The majority quorum and primary /backup protocols are not
affected by the access locality because neither protocol is designed to take advan-
tage of the access locality in the edge service environment. This graph suggests
that when the access locality is 70% or higher, DQVL should be preferred over
primary/backup or majority quorum protocols for replication systems requiring
low response time and strong consistency guarantees.
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Fig. 7. Average response time vs. access locality

4.2 Availability

In this section, we provide analytical models to evaluate the availability of the

dual quorum protocol in comparison with other popular replication protocols.
We define the availability (av) as the number of client requests successfully

processed by the system over the total number of requests submitted to the
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system during a given time period. A request is rejected by the system when
target consistency semantics can not be satisfied. In the context of this paper,
systems are required to provide regular semantics [16]. For example, if more than
half of the nodes are unavailable in the IQS of a dual quorum system or in a
majority quorum system, a client write will be rejected because the system can
no longer guarantee that a later read can always retrieve the value of this write.
Because the ROWA-Async protocol allows reads to return stale data from nodes
without the latest update, it does not provide regular semantics. Therefore, to
make the comparison fair [32], our analysis of the system implementing ROWA-
Async protocol assumes that the system rejects client reads that would return
stale data.

Figure 8 illustrates the unavailability of DQVL in comparison with other proto-
cols in log scale. The unavailability is computed as 1 — av. An unavailability of 10~
corresponds to the availability of 7 9’s. Our simple model assumes a per node un-
availability p = 0.01 and that node failures (including server crashes and network
failures) are independent. Read and write rates are defined as 1 — w and w.

For DQVL, the availability of both read hit and read miss are min(avorq,
avirq). The availability of both write through and write suppress are min(aviyq,
AVjwq)- Therefore, the availability of DQVL is avpgvr = (1 — w) * min(averq,
AVirq) + W * Min(aViwg, AVirqg)->

Figure 8 (a) illustrates the unavailability of our target protocols as we vary
the write ratio and fix the number of replicas to 15 (in both IQS and OQS ).
The key result is that DQVL’s availability tracks that of the majority quorum.
Note that the DQVL’s availability measurement is pessimistic because a read can
proceed without contacting any read quorum in IQS if the read quorum in OQS
holds valid volume and object leases; this effect may mask some failures that
are shorter than the volume lease duration. Note that ROWA-Async protocol
provides excellent availability by allowing reads to return arbitrary stale data
to clients. But if we allow no stale reads by the ROWA-Async protocol, its
availability decreases to several orders of magnitude worse than other quorum
based protocols and our DQVL protocol.

1 T T T T 1
0.01 —/‘/
ROWA 001 /
o4 e e T e ROWA
~ g ~ 1004 L T e
1e-06
z i T z .
F teost Grid ROWA-Async (0 staleness) T te0s e K 1
Kl K : T ROWA-Async (0 staleness)
T e .- N T ; e
§ 1e-10 Majority, Dué| Quorum (pessimistic) E teos | Grid .
2 etz - >
Te-14 Teto - .
ROWA-Async (infinite staleness) Majority, Dual Quorum (pessimistic)
1e-16 - o 1 le-12 -
1e-18 -
. . o-14 . . . .
o 02 04 06 0.8 1 2 4 6 8 10 12 14
Write Ratio Number of Replicas
(a) Unavailability vs. write ratio (b) Unavailability vs. number of replicas

Fig. 8. System unavailability
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Figure 8 (b) illustrates unavailability as we vary the number of replicas and
fix the write ratio at 25%. The unavailability of DQVL is similar to that of the
majority quorum system. The availability of quorum based protocols, including
DQVL, improves as the total number of nodes increases. The availability of
ROWA and ROWA-Async with no stale reads is insensitive to the number of
nodes in the system.

4.3 Communication Overhead

This section analyzes DQVL’s communication overhead in terms of the number
of message exchanges required in processing a client request. To simplify the
model, the study assumes the weights of all message types are equal. Because of
space constraints, we omit a detailed discussion of the communication overhead
model.® Figure 9 shows the average number of messages required to process a
client request in log scale. As illustrated in Figure 9 (a), in the worst case where
the write ratio is 50%, DQVL can have high communication overhead as reads
and writes interleave with each other. In this case, most reads are read misses and
most writes are write throughs which involve both IQS and OQS in processing
requests. However, DQVL’s overhead should be comparable to other approaches
in practice. First, workloads that DQVL is designed to face are dominated by
reads. Consecutive reads are likely to benefit from having objects cached on OQS
servers, i.e. the target workloads have a large number of read hits. Second, the
design of DQVL allows us to vary the OQS size to meet read performance goals
while varying the IQS size to balance overhead vs. availability goals. As shown
in Figure 9 (b), once we fix IQS at a moderate size while letting the OQS size
grow, the communication overhead yielded by DQVL is comparable to that of
the majority quorum protocol without requiring many read hits in the workload.

Note that although the dual quorum protocol is described in terms of two
quorum systems, IQS and OQS , an IQS server could physically be on the same
node as an OQS server, reducing the overall communication overhead.
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5 Related Work

In read-one/write-all (ROWA) protocol the “read-one” property yields excellent
read availability and response time. But this protocol has limited write avail-
ability and response time because writes can not complete if any of the replicas
are unavailable. Protocols with the read-one/write-all-async property (ROWA-
Async) [21,24,25] yield better write availability and response time by allowing
writes to be propagated to other replicas asynchronously, but they are only suit-
able for weakly consistent replication because they can not guarantee that reads
will always return the data modified by the latest completed write. A variation
of ROWA [4] performs writes synchronously on the available replicas to provide
better consistency, but it requires membership protocols to maintain a consistent
view of active members.

The primary-backup (or primary-copy) model [2] tolerates network partitions
by only allowing the partition with the primary server to perform wri