

Lecture Notes in Computer Science 3790
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gustavo Alonso (Ed.)

Middleware 2005

ACM/IFIP/USENIX
6th International Middleware Conference
Grenoble, France, November 28 - December 2, 2005
Proceedings

13

Volume Editor

Gustavo Alonso
Swiss Federal Institute of Technology (ETHZ)
Department of Computer Science, ETH Zentrum
8092 Zürich, Switzerland
E-mail: alonso@inf.ethz.ch

Library of Congress Control Number: 2005935949

CR Subject Classification (1998): C.2.4, D.4, C.2, D.1.3, D.3.2, D.2, H.4

ISSN 0302-9743
ISBN-10 3-540-30323-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30323-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© IFIP International Federation for Information Processing 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11587552 06/3142 5 4 3 2 1 0

Preface

Today, middleware is a key part of almost any application. Gone are the days
when middleware was only used in the IT industry for high-end applications.
Rather than middleware being part of the IT world, today IT applications rep-
resent only one aspect of middleware. With the increase in distribution, network
capacity, and widespread deployment of computing devices (in homes, automo-
biles, mobile phones, etc.), middleware has surpassed the importance of operat-
ing systems as the platform where application development and deployment take
place. This makes middleware very exciting as a research area but also a very
challenging one since it encompasses many different concepts and techniques
from a wide variety of fields: networking, distributed systems, software engineer-
ing, performance analysis, computer architecture, and data management.

Middleware 2005 in Grenoble, France, was the 6th edition of an increasingly
successful conference. The scope of the conference has been slowly widening with
every edition to accommodate new fields and applications. This year we made a
considerable effort to reach out to other communities who are also active in the
general area of middleware — sensor networks, networks in general, databases,
software engineering— a fact that is reflected in the variety of submissions.

The program this year was selected from over 112 submissions. From these,
the Program Committee selected 18 full papers and 6 short papers. Each paper
had at least four reviews and the selection was made based on technical merit,
relevance, originality of the contribution, and degree of innovation. Preference
was given to papers with new ideas or covering novel application areas. Among
the accepted papers, there was a fair number of PC papers. For the record, PC
papers had to be clearly above other papers to be considered for acceptance. In
this Call for Papers, we did not include work–in–progress papers. Instead, we
introduced short papers — selected from the regular submissions as papers that
had interesting ideas but were not ready for publication as full papers — and a
demo session with a separate Call for Papers — which should give a venue to
present systems-oriented research.

As in the past, the review process was highly selective and the source of many
interesting discussions on the nature of middleware and its general applicability.
The exciting program that was prepared reflects these discussions and created
the perfect background for similar discussions during the conference. Together
with the workshops that accompanied the conference, Middleware 2005 covered
a wide range of issues and topics related to all aspects of middleware, from
software engineering to low-level implementation details.

Finally, I would like to thank Richard van de Stadt, in charge of the confer-
ence review system, who was at all moments most helpful and made sure the
review process ran flawlessly. I would also like thank all the Program Commit-
tee members and external reviewers for their time and effort during the review

VI Preface

process. Writing good, informative, and fair reviews is not easy and takes a con-
siderable amount of time. I am proud to say that this year’s PC has done an
excellent job with the reviews, thereby continuing the tradition of excellence in
the Middleware conferences. The result of their efforts is an excellent and very
interesting program that no doubt made the 2005 edition of the conference a
success.

April 2005 Gustavo Alonso
Middleware 2005 Program Chair

Organization

Middleware 2005 was organized under the auspices of IFIP TC6WG6.1 (Interna-
tional Federation for Information Processing, Technical Committee 6 [Commu-
nication Systems], Working Group 6.1 [Architecture and Protocols for Computer
Networks]).

Steering Committee

Joe Sventek (Chair) University of Glasgow, UK
Gordon Blair Lancaster University, UK
Markus Endler PUC-Rio, Brazil
Rachid Guerraoui EPFL, Switzerland
Peter Honeyman CITI, University of Michigan, USA
Guy LeDuc University of Liege, Belgium
Jan de Meer IHP-Microelectronics, Germany
Doug Schmidt Vanderbilt University, USA

Sponsoring Institutes

IFIP (International Federation for Information Processing)
www.ifip.or.at

Advanced Computing Systems Association
www.usenix.org

INRIA Rhône-Alpes
www.inrialpes.fr

Organizing Committee

General Chair Jean-Bernard Stefani (INRIA, France)
Program Chair Gustavo Alonso (ETH Zürich, Switzerland)
Local Arrangements Chairs Sébastien Jean (UPMF, France)

Noel De Palma (INPG, France)
Workshops Chair Geoff Coulson (University of Lancaster, UK)
Doctoral Symposium Chairs Jacques Mossière (INPG, France)

Edward Curry (NUI Galway, Ireland)
Publicity Chair Gilles Muller (École des Mines de Nantes,

France)

VIII Organization

Program Committee

Christiana Amza University of Toronto, Canada
Roger Barga Microsoft Labs, USA
Alberto Bartoli Trieste University, Italy
Gordon Blair Lancaster University, UK
Christof Bornhoevd SAP Labs, USA
Roy Campbell Urbana-Champaign, USA
Fabio Casati HP Labs, USA
Geoff Coulson Lancaster University, UK
Peter Druschel Rice University, USA
Johann Eder University of Klagenfurt, Austria
Markus Endler PUC-Rio, Brazil
Dana Florescu BEA, USA
Rachid Guerraoui EPFL, Switzerland
Thomas Gschwind IBM, Switzerland
Monika Henzinger EPFL, Switzerland
Peter Honeyman CITI, University of Michigan, USA
Wei Hong Intel Berkeley, USA
Valérie Issarny INRIA, France
Arno Jacobsen University of Toronto, Canada
Bettina Kemme McGill University, Canada
Anne-Marie Kermarrec INRIA- Rennes, France
Fabio Kon IME/USP, Brazil
Donald Kossmann ETH, Zurich
Frank Leymann Stuttgart University, Germany
Cecilia Mascolo UCL, UK
Ken Moody University of Cambridge, UK
Elie Najm ENST, France
Marta Patino UPM, Spain
Evvagelia Pitoura University of Ioannina, Greece
Calton Pu Georgia Tech, USA
Krithi Ramamritahn IIT Bombay, India
Peter Steenkiste CMU, USA
Doug Schmidt Vanderbilt University, USA
Rick Schlichting ATT Research, USA
Stefan Tai IBM Watson, USA
Doug Terry Microsoft Research
Peter Trantafillou Patras University, Greece
Yu-Chee Tseng National Chiao Tung University, Taiwan
Steve Vinoski IONA, USA
Werner Vogels Amazon, USA

Organization IX

Referees

Ioannis Aekaterinidis
Jalal Al-Muhtadi
Trevor Armstrong
Khaled Barbaria
Irina Carabus
Renato Cerqueira
Agnes de La Chapelle
Jin Chen
Alex Cheung
Arlindo Flávio da Conceição
Isabelle Demeure
Michael Derntl
Catalin Drula
Cristian Duda
Vladimir Dyo
Joao Eduardo Ferreira
Kathrin Figl
Renato Fileto
Peter Fischer
Ayalvadi Ganesh
Alfredo Goldman
Paul Grace
Irfan Hamid
Guoli Li
Matt Medland
Shouang Hou
Ryan Huebsch
Danny Hughes
Jérôme Hugues
Jürgen Mangler
Irum Godil
Enping Tu
Taimur Javed
Ricardo Jiménez-Peris
Gueyoung Jung
José de Ribamar B. P. Junior
Mejdi Kaddour
Apu Kapadia
Alexander Keller
Marek Lehmann
Xin Li

Chih-Yu Lin
Jinshan Liu
Boon Thau Loo
Kaloian Manassiev
Eli Fidler
Vinod Mathusamy
Matt Medland
Giuliano Mega
Thomas A. Mikalsen
Mirco Musolesi
Nikos Ntarmos
Barry Porter
Anand Ranganathan
Sylvia Ratnasamy
Pierre-Guillaume Raverdy
Francisco Reverbel
Etienne Riviere
Ricardo C.A. da Rocha
Hana Rubinsztejn
Daniele Sacchetti
Vagner Sacramento
Marcos Vaz Salles
Geetanjali Sampemane
Erich Schikuta
Lenin Singaravelu
James Skene
Gokul Soundararajan
Mudhakar Srivatsa
Heinz Stockinger
Galen S. Swint
Ferda Tartanoglu
Helmut Wanek
Jinpeng Wei
Thomas Weishäupl
Eric Wohlstadter
Qinyi Wu
Stefanos Zachariadis
Apostolos Zarras
Jianjun Zhang
Jiaying Zhang
Ying Zhu

Table of Contents

Securing Publish/Subscribe for Multi-domain Systems
Jean Bacon, David Eyers, Ken Moody, Lauri Pesonen 1

ABACUS: A Distributed Middleware for Privacy Preserving Data
Sharing Across Private Data Warehouses

Fatih Emekci, Divyakant Agrawal, Amr El Abbadi 21

Causeway: Support for Controlling and Analyzing the Execution of
Multi-tier Applications

Anupam Chanda, Khaled Elmeleegy, Alan L. Cox,
Willy Zwaenepoel . 42

MINERVA∞: A Scalable Efficient Peer-to-Peer Search Engine
Sebastian Michel, Peter Triantafillou,
Gerhard Weikum . 60

An Optimal Overlay Topology for Routing Peer-to-Peer
Searches

Brian F. Cooper . 82

Combining Flexibility and Scalability in a Peer-to-Peer
Publish/Subscribe System

Chi Zhang, Arvind Krishnamurthy, Randolph Y. Wang,
Jaswinder Pal Singh . 102

WReX: A Scalable Middleware Architecture to Enable XML Caching
for Web-Services

Junichi Tatemura, Oliver Po, Arsany Sawires, Divyakant Agrawal,
K. Selçuk Candan . 124

Inflatable XML Processing
Rohit Fernandes, Mukund Raghavachari . 144

INDISS: Interoperable Discovery System for Networked Services
Yérom-David Bromberg, Valérie Issarny . 164

Dual-Quorum Replication for Edge Services
Lei Gao, Mike Dahlin, Jiandan Zheng, Lorenzo Alvisi,
Arun Iyengar . 184

XII Table of Contents

Frugal Event Dissemination in a Mobile Environment
Sébastien Baehni, Chirdeep Singh Chhabra,
Rachid Guerraoui . 205

RTZen: Highly Predictable, Real-Time Java Middleware for Distributed
and Embedded Systems

Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares,
Raymond Klefstad, Trevor Harmon . 225

Composite Subscriptions in Content-Based Publish/Subscribe
Systems

Guoli Li, Hans-Arno Jacobsen . 249

Scrivener: Providing Incentives in Cooperative Content Distribution
Systems

Animesh Nandi, Tsuen-Wan “Johnny” Ngan, Atul Singh,
Peter Druschel, Dan S. Wallach . 270

MEDYM: Match-Early with Dynamic Multicast for Content-Based
Publish-Subscribe Networks

Fengyun Cao, Jaswinder Pal Singh . 292

Generic Middleware Substrate Through Modelware
Charles Zhang, Dapeng Gao, Hans-Arno Jacobsen 314

Deep Middleware for the Divergent Grid
Paul Grace, Geoff Coulson, Gordon S. Blair,
Barry Porter . 334

Opportunistic Overlays: Efficient Content Delivery in Mobile Ad Hoc
Networks

Yuan Chen, Karsten Schwan . 354

I-RMI: Performance Isolation in Information Flow Applications
Mohamed Mansour, Karsten Schwan . 375

Matrix: Adaptive Middleware for Distributed Multiplayer Games
Rajesh Krishna Balan, Maria Ebling, Paul Castro,
Archan Misra . 390

Overlay Networks – Implementation by Specification
Stefan Behnel, Alejandro Buchmann . 401

Adaptive Load Diffusion for Stream Joins
Xiaohui Gu, Philip S. Yu . 411

Table of Contents XIII

Network Processing of Documents, for Documents, by Documents
Ichiro Satoh . 421

Fault-Tolerant Middleware and the Magical 1%
Tudor Dumitraş, Priya Narasimhan . 431

Author Index . 443

Securing Publish/Subscribe for
Multi-domain Systems

Jean Bacon, David Eyers, Ken Moody, and Lauri Pesonen

University of Cambridge Computer Laboratory,
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

firstname.lastname@cl.cam.ac.uk

Abstract. Two convincing paradigms have emerged for achieving scal-
ability in widely distributed systems: role-based, policy-driven control
of access to the system by applications and for system management pur-
poses; and publish/subscribe communication between loosely coupled
components. Publish/subscribe provides efficient support for mutually
anonymous, many-to-many communication between loosely coupled en-
tities. In this paper we focus on securing such a communication service
(1) by specifying and enforcing access control policy at the service API,
and (2) by enforcing the security and privacy aspects of these policies
within the service itself. We envisage independent but related admin-
istration domains that share a pub/sub communications infrastructure,
typical of public-sector systems. Roles are named within each domain
and role-related privileges for using the pub/sub service are specified.
Intra- and inter-domain, controlled interaction is supported by negoti-
ated policies. In a large-scale publish/subscribe service, domains are not
expected to trust all message brokers fully. Attribute encryption allows
a single publication to carry both confidential and public information
safely, even via untrusted message brokers across a vulnerable communi-
cations substrate. Our approach provides the application designer with
fine-grained expressiveness while, at the same time, improving system
fault tolerance by allowing a single shared messaging network to route
both public and confidential information. Early simulations show that
our approach reduces the overall traffic compared with a secure publish/
subscribe scheme that encrypts whole messages.

Keywords: publish/subscribe, loosely coupled applications, content-
based routing, role-based access control, attribute encryption, message
confidentiality, trust.

1 Introduction

We are concerned with how communication within and between large-scale, in-
dependent, widely distributed application domains should be supported and
managed. Two recently emerging paradigms for achieving scalability are asyn-
chronous, publish/subscribe-based communication and role-based access con-
trol (RBAC). In the EDSAC21 project we aim to extend and integrate these

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 1–20, 2005.
c© IFIP International Federation for Information Processing 2005

2 J. Bacon et al.

paradigms to achieve a scalable, secure middleware capable of supporting fine-
grained control of communication within and between domains. In this paper
we present our multi-domain architecture and an interim evaluation based on
simulation.

We define a domain to be an independently administered unit in which a
domain manager has, or may delegate, responsibility for naming and policy spec-
ification. The following motivating scenarios have in common a communication
infrastructure shared by independently administered domains, some of which are
strongly related and have similarly named roles. The bulk of the communication
is likely to be within a domain but there is also a clear need for inter-domain com-
munication. (1) A global company has branches (e.g. sales) in California, London
and Tokyo. Some (sales) data and events should be shared between branches.
(2) A number of county-level police domains need support for intra- and inter-
domain messages. (3) A national health service’s communication infrastructure
is shared by many independent hospitals, clinics, primary-care practices etc. (4)
An “active city” has independent public services such as police, fire, ambulance,
hospital, and utilities. As well as communicating with similar services nationally
(e.g. police with police) the different services need to cooperate, especially in
emergencies. Examples are common in the public sector, where systems have
been particularly susceptible to expensive failure or curtailment.

The concept of role is well established for providing scalable security ad-
ministration. Role-based access control (RBAC) separates the administration of
people, and their association with roles, from the control of privileges for the
use of services (including service-managed data). Service developers need only
be concerned with specifying access policy in terms of roles, and not with in-
dividual users. Here we focus on securing the communication service. Domain
managers, or their delegates, specify communication policy in terms of message
types and roles; that is, which roles may create, advertise, send and receive which
types of message. Inter-domain communication is achieved through negotiated
agreements, expressed as access control policy, on which role(s) of one domain
may receive (which attributes of) which types of message of another.

Publish/subscribe [1] is emerging as an appropriate communication paradigm
for large-scale systems. It allows loose coupling between mutually anonymous
components and supports many-to-many communication. In this paper we fo-
cus on securing publish/subscribe within and between domains. For consistency
with other publish/subscribe systems we use event as synonymous with the
more general term message. The notion of role is ideally suited to a multicast
communication style. For example, the Cambridge police domain may define
a role sergeant-on-duty and message topics such as traffic-accident (attribute-
list). Authorisation policy will indicate which roles can advertise, subscribe to
and publish each topic. Inter-domain communication is supported, after human
negotiation, by indicating in policy that a specified role of some domain may
subscribe to certain (attributes of) topics published by some other domain.

Authentication into roles must be securely enforced to control the use of all
protected services. We have addressed this in earlier papers. For the communi-

Securing Publish/Subscribe for Multi-domain Systems 3

cation service, RBAC policy indicates the visibility (to roles, intra- and inter-
domain) of specified attributes of message types. The fact that advertisement
is required before messages can be published, and both are RBAC-controlled,
prevents the spam that pervades email communication between humans. With-
out such control denial-of-service through publication or subscription flooding
could degrade large-scale inter-software communication in the same way that it
consumes resources in email management. In our system a spammer could only
be an authorised, authenticated member of a role and therefore could be held
accountable.

If the network and message brokers could be guaranteed 100% secure and
trustworthy, then RBAC would achieve precisely the visibility specified by policy.
In practice, we have to protect confidential data on the wire and in the brokers
by means of encryption. We offer fine-grained security, in that message attributes
are encrypted selectively, with key management transparent to the client level.
We assume that some form of message encryption is always needed, since nodes
of a communication service are not likely to be trusted universally with all data
and the network is vulnerable to listeners. Encryption overhead per se does not
need to be justified, and our evaluation indicates that our approach incurs less
overhead than using whole-message encryption.

The contribution of this paper is to show how role-based access control, to-
gether with fine-grained data encryption and the associated key management,
can be integrated with publish/subscribe based communication to create a secure
middleware suitable for a wide range of large-scale, widely distributed applica-
tion domains. First, we set the scene by discussing related research on secured
publish/subscribe in Section 2. Section 3 gives background in publish/subscribe
systems and role-based access control, emphasising, without loss of generality,
the systems we have used for our implementation and evaluation, Hermes and
OASIS. We then outline how RBAC and publish/subscribe are integrated. Sec-
tion 4 presents our multi-domain architecture in more detail. Section 5 uses a
multi-domain, networked city as a case study and describes the scenarios evalu-
ated in Section 6. Section 7 presents our conclusions in the context of our ongoing
and future research.

2 Related Work

To our knowledge, the architecture we outlined in [2] was the first to consider
access control for a publish/subscribe service. There, we took a typical private-
sector application, a newsfeed service, comprising a single naming and protection
domain. We did not consider public-sector, multi-domain examples, where it
becomes natural for a message-broker substrate to be shared, and where different
levels of trust in brokers must be accommodated. This work did not address data
encryption and key management.

Some authors explicitly exclude security as being orthogonal to the design
issues of publish/subscribe [3]. Others have limited their work to the communi-
cations level [4]. Others have discussed how publish/subscribe systems might be

4 J. Bacon et al.

secured but without explicit design details and evaluation. Wang et al. present
a number of considerations for publish/subscribe access control in [5] but with-
out proposing an architecture to solve the problems they raise. Similarly, in [6],
Miklós provides semantics defining a security ordering based on event attribute
values, but does not describe a practical test prototype. The approach of Miklós
is likely to be too restrictive in practice; it will not scale well due to the detailed
specifications required to define event security classes and how they interact.

Opyrchal and Prakash concentrate on the separate problem of providing con-
fidentiality for events during the last hop from the local broker to the event sub-
scriber in an efficient manner, with as few encryptions as possible [7]. Limiting
the number of last hop encryptions is valuable if the local brokers have poor re-
sources. We assume that the local brokers are powerful enough to deliver events
to their subscribers over TLS connections [8]. While more resource-intensive,
TLS provides us with strong client and server-side authentication and key man-
agement in addition to data encryption.

In sentient and ubiquitous computing environments privacy should be a ma-
jor concern, for example, when individuals can be recognised automatically and
tracked. This issue is not often considered. An exception is the Gaia project
where the approach is to guarantee anonymity [9]. [10] is also concerned with
anonymity in location systems. Publish/subscribe is based on mutual anonymity
at the client level. Parametrised RBAC gives the option of anonymity or iden-
tification. However, principals are not anonymous to the system when authenti-
cated into roles and the privileges of misbehaving principals can be withdrawn
promptly. Attribute-level policy expression controls the selective propagation of
identity attributes at a fine grain.

3 Background and Integration

Although our approach is generally applicable, our design and implementation
are based on Hermes publish/subscribe and OASIS RBAC. This section provides
a brief overview of publish/subscribe systems and role-based access control, de-
scribing the features specific to Hermes and OASIS. We then show how a publish/
subscribe system can be secured by RBAC.

3.1 Publish/Subscribe Systems

Large-scale, publish/subscribe messaging technology typically comprises a net-
work of brokers, which provide a communication service, and lightweight clients,
which use the service to advertise, subscribe to and publish messages [11,12].
Such systems are subject to failures of nodes and links, and their components
may join and leave dynamically. A communication service must be robust under
these conditions, fault-tolerant and dynamically reconfigurable. For this reason
the message brokers are often built above a peer-to-peer overlay network [13],
since peer-to-peer naming and protocols provide the necessary robustness.

Publish/subscribe systems are classified as type/topic- or content/attribute-
based. Hermes [13,14] is a distributed, content-based publish/subscribe archi-
tecture with an integrated programming model and strong message typing. It is

Securing Publish/Subscribe for Multi-domain Systems 5

built on a peer-to-peer routing substrate to provide scalable event dissemination
and fault tolerance.

A Hermes system consists of two kinds of component: event brokers and
event clients, the latter being publishers and subscribers. Event brokers form the
application-level overlay network that performs event propagation by means of
a content-based routing algorithm. Event clients publish, or subscribe to, events
in the system. An event client has to maintain a connection to a local event
broker, which then becomes publisher-hosting, subscriber-hosting, or both. An
event broker without connected clients is called an intermediate broker.

Hermes supports event typing: every published event (or publication) in Her-
mes is an instance of an event type. An event type has an event type owner, an
event type name and a list of typed event attributes so that, at runtime, publica-
tions and subscriptions can be type-checked by the system. Hermes event types
are organised into inheritance hierarchies, but our work does not depend on this.
We show later how inheritance can be used within domains when it is available.

Each event type defined within a domain is registered by its owner via a
local event broker. This causes encryption status and keys to be set up within
the domain and a rendezvous node to be selected for peer-to-peer routing. Before
a publisher can publish an event instance, it must submit an advertisement to its
local event broker, indicating the event type that it wishes to publish. Subscribers
express their interest in the form of subscriptions that specify the desired event
type and a conjunction of (content-based) filter expressions over the attributes
of this event type.

The rendezvous node for an event type is selected by hashing the type name
to a broker identifier – an operation that is supported by the peer-to-peer rout-
ing substrate [15]. Advertisements and subscriptions are routed towards the ren-
dezvous node, and brokers along the path set up filtering state for them.

Most publish/subscribe systems, including Hermes, optimise content-based
routing of events with a subscription coverage relation, that states which sub-
scriptions are subsumed by others [11]. This allows brokers to reduce the number
of events sent through the system by enabling them to filter non-matching events
as close as possible to the publisher; these filters become increasingly specific as
events approach subscribers.

For reliability reasons, rendezvous nodes are replicated for each event type
(for example, broker instances can be selected by concatenating a salt value to
the type name before hashing [16]). In Hermes, a rendezvous node keeps an au-
thoritative copy of the event type definition, which is cached at other brokers
throughout the system for type-checking advertisements, subscriptions, and pub-
lications. In our current work, authoritative, domain-specific type information is
stored within the originating domain and rendezvous nodes hold a copy.

3.2 Role-Based Access Control

Role-Based Access Control (RBAC) [17] is an established technique for sim-
plifying scalable security administration by introducing roles as an indirection
between principals (i.e. users and their agents) and privileges. Privileges, such

6 J. Bacon et al.

as the right to use a service or to access an object managed by a service, are as-
signed to roles. Separately, principals are associated with roles. The motivation
is that users join, leave and change role in an organisation frequently, and the
policy of services is independent of such changes.

The Open Architecture for Secure Interworking Services (OASIS) [18,19],
provides a comprehensive rule-based means to check that users can only acquire
the privileges that authorise them to use services by activating appropriate roles.
A role activation policy comprises a set of rules, where a role activation rule for
a role r takes the form

r1, .., rn, a1, .., am, e1, .., el � r

where ri are prerequisite roles, ai are appointment certificates (most often persis-
tent credentials) and ei are environmental constraints. The latter allow restric-
tions to be imposed on when and where roles can be activated (and privileges
exercised), for example at restricted times or from restricted computers. Any
predicate that must remain true for the principal to remain active in the role is
tagged as a role membership condition. Such predicates are monitored, and their
violation triggers revocation of the role and related privileges from the principal.
An authorisation rule for some privilege p takes the form

r, e1, .., el � p

An authorisation policy comprises a set of such rules. OASIS has no negative
rules, and satisfying any one rule indicates success.

OASIS roles and rules are parametrised. This allows fine-grained policy re-
quirements to be expressed and enforced, such as exclusion of individuals and
relationships between them, for example treating-doctor(doctor-ID, patient-ID).
Without parametrisation it becomes necessary to define an unmanageably large
number of roles for an organisation of any size.

3.3 Integration

In OASIS RBAC, the authorisation policy for any service specifies how it can
be used in terms of roles and environmental constraints. Here, we use OASIS to
protect the publish/subscribe service in this way at a local broker. The service’s
methods include define(message-type), advertise(message-type), publish(message-
type, attribute-values) and subscribe(message-type, filter-expression-on-attribute-
values). OASIS policy indicates, for each method, the role credentials, each with
associated environmental constraints, that authorise invocation. define is used to
register a message type with the service and specify its security requirements at
the granularity of attributes. On advertise, publish and subscribe these require-
ments are enforced. We can therefore support secure publish/subscribe within a
domain in which roles are named, activated and administered.

A domain-structured OASIS system is engineered with a per-domain, secure
OASIS server, as described in [18], and a per-domain policy store containing
all the role activation and service-specific authorisation policies. This avoids the
need for small services to perform authentication and secure role activation. The
domain’s OASIS server carries out all per-domain role activation and monitors

Securing Publish/Subscribe for Multi-domain Systems 7

the role membership rule conditions while the roles are active. This optimisation
concentrates role dependency maintenance within a single server and provides
a single, per-domain, secure service for managing inter-domain authorisation
policy specification and enforcement.

4 A Multi-domain Architecture

In this section we present an architecture for an RBAC-secured, multi-domain
publish/subscribe system based on a shared event-broker network. We assume
that domains are given unique names within the system as a whole and that
roles are named and managed within a domain. We assume that each domain
provides a management interface through which role activation policies and ser-
vices’ authorisation policies can be specified and maintained.

A group of domains may have a parent domain from which an initial set of
role names and policies is obtained. For example, county police domains may
agree to use a nationally defined set of police roles; health service domains may
start from an initial national role-set. The domain management interface al-
lows local additions and updates, for example, when government changes na-
tional policy. Parametrised roles allow domain-specific parameters, for example
sergeant(Cambridgeshire). This avoids the role explosion when non-parametrised
RBAC is used on a large scale.

4.1 The Event-Broker Infrastructure

RBAC enforces authorisation policy at the level of clients of the publish/subscribe
service. At the service level we have to protect confidential data on the wire and
in the broker network. Publisher-hosting brokers must encrypt messages to se-
cure confidential information, first checking against policy that the publisher is
authorised to send the attribute values. Subscriber-hosting brokers must decrypt
messages and deliver to the subscriber the attributes that it is allowed by policy
to read. These policies are specified when the message type is defined.

We distinguish between trusted and untrusted brokers. For example, a na-
tional police service may comprise some tens of county-level domains, deploying
a (sub)network of brokers, trusted by all police domains. Statically, these bro-
kers are trusted by police to encrypt and decrypt police data. Dynamically, under
monitoring, some broker may come under suspicion and have trust withdrawn
from it. The police domains may choose to route data through the untrusted bro-
kers of other services, for example in rural regions. In general, police domains
may interoperate with other emergency service domains and with the media or
public via parts of the broker network that are untrusted.

A shared broker infrastructure may be built up when public sector domains
agree to interoperate. Alternatively, a broker infrastructure may be provided
commercially or as a public service, and independent, distributed applications
may use it to communicate intra- or inter-application. In both scenarios the
domains/applications will have different levels of trust in the various brokers.

8 J. Bacon et al.

A shared event-broker infrastructure offers both direct and indirect benefits:
management overheads are reduced by operating only a single broker network in-
stead of a separate one for each domain, with federation via gateways (as in [20]).
Untrusted brokers can augment trusted brokers’ routing abilities, ensuring better
resilience to failures. These direct benefits are particularly significant when the
network has many domains, and/or the domains are small. The indirect benefits
of using a shared network are equally important: networks of trust can be estab-
lished and reconfigured more easily, since the privileges of brokers and clients
are controlled dynamically within a homogeneous access control scheme. Also,
encrypting attributes separately allows a single event to contain both public and
private information.

Key Management for Trust Groups. A broker network comprising multiple
trust groups must have a key manager for each group. Some domains’ OASIS
servers will maintain key-groups of trusted brokers and distribute keys to them,
transparently to the clients of the publish/subscribe service. A broker must be
provided with credentials that allow it to join a trust group. Intermediate trusted
brokers decrypt messages to achieve efficient content-based routing. Untrusted
brokers participate in routing at the message, rather than attribute, level; details
are given below. When a broker becomes untrusted, new keys must be distributed
to the remaining group members. We do not address malicious brokers with
byzantine behaviour that may corrupt routing state.

In Fig. 1 the brokers are annotated with the encryption keys to which they
have access; P for the police key, F for the fire key. The broker to which the
reporter is attached can deliver only unrestricted public data.

Suppose inter-domain communication is negotiated and an authorised sub-
scription is made from an external domain that has brokers in a different trust
group. The police and fire services of Fig. 1 are an example. Such a negotiated
agreement, that events of one domain may be subscribed to from another, im-
plies that the local brokers of publishers and subscribers are trusted to encrypt
and decrypt the authorised attributes, and have the appropriate keys.

P

F

P,F

F

F

P P

X broker trusted with key for X

publisher trusted for X

subscriber trusted for X

restriction on X

police-
officer1

police-
officer2

police-
duty-officer

reporter

fire-
duty-

officer

R

R

R

X

X

P

P,F

P

F

Fig. 1. Illustration of Secure Publish/Subscribe

Securing Publish/Subscribe for Multi-domain Systems 9

4.2 Policy

Policy and enforcement mechanisms must be in place to support:

(i) Secure connection by a new broker in order to become part of a group of
trusted brokers.
(ii) Secure connection by a client to any trusted local broker.
(iii) Secure propagation of messages through the broker network with confiden-
tiality of attributes enforced as specified by policy.
(iv) RBAC-controlled use of the publish/subscribe service by clients.

For (i) and (ii), publishers, subscribers and brokers hold public key pairs,
bound to identity certificates (e.g. X.509 [21]), to connect to their local OASIS
service. Successful authentication will allow brokers to become part of a trusted
group for key management purposes, and will allow clients to proceed to re-
quest activation of the roles that authorise advertisements, subscriptions and
publications.

The authentication key pairs are also used in creating client and server-side
authenticated TLS connections between nodes. This prevents simple network
sniffing attacks by outsiders, thus helping to achieve data confidentiality and
integrity, contributing to (iii). For (iii) the key management service controls the
propagation of attribute decryption keys to trusted brokers.

(iv) was introduced in Section 3. The authorisation policy for the define(type)
operation specifies the credentials and constraints required for registering new
message types with the publish/subscribe service in a domain, and subsequently
for managing the registered types. It controls the ability to modify and remove
existing types and, in Hermes, to create sub-types. When a parent domain exists
it is likely that an initial set of message types will be used by all child domains,
similar to the use of nationally agreed role-names within related domains. A type-
specific read-write policy, if present, augments and refines the advertisement and
subscription policies. It defines, at the attribute level, the roles that can read
and/or write the various attributes of a type and can also restrict access by
attribute value, see below.

An advertisement policy defines which roles are allowed to advertise, and
then to publish, events of each given type. Environmental constraints may also
be included, see Section 3. Their actions may be subject to further restriction,
see below, as indicated by the type-specific read-write policy. A subscription pol-
icy defines the authorised receiver roles and conditions in a similar fashion. If
required, individual clients can be identified using role parameters.

Restriction. A publisher or subscriber role may be authorised by the pub-
lication or subscription policies, but restricted by the type-specific read-write
policy to a subset of the attributes of some event type that it requests, and/or
for a subset of the values of certain attributes. Rather than reject the request
outright, the local broker may allow the request after applying a restriction.

In the case of a publisher, any attribute value whose read-write policy does
not include write access is ignored. A simple approach is to omit the attribute

10 J. Bacon et al.

from the marshalled data, and supply a null value to subscribers. With a type
hierarchy it may be possible to restrict publications to a super-type of the re-
quested type, if advertisement policy allows that. In the case of a subscriber, the
natural restriction is to suppress the attribute value whenever the subscriber
does not have read access to an attribute under read-write policy.

Authorisation to advertise, publish or subscribe may also depend on condi-
tions such as event type or content, date, time or frequency of publication. Thus
a publisher may be restricted to publish certain events between 9am and 5pm.
OASIS environmental constraints can specify and enforce some of these condi-
tions, and publish/subscribe filtering may implement some forms of restriction
by attribute value. In general, specific predicates must be computed by the local
broker of the client to which the restrictions apply, see Section 5.

4.3 Attribute Encryption

Real-world occurrences often include confidential data that should be accessible
only to authorised subjects, e.g. the press should know about a car accident on
a highway, but the names of the victims should stay confidential to the police
and health services. This is achieved by RBAC policy and mechanism at appli-
cation level, and by encrypting attributes (in publications) and filter expressions
(in subscriptions) with symmetric keys at the message service level, as outlined
above. Although our approach introduces run-time overhead due to the cryp-
tographic operations on attributes of publications and subscriptions, it allows
the same publication to be disseminated to subscribers with different privileges,
thus using the event dissemination tree efficiently. Section 6 shows that attribute
encryption can decrease the overall cryptographic overheads.

Event Types with Attribute Encryption in Hermes. To indicate at-
tribute encryption within the Hermes type system, we annotate the event type
hierarchy with the keys that are used to encrypt specific attributes, reflecting
defined policy. Local brokers of publishers and subscribers implement this secu-
rity policy; clients are not concerned with encryption. Each attribute of an event
type is either public, indicated by the empty key (0), or it must be encrypted
using one or more keys. Fig. 2 shows annotated type hierarchies for Police and
Fire Service domains. The location attribute in a PoliceEvent may be en-
crypted using both police and fire keys. This would result in two instances of
the same attribute in a single event, each instance encrypted with a different
key.

The standard inheritance sub-typing relation between event types must still
hold: a subtype has to be more specific than its parent type. As a result, encryp-
tion keys can only be removed from inherited attributes but not added. This is
illustrated in Fig. 2 with the location attribute, whose access becomes more
restrictive as new event types are derived.

Coverage Relations with Encrypted Filters. In order to take advantage of
subscription coverage (described in Section 3), we extend this relation to handle
subscriptions that refer to encrypted attributes.

Securing Publish/Subscribe for Multi-domain Systems 11

FireEvent
 buildingType (0)
 enginesPresent (fire)

FireAlarmEvent
 detectorType (0)

PoliceEvent
 location (police, fire)
 policeCode (police)
 source (police)

TrafficAccidentEvent
 roadType (0)
 casualties (police)
 specialHazard (police, fire)

BurglaryEvent
 location (police)
 zone (0)

Police
Domain

Fire Service
Domain

isa

isa isa

Fig. 2. Per-Domain Event Type Hierarchies with Attribute Encryption

A filter expression encrypted under a particular key is covered by a previous
filter expression if this previous filter is the same or more general, and is encrypted
under the same key (including the case where neither expression is encrypted). A
subscription is then covered by another subscription if all its filter expressions are
covered. More formally, if s1 and s2 are two subscriptions with a conjunction of
filter expressions f i and gj encrypted under the keys ki and lj, respectively,

s1 = f1
k1

∧ f2
k2

∧ . . . ∧ fn
kn

(1)

s2 = g1
l1 ∧ g2

l2 ∧ . . . ∧ gm
lm , (2)

then s1 covers (�) s2 is defined as follows:

s1 � s2 ⇐⇒ ∀i∃j. f i
ki

� gj
lj

∧ ki = lj (3)

We assume above that each subscription includes empty filters encrypted with
all available keys by default.

The coverage relations between the example subscriptions s1 to s4 are shown
in Fig. 3. Subscription s1 is the most general because it does not specify any
filter expressions. It covers the second subscription s2, which specifies a filter
f1 over the location attribute encrypted under the police key or the fire key.
Subscribers can only provide meaningful filters for encrypted attributes if they
have read access, and in addition the broker handling the s2 subscription must

s1:PoliceEvent

s4:BurglaryEvent
 f1(location (police, fire))

s2:PoliceEvent
 f1(location (police, fire))

covers

s3:PoliceEvent
 f1(location (police))

covers covers

Fig. 3. Subscription Coverage with Attribute Encryption

12 J. Bacon et al.

be trusted with both the police and fire keys. The filter expression in s3 does not
match events with location attributes encrypted under the fire key and there-
fore s2 covers s3 strictly. According to the event type hierarchy BurglaryEvent
is a subtype of PoliceEvent, hence subscription s4 is also covered by s2, since
their filter expressions are the same.

Encryption Keys. We use symmetric keys to encrypt and decrypt attribute
values. These keys are distributed only to the brokers that are trusted with the
attribute values. The system will never deliver these keys to clients. This reduces
the number of nodes that are trusted with sensitive keys, and that take part in
key management protocols. Note that this does not affect security since local
brokers encrypt and decrypt attribute values on behalf of connected clients, and
deliver events to clients over secure links.

To support cryptographic properties such as key freshness, and forward and
backward secrecy [22], the system requires key management service(s). The most
suitable key management strategy depends on the broker-network architecture.
For EDSAC21 we assume a stable configuration with static, multi-hop, inter-
broker connections and are investigating a tree-based approach [22]. However,
the dynamic nature of a peer-to-peer routing layer presents special problems,
and we are also evaluating an alternative, ad-hoc network based approach [23].

Efficient group key management [24] is not the focus of this paper. Overall,
the efficiency of key distribution will have little impact on performance, since
symmetric keys are distributed only to brokers, as opposed to publishers and sub-
scribers. Relatively few entities are involved in key dissemination, and changes
will be infrequent. However, correct key management is essential for the security
of the system.

4.4 Security Overheads

When compared with basic publish/subscribe, our secured publish/subscribe in-
troduces three types of processing overhead: one-time only, per event, and key
management related. (1) One-time only overheads include node authentication
and authorisation when new nodes connect to the network, and subscription-
filter encryptions. (2) Per event overheads include those caused by encrypting
and decrypting attributes, and applying restriction predicates at local brokers.
One encryption is required for each instance of a secure attribute in a published
event (see Section 4.3), using the appropriate symmetric key; this happens only
once at the source, and intermediate brokers can pass the encrypted event to
the next node directly. Decryption is required on delivery, and possibly at each
routing step, too. The event dissemination tree structure ensures that each new
subscription adds no more than two decryptions: once en route at a filtering bro-
ker, and once on delivery at the subscriber’s local broker. (3) Finally, the cost
of key management depends on the frequency of key change and the dissemina-
tion method, as discussed above. This is likely to occur relatively infrequently,
as clients never have direct access to encryption keys, and key management is
handled at broker-level only.

Securing Publish/Subscribe for Multi-domain Systems 13

In addition to processing overheads, attribute encryption increases the size
of events in two ways: (1) a single attribute value encrypted with multiple keys
results in multiple instances of that value, each encrypted with a different key;
(2) encryption algorithm mechanisms dictate that the encrypted data must be at
least of some minimum length, depending on the encryption algorithm. Common
minimum lengths would be 64 bits and 128 bits. Thus, a single 8 bit attribute
value encrypted with three keys grows in size to 192 bits because of padding and
multiple attribute instances. This might be avoided by using a stream cipher,
which operates on a stream of data one bit at a time, rather than a block cipher.

5 Case Study: Public Services Within a City

We now illustrate our architecture for a city in which the publish/subscribe
systems of different emergency services interoperate securely and efficiently. We
use a break-in to a university building as an example. Fig. 4 shows the principals,
brokers and messages discussed below. We assume that equipment failure has left
the police network partititioned, and that broker b1 is connected only through
the fire network.

1) We focus on two police officers on night shift; part of their duty is to
respond to notifications of burglaries. We assume that the event-type Bur-
glaryEvent is already advertised when the officers come on duty. This means
that a rendezvous node b5 is assigned for the type and subscriptions can be
made. We shall see that further advertisements, and subsequent publications,
can be made as burglaries are detected in different areas.

We assume that both officers authenticate with their local OASIS service on
coming on duty and, assuming that their credentials are valid, acquire the role
with associated privilege to send subscription messages: s1 and s2 respectively.

P P,F

P PX broker trusted with key for X

publisher trusted for X

subscriber trusted for X

restriction on X

police-
officer1

police-
officer2

police-
duty-officer

R

R

X

X

P

P,F

P
F

e

eee

a

s1s1s1

e

s2

s2

s2 a a
e

b1 b2 b3 b4

b5 b6

BurglaryEvent

rendezvous node

Fig. 4. Notifying two police officers of a BurglaryEvent

14 J. Bacon et al.

Officer 1 is a probationary officer, who moves between different parts of the
city. Officer 2 is located in West Cambridge. Suppose that at the start of her shift
officer 2 subscribes to BurglaryEvent(location = ‘West Cambridge’). Since
this subscription requires filtering on the location attribute, and this attribute
is encrypted with the police key (recall the event type hierarchy shown in Fig. 2),
the officer knows that her local broker must be trusted with the police key, i.e.
a P broker.

Officer 1 tries to subscribe to all burglary events with a police code less than
4, BurglaryEvent(polCode < 4), but the request is only partially granted.
Instead, the subscription is restricted, as described in Section 4, to deliver only
those events that occur in the officer’s current location. This restriction, which
is based on a dynamically checked environmental constraint, is shown in Fig. 4,
attached to his broker connection.

2) Any broker through which s1 and/or s2 travel (towards their rendezvous
node and then along the reverse path of advertisements) will update its internal
routing state appropriately. Note that our security architecture augments stan-
dard Hermes subscription setup behaviour when we reach broker b2. Whilst s1
travels through this broker, the broker is not part of the police network, and
thus will not have access to the police key. Therefore this broker will be forced
to degrade routing efficiency by ignoring police officer 1’s filter on the polCode
attribute, which it cannot decrypt, and routing all events forward.

3) We show a duty-officer at a police station who must notify police of-
ficers of reported burglaries. Like officers 1 and 2, the duty-officer authenti-
cates himself with his local OASIS service, and acquires privileges to advertise
BurglaryEvents. Again, his local broker needs access to the police key. The con-
sequent advertisement message is shown as a in Fig. 4. This step could occur in
parallel with a subscription, see Step 1. If a broker notices that an existing sub-
scription matches a new advertisement, it will resend the subscription message
along the reverse path of the new advertisement towards the publisher.

All this occurs at the start of the officers’ sessions, a long time (in publish/
subscribe terms) before the actual burglary occurs.

4) Now suppose our example burglary is reported to the duty-officer. He
publishes an event e, in this case:

BurglaryEvent(location = ‘West Cambridge’, premises =
‘William Gates Building’, polCode = 3, ..., zone = ‘university’).

5) The event e leaves the duty-officer’s local broker, through the publish/
subscribe network, under control of the Hermes routing algorithm. Note that
en route, each broker decodes and filters the event in so far as it can. In this
particular case, only P brokers will be able to filter based on the location
and/or polCode attributes, but all brokers will be able to filter on the zone
attribute (see Fig. 2).

6) As e travels along the reverse path of the subscriptions, it passes through
broker b3, which is police officer 2’s local broker. The broker uses the police key

Securing Publish/Subscribe for Multi-domain Systems 15

to decrypt the location and polCode attributes before delivering the event to
officer 2 over the secure ‘final hop’ set up as described in Step 1 above.

7) In order to reach police officer 1, e needs to be routed through b2. While
this is not the most desirable mode of operation, since the event passes through
a broker that does not have access to the police key, it is crucially better than
the situation in which the police network remains partitioned.

As mentioned in Step 2, since broker b2 cannot decrypt police encrypted
attributes, it cannot apply filtering on fields such as location. Thus for routing
e, the event appears as BurglaryEvent(location = ?, polCode = ?, ...,
zone = ‘university’), and it is passed on to b1 regardless of its location
value.

8) Finally, the local broker b1 of police officer 1, which is trusted with the
police key, will receive e from b2, and decrypt the location attribute. It will
then apply the restriction, checking whether officer 1 is currently in West Cam-
bridge. If so, b1 will decrypt the entire event and pass it over the secure ‘final
hop’ to officer 1. We have assumed for simplicity that although officer 1 is mobile
he remains connected to the same local broker. The alternative is that he creates
a new OASIS session whenever he needs to connect to a different broker.

6 Evaluation

The EDSAC21 project is substantial and still at an early stage. We have carried
out the following simulation studies to validate the approach. Fig. 5 and Fig. 6
compare the performance of our attribute encryption implementation with the
more common approach (such as [4]) that encrypts multiple instances of entire
events with each of the relevant keys. Each figure shows the average result of
three simulations for each data point.

These experiments all used the Hermes publish/subscribe system for message
routing, running over a simulated network topology of 1000 IP routers (organised

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Number of Subscribers (ns)

Total messages
S0
S1
S2

Fig. 5. Total number of messages with attribute encryption

16 J. Bacon et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Number of Subscribers (ns)

Total messages
S0
S1
S2

Fig. 6. Total number of messages without attribute encryption

into ten autonomous subnetworks), with fifty randomly chosen event brokers. In
this overlay network we randomly introduced ten event publishers, who, in each
iteration of the test, published a total number of 1000 events.

We used the case study scenario of Section 5 as a basis for the simulation,
generating events of type PoliceEvent. There were three groups of subscribers:
(1) public information services (S0) that filtered only on a single unencrypted
attribute (severity); (2) police officers (S1) who filtered on a single police en-
crypted attribute (location); (3) police trainers (S2) who held both police and
policeT raining keys and filtered on isDrill and location. For the attribute en-
crypted case, publishers encrypted the individual message attributes as shown
in Fig. 2. The implementation that encrypts whole events had to send up to
three instances of each event, one for each of the independent security domains
covered by a message.

The events were delivered to the subscribers, whose number (ns) we grad-
ually increased from 25 to 2000 in steps of 25. Subscribers set random filters
on event attribute values. Five per cent of all subscriptions were S2 subscrip-
tions that filtered on two encrypted attributes, one encrypted with the police
key, and the other with the policeT raining key. Thirty five per cent of all
subscriptions were S1 subscriptions that filtered on one attribute encrypted
with the police key, while the rest were S0 subscriptions filtering on a single
unencrypted attribute. Note that subscriptions with filtering on encrypted at-
tributes may also include filters on unencrypted attributes. The total num-
ber of events sent within the broker network is also shown in the graphs, as
Total messages = S0 + S1 + S2.

Our performance results show that with 1000 subscribers, only about 39300
messages needed to be sent when using attribute encryption, while 51400 were
sent when events were encrypted atomically with one key at a time – a 24%
saving in bandwidth. For 2000 subscribers, the savings had increased further
to 27%.

Securing Publish/Subscribe for Multi-domain Systems 17

As the number of subscribers increases, the network with attribute encryption
eventually becomes saturated by complex filtering; this is because it becomes
increasingly likely that there is a local S1 or S2 subscriber at each broker for any
given event. Thus the number of events that need to be decrypted (S1 and S2)
grows in Fig. 5, initially because of new event dissemination routes, but later
also because events previously counted under S0 now need at least one attribute
decrypted; they contribute instead to S1 or S2, which explains the eventual fall-off
of the S0 tally as the number of subscribers increases. However, even with 2000
subscribers there were over 11000 event hops for which no attribute decryptions
were needed.

Attribute encryption slightly increases the number of times that events need to
be decrypted for filtering. However, this is largely compensated by the fact that we
then need fewer point-to-point encryptions and decryptions within a TLS connec-
tion (total decryptions = 2×S2+S1). For 2000 subscribers, whole event encryption
needed about 87400 decryptions, while attribute encryption required a grand to-
tal of approximately 88500, – an increase of 1.2%. However, for a less saturated
network with 1000 subscriptions, overall encryptions decreased by 2.7%.

Note that generally the overall load on event brokers is decreased still further
in our approach, since less data needs to be decrypted at each filtering decryption
step (a few attributes, as opposed to the whole event).

7 Conclusions and Future Work

Security is a crucial concern for the development of scalable messaging systems,
particularly those for the public sector where data is often highly confidential and
privacy must be guaranteed. Publish/Subscribe communication is recognised as
appropriate for large-scale systems, yet most research on it excludes security.
This paper presents our architecture for a secure publish/subscribe middleware.
Our system builds on the performance and fault-tolerance of publish/subscribe
messaging, and augments it with scalable security administration based on de-
centralised Role-Based Access Control. We assume a multi-domain architecture
for administration of roles, message types and policies.

Although our implementation uses Hermes and OASIS, our design is appli-
cable to publish/subscribe systems in general. To secure a topic-based publish/
subscribe system, whole event encryption would be used, with given events being
sent multiple times, encrypted under different keys. Our simulation takes this ap-
proach as a basis for comparison. To secure a content-based publish/subscribe
system, whole event encryption could be used, but we have shown that it is
practicable to encrypt the different attributes of an event separately.

Using an “Active City” example, we show how various public-sector, emer-
gency service notifications can be captured in an event type hierarchy, and how
access control and attribute encryption can facilitate secure and efficient com-
munication. If a type hierarchy is not available, our design equally well supports
separate services using a shared publish/subscribe system with a flat message
type-space.

18 J. Bacon et al.

We have simulated attribute encryption and whole-event encryption for a
scenario based on the case study in Section 5. We show that our approach
reduces the number of events sent in the system, as well as the processing
required for decryptions performed by brokers. Efficiency was not the main
focus of our design; rather, we were concerned to demonstrate that the ex-
pressiveness of fine-grained access control need not incur undue implementation
overhead.

Current and Future Work. This research is part of a project, EDSAC21,
to provide secure middleware for large-scale, widely distributed applications.
The system mechanisms themselves are used to maintain role membership rules
and push changes of policy, thus facilitating immediate response to changes in
security predicates.

In [25] we present current work on ensuring the system-wide uniqueness and
integrity of message type names and versions, and [26] discusses how a bro-
ker network is assembled securely and maintained. We are currently integrat-
ing active databases and publish/subscribe. Database message types are defined
as described in Section 4.2. Database instances can then advertise the events
they are prepared to publish, and subscribers use the standard subscription
mechanism [27].

We are also working on how to support communication patterns other than
the anonymous multicast of publish/subscribe, while retaining the efficiency and
resilience of a broker network. Natural requirements are for an individual member
of a role to be selected on publication, and for any recipient to be able to reply
to a publication, either anonymously (as in voting) or identified.

We shall continue to assume stationary rather than mobile brokers. Since
OASIS is session-based we have so far assumed that mobile clients will remain
connected to a single broker during their period of subscription. We envisage
natural extensions that allow detached operation while a subscription persists,
where a local broker (or a separate service) will buffer messages on behalf of
detached clients. Future work is to investigate how best to support client mobility
during a period of subscription.

In this paper we have demonstrated the synergy between roles and publish/
subscribe communication within and between domains, and have shown the fea-
sibility of expressing and enforcing fine-grained security policy.

Acknowledgements

We acknowledge the contributions of Peter Pietzuch, Brian Shand and András
Belokosztolszki. The EDSAC21 project builds on their research as graduate stu-
dents and they were involved in the design of the architecture presented here.
EPSRC GR/T28164 supports Lauri Pesonen and EPSRC GR/S94919 supports
David Eyers.

Securing Publish/Subscribe for Multi-domain Systems 19

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35 (2003) 114–131

2. Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R., Bacon, J.M., Moody, K.: Role-
based access control for publish/subscribe middleware architectures. In: 2nd In-
ternational Workshop on Distributed Event-Based Systems (DEBS’03). ICDCS,
ACM SIGMOD (2003)

3. Baldoni, R., Contenti, M., Virgillito, A.: The evolution of publish/subscribe com-
munication systems. In: Future Directions of Distributed Computing. Volume 2584
of LNCS., Springer (2003) 137–141

4. Yan, Y., Huang, Y., Fox, G., Pallickara, S., Pierce, M., Kaplan, A., Topcu, A.:
Implementing a prototype of the security framework for distributed brokering sys-
tems. In: Proceedings of the International Conference on Security and Management
(SAM’03). (2003) 212–218

5. Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements
in internet-scale publish-subscribe systems. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS’02), IEEE (2002) 303

6. Miklós, Z.: Towards an access control mechanism for wide-area publish/subscribe
systems. In: 1st International Workshop on Distributed Event-Based Systems
(DEBS’02). ICDCS, IEEE (2002) 516–524

7. Opyrchal, L., Prakash, A.: Secure distribution of events in content-based publish
subscribe systems. In: 10th USENIX Security Symposium. (2001)

8. Dierks, T., Allen, C.: The TLS protocol, version 1.0, RFC-2246. Internet Engi-
neering Task Force (1999)

9. Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.: To-
wards security and privacy for pervasive computing. In: Software Security – The-
ories and Systems, Mext-NSF-JSPS International Symposium, ISSS 2002. Volume
2609 of LNCS., Springer (2002) 1–15

10. Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Perva-
sive Computing 2 (2003) 46–55

11. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332–383

12. Banavar, G., Kaplan, M., Shaw, K., Strom, R.E., Sturman, D.C., Tao, W.: Infor-
mation flow based event distribution middleware. In: Middleware Workshop at the
International Conference on Distributed Computing Systems 1999. (1999)

13. Pietzuch, P.R., Bacon, J.M.: Peer-to-peer overlay broker networks in an event-
based middleware. In: 2nd International Workshop on Distributed Event-Based
Systems (DEBS’03). ICDCS, ACM SIGMOD (2003)

14. Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed event-based middleware ar-
chitecture. In: 1st International Workshop on Distributed Event-Based Systems
(DEBS’02). ICDCS, IEEE Press (2002) 611–618

15. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Middleware ’01, IFIP/ACM Inter-
national Conference on Distributed Systems Platforms. (2001) 329–350

16. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

20 J. Bacon et al.

17. Sandhu, R., Coyne, E., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE Computer 29 (1996) 38–47

18. Bacon, J., Moody, K., Yao, W.: Access control and trust in the use of widely
distributed services. In: Middleware ’01, IFIP/ACM International Conference on
Distributed Systems Platforms. Volume 2218 of LNCS., Springer (2001) 295–310

19. Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and its
support for active security. ACM Transactions on Information and System Security
(TISSEC) 5 (2002) 492–540

20. Hombrecher, A.B.: Reconciling Event Taxonomies Across Administrative Domains.
PhD thesis, University of Cambridge Computer Laboratory, Cambridge, UK (2002)

21. ITU-T (Telecommunication Standardization Sector, International Telecommuni-
cation Union): ITU-T Recommendation X.509: The Directory – Authentication
Framework. (2000)

22. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Transac-
tions on Information and System Security 7 (2004) 60–96

23. Hietalahti, M.: Efficient key agreement for ad-hoc networks. Master’s thesis,
Helsinki University of Technology, Department of Computer Science and Engi-
neering, Espoo, Finland (2001)

24. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys 35 (2003) 309–329

25. Pesonen, L., Bacon, J.: Secure event types in content-based, multi-domain pub-
lish/subscribe systems. In: Fifth International Workshop on Software Engineering
and Middleware (SEM05). (2005) To appear.

26. Pesonen, L., Eyers, D., Bacon, J.: A capability-based access control architecture
for multi-domain publish/subscribe systems. (2006) Submitted for publication.

27. Vargas, L., Bacon, J., Moody, K.: Integrating databases with publish/subscribe.
In: 4th International Workshop on Distributed Event-Based Systems (DEBS’05).
ICDCS, IEEE Press (2005) 392–397

ABACUS: A Distributed Middleware for Privacy
Preserving Data Sharing Across Private Data

Warehouses�

Fatih Emekci, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science,
University of California at Santa Barbara

{fatih, agrawal, amr}@cs.ucsb.edu

Abstract. Recent trends in the global economy force competitive enterprises to
collaborate with each other to analyze markets in a better way and make deci-
sions based on that. Therefore, they might want to share their data with each
other to run data mining algorithms over the union of their data to get more ac-
curate and representative results. During this process they do not want to reveal
their data to each other due to the legal issues and competition. However, current
systems do not consider privacy preservation in data sharing across private data
sources. To satisfy this requirement, we propose a distributed middleware, ABA-
CUS, to perform intersection, join, and aggregation queries over multiple private
data warehouses in a privacy preserving manner. Our analytical evaluations show
that ABACUS is efficient and scalable.

1 Introduction

Recent trends in the global economy force competitive enterprises to collaborate with
each other for the purpose of market analysis. One of the most important examples of
such collaboration is data sharing to mine and understand the market trends to be used
in decision making. However, although enterprises are willing to share information with
each other, they do not want to reveal their data. Due to the legal issues and competition
in the market, datasources want to preserve the privacy of their data while sharing them.
For example, consider a scenario consisting of two hotels, H1 and H2, and two airlines,
A1 and A2. Assume hotel H1 wants to offer a new deal to each of its customers includ-
ing hotel and flight expenses based on his/her flight history. Therefore, hotel H1 needs
to learn flight history of its customers from airlines A1 and A2. One method to learn
flight history of customers is that airlines send all of their data to hotel H1 so that hotel
H1 can extract desired information. However, these airlines also work with hotel H2,
which is a competitor of hotel H1, and thus they may not want to send all of their data
to hotel H1. That is because hotel H1 can discover the customers of hotel H2 and try
to attract them. Therefore, if airlines want to work with both hotels, they cannot send
their data to any of these hotels. Similarly, hotel H1 cannot send its data to airlines so
that airlines can extract the information that hotel H1 needs since airlines will discover

� This research was funded in parts by NSF grants IS-02-23022 and CNF-04-23336.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 21–41, 2005.
c© IFIP International Federation for Information Processing 2005

22 F. Emekci, D. Agrawal, A. El Abbadi

each other’s customers. In order to be able to collaborate, hotel H1 should take its cus-
tomers’ information from airlines in a way that airlines A1 and A2 share their data with
hotel H1 by only revealing common customers (i.e., revealing H1 ∩ A1 to H1 and A1
and H1 ∩ A2 to H1 and A2). By using such a method hotel H1 cannot discover new
customers which may be customers of hotel H2 and also airlines cannot discover new
customers which may be customers of the other airline. In addition to this, hotel H1
may want to know the total amount of its customers’ travel expenses or total expendi-
ture of a customer for its future business decisions and offers. Other enterprises may
be willing to collaborate with hotel H1, if they can preserve their privacy. The essential
operations to perform these collaborations are privacy preserving intersection, join and
aggregation queries. Unfortunately, we cannot use traditional query processing tech-
niques since they do not consider privacy issues. Therefore, there is a need for privacy
preserving query processing and data sharing across multiple private data warehouses.

Data integration and sharing has emerged as an important practical problem from
a data management point of view [3,4,7,8,9]. Techniques used for this purpose com-
monly assume that the data sources are willing to allow access to all their data without
privacy concerns during query processing. This assumption, however, is unrealistic in
real life since most of the time data sources are competing enterprises. There have been
several techniques in the areas of database and cryptography for privacy preserving data
sharing. One of them is to use trusted third parties such that data sources hand over their
data and a third party performs the computation on their behalf [1,10]. The level of trust
may not be acceptable in these methods. Another approach is using secure multi-party
computation where given m parties and their respective inputs x1, x2, .., xm, a function
f(x1, x2, ..., xm) is computed such that all parties can only learn f(x1, x2, ..., xm) but
nothing else [6,7,11]. The computation and the communication costs make this method
impractical for database operations working over a large number of elements.

In this paper, we address the problem of privacy preserving data sharing over mul-
tiple private data warehouses. We propose a distributed middleware, ABACUS, to per-
form intersection, join, and aggregation queries over multiple private data warehouses
in a privacy preserving manner. Privacy preservation means that parties involved in the
query would only be able to learn the query result but nothing else. In addition, we intro-
duce new types of aggregation queries needed in this context and propose efficient tech-
niques to process them. ABACUS operates as a proxy among private data warehouses
and allows users to pose queries over multiple private data warehouses. Our analyti-
cal evaluations demonstrate that ABACUS provides an efficient and scalable scheme to
perform intersection, join, and aggregation queries.

The rest of the paper is organized as follows. Section 2 formulates the problem
and presents the architecture overview. Section 3 describes intersection and join query
processing. Aggregation query processing is discussed in Section 4 and the analysis is
presented in Section 5. The last section concludes the paper.

2 Problem Definition and Architecture Overview

Enterprises gather data from their multiple operational databases into a data warehouse,
which is one the most popular ways of storing data to support decision-making in or-

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 23

Customer_Key

Time_Key
Amount

SALES

CUSTOMERS

LOCATIONS TIMES

Loc_Key, Loc_name Time_Key, Year,...

Loc_Key

Cust_Key, name,.......

Fig. 1. An Example of Star Schema

ganizations. Data warehouse systems or OLAP (Online Analytical Processing) systems
are different than OLTP (On-Line Transaction Processing) systems which are designed
for fast updates. Thus, large enterprises have both OLAP and OLTP systems to support
both an on-line community who expect fast response time for executing transactions and
off-line users who expect to analyze the data in a reasonable amount of time. Most enter-
prises create a large data warehouse, and periodically extract data from OLTP systems
into data warehouse to be able to analyze data without interfering with online users.
Data Warehouses usually use star schema for fast execution of queries over aggregated
data. Star schema has dimension tables and a fact table containing a foreign key for
each of the dimension tables. Furthermore, it is usually not normalized for efficient
query response time since fewer joins, a bottleneck in query processing, are performed.
Figure 1 shows an instance of a star schema with the fact table, Sales, and the dimension
tables, Customers, Times, and Locations. Current commercial data warehouses support
efficient methods to examine data. However, they do not support privacy preserving
data sharing across multiple private data warehouses, which is useful for analyzing the
market instead of a single company’s data.

The problem of query processing across multiple private data warehouses is defined
as follows:

Let D1, D2, ..., Dm be the data warehouses (defined with a star schema) of
a set of m data sources P = {P1, ..., Pm} and q be a query spanning D1
through Dm. The problem is to compute the answer of q without revealing any
additional information to any of the data sources.

Agrawal et al. [2] solved the problem of privacy preserving query processing across
private databases by restricting it to two data sources with some relaxation in an honest-
but-curious environment [6] for intersection and equijoin operations. The honest-but-
curious environment means that parties follow the protocols correctly but keep all mes-
sages sent and received during the course of the query processing. The relaxation reveals
the sizes of the tables or lists in the database to the other party. However, the proposed
technique has two shortcomings: 1) Encryption is a computation intensive operation
which is not suitable for database operations where large numbers of items need to
be processed. 2) It does not support aggregation queries, which are among the most
important queries.

24 F. Emekci, D. Agrawal, A. El Abbadi

ABACUS

Via SQL interface

To other ABACUS Nodes

An ABACUS Node

A Commercial Database

OLTP OLAP

Fig. 2. The architecture of a ABACUS node

In this paper, we propose ABACUS for privacy preserving data sharing across mul-
tiple private data warehouses. ABACUS eliminates the need for third parties by taking
advantage of the star schema and executes intersection, join and aggregation queries in
a privacy preserving manner. In addition, we introduce new types of aggregation op-
erators which are useful in the context of data warehouse and solve them efficiently.
ABACUS also operates in an honest-but-curios environment and it reveals the size of
tables and lists similar to [2].

ABACUS is a distributed middleware operating on top of any commercial database
as shown in Figure 2. It provides a user interface where users can pose queries over mul-
tiple private data warehouses. ABACUS executes queries by running ABACUS nodes
operating on different data warehouses. Each ABACUS node interacts with its data
warehouse via SQL interface supplied by the underlying commercial database. Then,
it contacts other ABACUS nodes and shares its data with them to process queries in a
privacy preserving manner using the protocols proposed in this paper.

ABACUS does not aim to solve the problem of revealing additional information to
a datasource which poses multiple queries and combines their results in order to obtain
additional information about the data. In addition, it does not solve the problem of
data discovery and schema mediation. Solutions to these problems are discussed briefly
in [2] and they could be used in ABACUS.

3 Intersection and Join Query Processing

Intersection and join queries are the two important types of queries supported by cur-
rent commercial databases without privacy concerns. However, in the context of data

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 25

sharing across multiple private data warehouses we need privacy preserving intersection
and join queries. Therefore, we will define the problems of privacy preserving intersec-
tion, and join queries and also show how to solve them efficiently in Section 3.1 and
Section 3.2 respectively.

3.1 Aggregated Intersection

Intersection queries constitute the first step for collaboration over common data items.
For example, a company may need to know other companies’ opinions about its cus-
tomers. For this kind of collaboration, two companies need to find the common cus-
tomers as a first step, i.e., intersection. The intersection of two customer lists can be
found easily unless they do not hesitate to reveal their customers to each other. How-
ever, most of the time companies may not want to reveal their customer lists but only
common customers to each other due to legal issues or competition. To support such
a type of collaboration, a method for privacy preserving intersection where parties can
only learn items in the intersection but nothing else is needed. Therefore, we first define
the problem of finding the intersection of lists in the context of data warehouse while
preserving the privacy called aggregated intersection query processing as follows:

Let L1, L2,..., Lm be the lists containing secret data stored by a set of data-
sources P = {P1, P2, ..., Pm} respectively. For each data source Pi, the prob-
lem is to find all other data sources, Pj , with e ∈ Lj for each item e ∈ Li in
a privacy preserving manner, i.e., if Pj does not have e in Lj , then Pj will not
know e ∈ Li .

Example 1. We illustrate the aggregated intersection problem with an example. Con-
sider three datasources P1, P2 and P3 involved in executing aggregated intersection
query with customer tables T1, T2 and T3 respectively as shown in Figure 3. At the
end of aggregated query processing, datasources will only learn the common customers
they share with other data sources but nothing else. In this example, all data sources
will know 6565 exists in tables T1, T2, and T3. P1 and P2 will also know that 8080 is
common in their tables. Similarly, P1 and P3 will know that 7070 is common in tables
T1 and T3. However, P2 should not be able to know that P1 and P3 have 7070 in their
tables. Similarly, P3 must not know that P1 and P2 have 8080 in their tables.

Our solution to the above problem is based on using one-way secure cryptographic
hash functions. These hash functions are widely used in many real life applications such
as password protection, message authentication, and digital signatures. The examples
of such hash functions include SHA-1, MD4, and MD5 [12]. A simple solution to the
aggregated intersection problem could use one-way hash functions and compare hashed
values of items to determine whether they are the same or not. Basically, data source
Pi computes the hashed list of list Li by computing the hash value of each item in Li.
Then, it sends the hashed list to data source Pj so that it can compare the incoming
hashed list with its own hashed list to find the common items in Li and Lj . According
to this scheme, in Example 1, data source P1 uses a hash function H and sends the list
of hashed values, {H(6565), H(7070), H(8080)}, to P2 and P3. Then, P2 compares
the hashed list with its own hashed list, {H(6565), H(8080)}, and determines that 6565
and 8080 are common. Since the hash function is a one-way hash function, P2 will not

26 F. Emekci, D. Agrawal, A. El Abbadi

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070
8080

T 1

...
......

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

8080

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070

T

T

2

3

E−mail
bj@utz.edu

Costumers

Fig. 3. Illustration of Aggregated Intersection

be able to know 7070 is in L1. This basic solution, however, suffers from the following
two problems: 1) If the domain size is small, then item x whose hash value is H(x)
could be computed by exhaustively searching the whole domain. 2) Hash collisions
might produce inaccurate results.

In the context of data warehouses, data sources usually have more information about
the secret items. For example, all data sources in Example 1 keep name, last name,
phone and address information as well as SSN (Social Security Number) of a customer
in their customers tables. If all of these information is used in hashing, then the domain
will become large. For instance, instead of hashing SSN, a concatenation of SSN, name,
last name, phone and address could be used in hashing, i.e., H(6565|Jack|Brial|6616KRD

XyzZT93090|8909084545) could be used instead of H(6565) for a customer with an SSN
6565. This method allows us to enlarge the domain size and makes exhaustive search
impossible. The aggregated intersection problem is to find the common secret items in
the dimensions tables in the context of data warehouse. ABACUS uses the common
attributes in all of the tables to hash secret items i.e., the values of common attributes
are used instead of a value of a primary key. For example, the attributes SSN, Name,
Surname, Phone, and Address are common in T1, T2 and T3 in Example 1. If 5 attributes
each of which is 10 characters long are used in hashing, the domain size would be
2850 ≈ 2250 which makes exhaustive search impossible.

As mentioned before, hash collisions might result in sharing a secret item which is
not in the intersection. H maps values to | DomH | which is assumed to be arbitrarily
large compare to the intersection size. Let N =| DomH |; in the random oracle model,
the probability that n hash values have at least one collision equals [2]: Pr[collision] =
1− exp(−n(n−1)

2N
). For 1024 bit hash values and n = 1 million, this probability is 10−295

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 27

[2]. Thus, the solution to expand the domain size minimizes the probability of data
vulnerability by exhaustive search and also helps in reducing the probability of hash
collisions, and therefore, errors in the queries are significantly reduced.

3.2 Aggregated Join Queries

One of the most important query operators supported by current commercial database
systems is the join operator. Privacy preserving join operations have not been previously
considered in database research or in current database management systems. However,
they might be needed in data sharing across private data sources. For example, a com-
pany (e.g. a hotel) might want to know the transaction details of its customers in other
companies (e.g. airlines) in the market to classify them according to their transactions.
For instance, a hotel can identify the customers that travel frequently and offer special
promotions to them. To be able to do this, it needs to join its customers table with other
companies’ sales tables. Since other companies may benefit from this process, they
might be willing to share transaction details. However, during this process companies
are not willing to reveal any information about a customer who is not a customer of
the other company as well as his/her existence. Traditional join query processing tech-
niques cannot be used to process these queries since they do not consider privacy issues.
In order to satisfy these requirements, we propose a new join operator, the aggregated
join query operator, to be used for privacy preserving data sharing across private data
warehouses. We first formally define the aggregated join query processing problem and
then propose a solution.

The aggregated join query processing problem is formally defined as follows:

Assume data source P1 has a dimension table P1.Td and data sources P2, P3, ..,

Pm have fact tables P2.Tf , P3.Tf , ..., Pm.Tf respectively with common attribute
A. Then, the goal is to compute P1.Td � P2.Tf ∪ P1.Td � P3.Tf∪ ∪ P1.Td �

Pm.Tf such that none of the data sources learn any extra information other than
the query result. Query poser P1 will learn only the tuples t such that t ∈ Pi.Tf

for which t.A ∈ P1.Td.A . In other words, Pi shares a list, Lv , of tuples in
Pi.Tf for each value v ∈ Pi.Tf .A with P1 if ∃t ∈ P1.Td such that t.A = v , and
nothing else where i = 2, 3..., m.

We illustrate the problem with an example. Assume the three data warehouses in
Example 1 want to execute an aggregated join query. And assume P1 poses the aggre-
gated join query to find the aggregated join of its dimension table, Customers Table,
with the fact tables, Sales Table, of the other data sources as shown in Figure 4. The
problem is to provide an answer to this query without revealing any additional infor-
mation. For this example, P2 will return the tuples with SSN 6565 and 8080 in its Sales
table without knowing P1 has 7070 in its customers table. Similarly, P3 will return all
tuples with SSN 6565 and 7070 without knowing P1 has a customer with an SSN 8080.
In addition, P1 will not be revealed the transaction details of other customers which are
not in its Customers table, e.g. a customer with an SSN 9090.

ABACUS executes the aggregated join query,
⋃m

i=2 P1.Td � Pi.Tf , in two phases:
Intersection Phase and Join Computation Phase. In the intersection phase, P1 and Pj

compute the intersection of their dimension tables, P1.Td ∩ Pj .Td with the method dis-
cussed in Section 3.1 (i.e., P1 sends a hashed list of its customers so that Pj can know

28 F. Emekci, D. Agrawal, A. El Abbadi

2Sales Table at P

6565 7/21/2004 10

6565 9/27/2004 48

8080 1/1/2004 23

SSN Date Amount

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070
8080

 1Customers Table at P

2Sales Table at P

6565 7/21/2004 10

6565 9/27/2004 48

8080 1/1/2004 23

SSN Date Amount

Sales Table at P 3

6565 7/9/2004 23

7070 2/2/2004 79

6565 9/7/2004 84

SSN Date Amount

9090 2/2/2004 92

Fig. 4. Illustration of Aggregated Join

common customers). Then, Pj sends all tuples t ∈ Pj .Tf where t.A ∈ ΠA(P1.Td∩Pj .Td)
to P1.

During the query processing, no extra useful information gets revealed. In the inter-
section phase, all data sources compute the intersection of the dimension tables and in
the join computation phase, all data sources other than the query poser send the related
tuples from their fact tables. As a result, no site gains extra useful information other
than the intersection and the join results.

4 Aggregate Query Processing

The traditional aggregation operation is generally used to compute the aggregate of a
list of values such as SUM, AVERAGE or MIN/MAX. One kind of privacy preserving
aggregation can be thought of as computing the aggregation of values in the union of
lists coming from different data sources such that each data source will only know the
final aggregate but nothing else. To execute these queries, each data source can compute
its local aggregate and the final aggregate can be computed in such a way that none of
the data sources will know the local aggregate of other data sources (Secure multiparty
computation or the technique described in this section can be used to compute the final
aggregate value for SUM and AVERAGE). However, data sources may not be willing to
execute aggregation operations over their whole data or may want to know more than the
sum of the values in several lists. Therefore, there is a need for new types of aggregation
queries. In this section, we will introduce Row-Based Aggregation and Column-Based
Aggregation queries. We formally define Row-Based Aggregation queries and show
how to process them in Section 4.1. Then, we will present Column-Based Aggregation
queries and techniques to execute them efficiently in Section 4.2.

4.1 Row-Based Aggregation

Enterprises may want to know the total expenditure of a customer in the market. For
example, hotels and airlines may want to classify their customers based on their travel

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 29

expenses. Without privacy concerns it is easy to perform this classification task. One
of the enterprises may collect data from all enterprises and perform the computation.
However, they may not be willing to reveal their value during this operation. For ex-
ample, an airline company may not be willing to reveal an expenditure of a customer
to other airlines since other airlines may try to attract this customer. For instance, if
a customer’s expenditure in company C1 is 80, and another company C2 knows that
his/her expenditure in C1 is 80, then C2 can offer a new deal to this customer and try
to attract him/her using this information. Although enterprises may not be willing to
reveal their earnings from a customer, they may want to know the total expenditure of
the customer without revealing their values. For example, these hotels and airlines may
be willing to know the total expenditure of a customer in these hotels and airlines (i.e.,
total expenditure in the market) without revealing their earnings from this customer
so that competing hotels and airlines protect their private information from each other.
Since the traditional aggregation operation is not strong enough to support these needs,
ABACUS proposes a new type of aggregation queries, Row-Based Aggregation queries,
and a new technique to execute them in a privacy preserving manner in the context of
data warehouses.

For the sake of this discussion, we will first define the row-based aggregation on a
table with two attributes namely Key and Value. Then, we will discuss how this can be
generalized to support queries in data warehouses. The Row-Based Aggregation query
processing problem is defined as follows:

Let T1, T2,..., Tm be the tables stored by a set of source peers P = {P1, P2, ...,

Pm} (m ≥ 3) respectively containing a Key and a Value attributes. Each data
source, Pi, would like to learn the aggregate for each Key ∈ Ti,

∑m
j=1 V alue

∃[Key, V alue] ∈ Tj . Then, the problem is to obtain the answer of the query
without revealing any additional information.

The above problem formulation is for SUM queries. We solve the above problem
with some relaxation. The relaxation is that a data source with Key in its database can
learn who else has the same Key (Note that this information is the same as the result
of aggregated intersection). However, it is impossible to learn the Value associated with
that Key at the other data warehouses. Extending our solution to support AVERAGE
queries is straightforward and discussed briefly at the end of this section.

Example 2. Let us illustrate the problem with an example. Consider four companies,
P1, P2, P3 and P4, that want to classify their customers according to their total expen-
ditures from these companies. They have tables T1, T2, T3 and T4 each of which with
two attributes customer SSN and the amount of expenditure as [Key, V alue] pairs. The
contents of the tables are as follows:

T1 = {[6565, 10], [7070, 20], [8080, 30]}
T2 = {[6565, 50], [8080, 30]}
T3 = {[6565, 10], [7070, 20], [8080, 30]}
T4 = {[6565, 10], [7070, 20]}

To classify customers, one should know their total expenditures in the market. In other
words, a row-based aggregation is needed for this process so that at the end of query pro-

30 F. Emekci, D. Agrawal, A. El Abbadi

cessing P1, P2, P3 and P4 will get the following lists respectively as an answer without
knowing any additional information: {[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [8080, 90]},

{[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [7070, 60]}. The first item in the above first list,
[6565, 80] means that the customer with SSN 6565 has a total expenditure of 80 in com-
panies P1, P2, P3 and P4. ABACUS can process row-based aggregation queries in a
privacy preserving manner while revealing some information which is typically accept-
able in an honest-but-curious environment. For example, each company will learn who
else has a customer with the same SSN as in its list. For instance, P1 will know that
6565 exists in all data sources, while 7070 also exists in P3 and P4, and 8080 exists in
P2 and P3. During this query processing, none of the data sources will be able to learn
the value of a specific key of the other data sources. For example, P1 will not learn that
6565 has an expenditure of 50 in P2 , but will learn that 80 is the total expenditure of
6565 in all of the companies. Note that, if only two data sources have the same key, they
may not share their values with each other by rejecting aggregation on that key (because
they can learn each other’s value for that key). ABACUS allows users to configure their
privacy policies for this kind of policy related issues and handle them efficiently. We
will discuss these issues later in this section.

A simple technique to compute the sum of values (i.e., V1 + V2 + V3 + V4) for a
specific key Key in four key-value pairs [Key, V1], [Key, V2], [Key, V3], and [Key, V4]
residing at four different parties P1, P2, P3 and P4 respectively without revealing V1,
V2, V3 and V4 could be circulating a token with a label H(Key). Using secure one-way
hash function can prevent others from learning Key if they do not have Key. The process
consists of two circulations. During the first circulation, every party, Pi, would add its
value, Vi, and a random number, ri, and pass the token to the next party. Therefore, P1
creates a token with a label H(Key) and adds V1 + r1 , then passes it to P2. The other
parties follow the same protocol and pass the token to the next one. At the end of first
circulation, P1will get V1 + r1 + V2 + r2 + V3 + r3 + V4 + r4 for a token with a label
H(Key). There is no way to determine the value of a specific party during the course of
the first circulation because of the random numbers added. In the second circulation, all
parties subtract the random numbers they added during the first circulation. Therefore,
at the end of second circulation, P1 would have a token with a label H(Key) and the
sum of the values for that Key, V1 + V2 + V3 + V4. Although it seems secure, this basic
technique has two problems. Since this process is needed for every item in the list, using
the same random number for every item in the list may result in information leakage
such as the difference between two values. To prevent this information leakage, parties
should use a different random number for each item in their lists. Therefore, every data
source should maintain a list of random numbers it used during this process which is
not scalable for large lists. Another problem is that any two of the data sources could
collude and learn the value of another data source. For example, P2 and P4 could learn
the value of P3, V3. In the first circulation, P4 would pass the token with a label H(Key)
and V1 + r1 + V2 + r2 + V3 + r3 + V4 + r4 to P1 and in the second circulation, P1 would
pass V1 + V2 + r2 + V3 + r3 + V4 + r4 to P2 . Since P2 and P4 know V1 + r1 + V2 + r2 +
V3 + r3 + V4 + r4 and V1 + V2 + r2 + V3 + r3 + V4 + r4 they could figure out r1, and
thus V1(Note that P1 passed V1 + r1 to P2 in the first circulation). Therefore, P2 and P4

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 31

could collude and reveal the value of P1 without revealing their values to each other or
to the other parties.

In order to compute aggregation securely, ABACUS uses Shamir’s secret shar-
ing technique, which allows one to compute any linear combination of secret values.
ABACUS uses this property to perform SUM and AVERAGE queries thus computing
aggregation without revealing individual values.

Shamir’s Secret Sharing
Shamir’s secret sharing method [13] allows a dealer D to distribute a secret value vs

among n peers {P1, P2, ..., Pn}, such that knowledge of any k (k ≤ n) peers is required
to reconstruct the secret. Since, even complete knowledge of k − 1 peers cannot reveal
any information about the secret, Shamir’s method is information theoretically secure.
Dealer D chooses a random polynomial q(x) of degree k − 1 where the constant term is
the secret value, vs, and a publicly known set of n random points. The dealer computes
the share of each peer as q(xi) and sends it to peer Pi. The method is summarized in
Algorithm 1.

Algorithmus 1. Shamir’s Secret Sharing Algorithm
1: Input:
2: vs: Secret value;
3: D: Dealer of secret vs;
4: P : set of peers P1, ..., Pn to distribute secret;
5: Output:
6: share1, ..., sharen: Shares of secret, vs , for each peer Pi;
7: Procedure:
8: D creates a random polynomial q(x) = ak−1xk−1 + ... + a1x1 + a0 with degree k − 1 and a constant term

a0 = vs.
9: D chooses publicly known n random points, x1, ...xn, such that xi �= 0.
10: D computes share, sharei , of each peer, Pi , where sharei = q(xi) and sends it to Pi .

In order to construct the secret value vs, any set of k peers will need to share the
information they have received. After finding the polynomial q(x), the secret value vs =
q(0) can be reconstructed. q(x) can be found using Lagrange interpolation such that
p(xi) = sharei where i = 1, ..., k. The key observation is that at least k points and the
respective shares are required to determine a unique polynomial q(x) of degree k − 1.

Row-Based Aggregation in ABACUS
ABACUS executes row-based aggregation queries in three phases: Distribution phase,
Intermediate-Computation phase, and Final-Computation phase.

Distribution Phase
After the query is posed, m data sources decide on the degree of the polynomial that
is going to be used in Shamir’s secret sharing (the degree of the polynomial should
be greater than or equal to m − 1). They also choose n ≥ m random values X =
{x1, ..., xn}. Without loss of generality, we will use a polynomial of degree of m − 1
and n = m in our setting. Each data source Pi has a list of Key-Value pairs, Li =
{[K1, V1], ..., [K|Li|, V|Li|]}; Pi creates m shares from Li, share(Li, P1), ... ,share(Li,

Pm), one for each of the data sources P1 through Pm respectively (including itself).

32 F. Emekci, D. Agrawal, A. El Abbadi

Pi creates the shares by applying a one-way hash function and Shamir’s secret shar-
ing algorithm to each of the elements in Li. For every element [Key, V alue] in Li, Pi

computes the share of data source Pj , sh([Key, V alue], Pj) = [H(Key), q(xj)], using
a hash function H and Algorithm 1 with q(x) and X (the constant term in q(x) will be
replaced by the secret value, V alue, to compute q(x) in Shamir’s secret sharing). There-
fore, the list of shares of data source Pj from Li is share(Li, Pj) = {sh([K1, V1], Pj), ...,
sh([K|Li|, V|Li|], Pj)}. Then, Pi sends share(Li, Pj) to the data source Pj . Note that Pi

keeps its share, share(Li, Pi), for itself and since using the same q(x) would results in
information leakage, a random polynomial is used for each of the item in the list. There-
fore, random polynomials q1 through q|Li| are used for the items 1 through | Li | in Li.

In Example 2, assume P1 with a list, L1 = {[6565, 10], [7070, 20], [8080, 30]} and four
data sources decided on four random points X = {27, 65, 90, 123}. Since there are four
data sources, a polynomial q(x) of a degree three would be used with a hash function
H while calculating the share of each data source. As a first step, P1 chooses three ran-
dom polynomials for each item in its list: q1(x) = 2x3 − 2x2 + 10, q2(x) = x3 − 5x2 + 20,

q3(x) = x3 − 13x2 +30. Observe that the constant term of polynomial qi is value of the ith
item in L1 and qi is used for the ith item in L1. Then, the shares of key-value pairs in
L1 for data source P2 are calculated as follows:

sh([6565, 10], P2) = [H(6565), q1(x2)] = [H(6565), q1(65)]

sh([7070, 20], P2) = [H(7070), q2(x2)] = [H(7070), q2(65)]

sh([8080, 30], P2) = [H(8080), q3(x2)] = [H(6565), q3(65)].

Therefore, the share list for P2, share(L1, P2), is: share(L1, P2) = {[H(6565), q1(65)],

[H(7070), q2(65)], [H(8080), q3(65)]. Similarly, other data sources’ share lists are computed
and are sent to them. P1 would keep share(L1, P1) for itself and sends share(L1, P2),
share(L1, P3), and share(L1, P4) to P2, P3, and P4 respectively.

Distribution phase at data source Pi is summarized in Algorithm 2.

Algorithmus 2. Distribution Phase
1: Input:
2: X: Random Values X = {x1, .., xm};
3: H: Secure one-way hash function
4: Li: Secret list of Key-Value pairs at data source Pi;
5: Output:
6: share(Li, P1), ..., share(Li, Pm): Shares of secret list, Li, for each data source Pj ;
7: Procedure:
8: for Each secret Key-Value pair [Key, Vs] ∈ Li do
9: Find share sh([Key, Vs], Pj) of each data source Pj for [Key, Vs] with Algorithm 1 using a random polyno-

mial q(x) where q(x) = ak−1xk−1 + ... + Vs and the hash function H such that sh([Key, Vs], Pj) =
[H(Key), q(xj)].

10: Add sh([Key, Vs], Pj) into share(Li, Pj).
11: end for
12:
13: for For each data source Pj do
14: Send share(Li, Pj) to data source Pj

15: end for

Intermediate-Computation Phase
After receiving their shares from the data sources, P1, ..., Pm, each data source, Pi, cal-
culates intermediate result lists, IR(L1, Pi),...,IR(Lm, Pi), corresponding to the lists

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 33

share(L1, Pi) ,...,share(Lm, Pi) respectively. The kth element of share(Lj , Pi) is a
key-value pair i.e., share(Lj , Pi)[k] = [H(Key), V alue∗] which is the share of Pi from
the [Key, V alue] pair in Lj (share(Lj , Pi)[k][1] = H(Key) and share(Lj, Pi)[k][2] =
V alue∗). Pi computes the intermediate result lists as follows:

IR(Lj , Pi)[k][1] = share(Lj , Pi)[k][1]

IR(Lj , Pi)[k][2] =
∑ m

h=1(share(Lh, Pi)[g][2] s.t. ∃ g where share(Lh, Pi)[g][1] = IR(Lj , Pi)[k][1]),

i.e., INTER − RESi .

In Example 2, P1 would have lists share(L1, P1), share(L2, P1), share(L3, P1) and
share(L4, P1) where

share(L1, P1) = {[H(6565), 120], [H(7070), 320], [H(8080), 400]}
share(L2, P1) = {[H(6565), 100], [H(8080), 600]}
share(L3, P1) = {[H(6565), 3500], [H(7070), 900], [H(8080), 90]}
share(L4, P1) = {[H(6565), 110], [H(7070), 80]}

Then, in the intermediate computation phase, P1will compute IR(L1, P1) IR(L2, P1),
IR(L3, P1) and IR(L4, P1) and send them to data sources P1, P2, P3 and P4 respec-
tively. For example, IR(L3, P1) is computed as follows: Since H(6565) exists in all
lists, the values associated with it, 120, 100, 3500 and 110 in share(L1, P1) through
share(L4, P1) respectively, are added. Therefore, IR(L3, P1)[1] = H(6565) and
IR(L3, P1)[2] = 120+100+3500+110 = 3830. The same calculation is performed for all
items in the list resulting in IR(L3, P1) = {[H(6565), 3830], [H(7070), 4900], [H(8080), 1090]}.

The intermediate computation process at data source Pi is summarized in
Algorithm 3.

Algorithmus 3. Intermediate Computation Phase
1: Input:
2: ShareL: Set of share lists, ShareL = {share(L1, Pi), .., share(Lm, Pi) };
3: Output:
4: Set of intermediate result lists {IR(L1, Pi), .., IR(Lm, Pi)} to send back to the data sources P = {P1, ..., Pm}

respectively;
5: Procedure:
6: for each list share(Lk, Pi) ∈ ShareL do
7: for j = 1; j ≤ |share(Lk, Pi)| do
8: IR(Lk, Pi)[j][1] = share(Lk, Pi)[j][1]
9: if share(Lk, Pi)[j][1] = share(Ll, Pi)[o][1] such that ∃ l and o where l ≤ m and 1 ≤ o ≤|

share(Ll, Pi) | then
10: IR(Lk, Pi)[j][2] = IR(Lk, Pi)[j][2] + share(Ll, Pi)[o][2]
11: end if
12: end for
13: end for
14: Send IR(L1, Pi), ..., IR(Lm, Pi) to P1, ..., Pm respectively

Final-Computation Phase
In the final computation phase, data source Pi retrieves its intermediate result lists,
IR(Li, P1) ,...,IR(Li, Pm) from all m data sources. Since all data sources compute the
sum of their shares for a specific Key, the kth entry of an intermediate list contains H(Key)
and the sum of shares for Key. Therefore, for a Key-Value pair in Li, the correspond-
ing entry k in the intermediate result lists are: IR(Li, P1)[k] = [H(Key), INTER − RES1],

IR(Li, P2)[k] = [H(Key), INTER − RES2], . . ., IR(Li, Pm)[k] = [H(Key), INTER − RESm].

34 F. Emekci, D. Agrawal, A. El Abbadi

In the final computation phase, data sources calculate the sum for each Key from
the m intermediate results. Since all data sources use a random polynomial degree of
m − 1 and compute the shares of all data sources using m points, X = {x1, x2, .., xm},
these result in a polynomial P (x) = am−1x

m−1 + ... + a1x
1 + a0 where constant term,

a0, is the sum of the values for Key and P (xi) = INTER − RESi. The coefficients of
P (x) and thus the sum of the values could be computed because the values of P (x) are
known at m different points (P (xi) = INTER − RESi).

Proof of Correctness
A data source Pj constructs a random polynomial ajx

m−1
i +bjx

m−2
i +...+V alue to hide

the secret values for each [Key, V alue] pair. After generating this random polynomial,
it computes the share of Pi as (H(Key), [aPj xm−1

i +bPj xm−2
i + ...+vPj]) for each secret

key-value pair, where vPj = V alue and sends the shares of the other data sources. After
Pi receives the shares from all m data sources, it sends the sum of values which have
the same key. Without loss of generality, assume l of the m data sources have the same
Key with the secret values v1 through vl respectively. Then the sum for that Key is in the
following form:

a1xm−1
i + b1xm−2

i ... + v1+
a2xm−1

i + b2xm−2
i ... + v2+

.

.

.
alx

m−1
i + blx

m−2
i ... + vl

Therefore, Pi sends its results INTER−RESi = (a1 + a2 + ...+ al)xm−1
i ++SUM

to the parties having Key in their lists, where SUM is the sum of the secret values
(SUM = v1 + v2 + ... + vl) for the values that have the same key, Key.

Each data source receives m results from each of the data sources (including itself)
for each key in its [Key-Value] list:

INTER − RES1 = (a1 + a2 + ... + al)x
m−1
1 + ... + SUM

INTER − RES2 = (a1 + a2 + ... + al)x
m−1
2 + ... + SUM

.

.

.
INTER − RESm = (a1 + a2 + ... + al)xm−1

m + ... + SUM

Since X = {x1, x2, .., xm} is known by all data sources, there are a total of m unknown
coefficients including SUM and m equations in the above system of equations. There-
fore, SUM can be derived by using the above equations. The data source, Pj , cannot
know the value of the other data sources, since the coefficients of the polynomials used
by other data sources are not known by Pj .

For the average query, Pi sends INTER − RESi = [(a1 + a2 + ... + al)
xm−1

i + + SUM]/l where INTER − RESi = (a1+a2+...+al)
l

xm−1
i + + AV G)

and AV G = v1+v2+...+vl
l

. Therefore, each data source receives m results:

INTER − RES1 = (a1+a2+...+al)
l xm−1

1 + ... + AV G

INTER − RES2 = (a1+a2+...+al)
l xm−1

2 + ... + AV G
.
.
.

INTER − RESm = (a1+a2+...+al)
l xm−1

m + ... + AV G

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 35

Again, since X = {x1, x2, .., xn} is known by the data sources, there are m unknown
coefficients including AV G and m equations and thus, AV G can be derived from the
above equations.

Row-Based Aggregation in Data Warehouses
After the query is posed, data sources create lists of [Key,Value] pairs using their fact
and dimension tables so that row-based aggregation can be performed over them with
the above technique. All information in the dimension table about a tuple in the fact
table is used to form a Key for that tuple. The tuple from a fact table is added into
the list as [Key,Value] pairs where Value is the value associated with that tuple. For
example, data source P2 in Figure 4 creates [Key-Value] pairs as follows: for a tuple
with SSN 6565, it retrieves other information about 6565 from the customers table such
as name, surname and address. Then, it combines those information to create the Key
for this tuple and the amount is used as the Value.

Properties of the Algorithm
Data sources use a one-way hash function to hide Key, and thus all of the data sources
will learn H(Key). Only those data sources which have Key would be able to know
Key and its existence at data source Pi. In addition, Pi uses Shamir’s secret sharing
to hide the value associated with Key from other data sources. It uses a polynomial
degree of m − 1 and m random points to compute shares of the m data sources. Then,
it keeps one of these shares for itself and sends the remaining m − 1 shares to the other
parties. Since all of the m shares are needed to reveal the secret value in Shamir’s secret
sharing method, the other data sources would not be able to compute the value, even if
they combine their shares coming from Pi.

In general, for any Key at any data source Pj , any data source Pi can prevent ex-
ecution of aggregation for that Key. Since one of the m shares is sent to Pi, Pi can
prevent aggregation on Key by not sending the intermediate result to the other data
sources. Therefore, other data sources would not be able to learn SUM for Key. Us-
ing this property, ABACUS allows data sources to control sharing the value of Key
with other data sources. This might be needed since if only two data sources have Key,
performing row-based aggregation will result in revealing the values to these two data
sources (the result is the sum of the two values, and since these data source know their
values, they can figure out the other value from the result). Note that, if Key exists in
only one data source, then the owner can protect it from other data sources This can
easily be done by preventing aggregation on Key. In addition to these, data sources can-
not figure out something from their shares using the distribution of values since they are
random values (i.e., a random polynomial is used for each item in the list to compute
the shares).

4.2 Column-Based Aggregation

Enterprises might want to know the size of the market and some statistical information
about the market where they compete. In addition, they might be interested in expen-
ditures of their customers such as the ratio of their expenditures in their companies to

36 F. Emekci, D. Agrawal, A. El Abbadi

their total expenditures in the market. In other words, a company might want to know
how much it satisfies the needs of customers. Therefore, companies might be willing to
collaborate to perform these kinds of operations however, they might not want to reveal
extra information, for example a company might not want to reveal how much it satisfies
the needs of its customers. One way to compute the market size in a privacy preserving
manner is to aggregate the expenditures of all customers in that market. Formally, data
sources P1, P2, .., Pm might want to know sum of their local sums LS1, LS2, ..., LSm

respectively, and the global sum GS = LS1 + ... + LSm, without revealing their local
sums. This problem could be solved with the technique discussed in Section 4.1. How-
ever, in a competitive environment it is unrealistic to expect enterprises to share their
local sums. For example, a big company with 1000 customers might not be willing to
share its local sum which is the sum of its 1000 customers with a small company with
10 customers. Instead, it might want to collaborate for the common customers to com-
pute their total expenditures, so that both companies could learn how much they satisfy
the needs of their customers. However, during this process they do not want to reveal
any additional information. In order to satisfy these needs, we introduce column-based
aggregation.

Formally, the column-based aggregation query processing problem is defined as
follows:

Let T1, T2,..., Tm be the tables stored by a set of data warehouses P ={P1, P2, ...,

Pm} (m ≥ 3) respectively containing a key and a value field. The data source Pi

would like to learn the aggregation of values for all Keys in Ti, i.e.,
∑

∀Key∈Ti∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti). Then the problem is to

obtain the answer by only providing the aggregation result to Pi while reveal-
ing only the common Keys to other data sources.

The goal of the query processing is to compute column-based aggregation such
that the data source posing the query, Pi, would only know the result of the query,∑

∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti), while other data

sources would only know the Keys in Ti if they have those Keys. The query processing
consists of three steps:

– Intersection Phase: Data source Pi sends the list of hash values of Keys in Ti. On Pj

receiving this list, Pj computes the common keys in tables Ti and Tj (by hashing
its keys in Tj and comparing them with the list coming from Pi).

– Local Aggregation for Intersection Phase: Data source Pj , computes the local sum
of values, local sum, for the common keys between Pi and Pj . Formally, the local
sum, LSj , at data source Pj is: LSj =

∑
∀Key∈Ti

(V alue s.t. ∃[Key, V alue] ∈ Tj ∧
∃Key ∈ Ti).

– Global Aggregation Phase: Data sources compute the global sum, GS, which is
the sum of local sum of m data sources. They compute GS =

∑m
i=1 LSi with-

out revealing the local sums with the technique discussed in Section 4.1 (One
could think of the data sources, P1, ..., Pm, have the following [Key,Value] pairs
[Pi, LS1],...,[Pi, LSm] respectively and they want to compute the row-based aggre-
gation for the key Pi, which is the global sum).

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 37

The proposed query processing method computes column-based aggregation queries
correctly. The answer to the column-based aggregation query for data source Pi is∑

∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti). The proposed tech-

nique computes the local sum at each data source in local aggregation for intersection
phase where LSj =

∑
∀Key∈Ti

(V alue s.t. ∃[Key, V alue] ∈ Tj ∧ ∃Key ∈ Ti). Then, in
global aggregation phase the sum of all the local aggregations are computed as answer
which is

∑m
k=1 LSk, i.e.,

∑
∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti).

At the end of the query processing other data sources will only know their common
Keys with the query poser Pi and Pi will only know the result of the column based ag-
gregation query result but nothing else. After intersection phase, the other data sources
will know the common elements between Pi and them but nothing else, since one-way
hash function is used to hide Keys. During local aggregation for intersection phase,
the data sources would compute their local aggregates. Then, in the global aggregation
phase, they compute the sum of the local aggregations without revealing their local ag-
gregations to anybody with the row-based aggregation. Therefore, Pi would only know
the global aggregation result, which is column based aggregation result but not the local
aggregations. And the other data sources would not know any other local aggregation
and the global aggregation results unless Piwants them to know (Note that if Pi does
not send its intermediate result to other data sources, they cannot compute the global
sum in the row-based aggregation in Section 4.1).

5 Analytical Evaluation

In this section, we compute the query response times for the proposed query processing
techniques. The query responses time for intersection and join queries are studied in
Section 5.1. Then, the query execution costs of row-based aggregation and column-
based aggregation queries are calculated in Section 5.2. Finally, we show the query
response times of the queries over a sample scenario to demonstrate the scalability of
our technique in Section 5.3.

5.1 Cost of Intersection and Join Query Processing

Data source Pi hashes its list and sends to m data sources. Then, it compares its list with
other datasources to find the intersection. Therefore, the computation cost is the cost of
hashing the list and the cost of comparisons. Let Ch be the cost of hashing a single item
and every hashed word is b bits long. The computation time for hashing is: Ch × |Li| .
The number of comparisons to compare the hashed list, Li, with the other lists coming
from other data sources is (assuming lists are sorted) less than (m − 1) × |Li| without
loss of generality assume Li is the longest list. The time needed for this comparison is:
(m−1)×|Li|
CPU Speed

seconds. Therefore, total computation time is: Ch × |Li| + (m−1)×|L1|
CPU Speed

The
communication time is the sum of the time needed to send its own hashed list and the
time to receive the m − 1 hashed lists from other data sources. Therefore, total commu-
nication time is: b×(|L1|+...+|Lm|)

Bandwidth
. The query response time, the sum of the computation

and communication cost, is:

Ch × |Li| +
(m − 1) × |Li|
CPU Speed

+
b × (|L1| + ... + |Lm|)

Bandwidth

38 F. Emekci, D. Agrawal, A. El Abbadi

In the aggregated join, the first step is aggregated intersection. After this first step,
data source Pj sends the related tuples to Pi. The query response time is sum of the cost
of aggregated intersection and the cost of sending related tuples. Therefore, the query
response time for aggregated join is:

The cost of intersection +
m × |L| × v

Bandwidth

where v is the size of a tuple t ∈ TR.

5.2 Cost of Aggregation Query Processing

The Cost of Row-Based Aggregation Query Processing
In the distribution phase, data sources compute the hash value of keys and the shares of
m data sources. Therefore, the computation cost is m×|L|

CPUspeed
+Ch ×|L|. The communi-

cation cost is sending these shares to other data sources and receiving shares from other
data sources, which is 2×m×|L|×b

Bandwidth
, where b is the size of a Key-Value pair.

In the local aggregation phase, the computation cost is scanning all lists and adding
the values for a specific key (computation of intermediate result lists). The amount of
addition is less than m × |L| . Thus the cost of computation in the local aggregation
phase is m×|L|

CPUspeed
(assuming that lists are sorted and are of the same size). After this

computation, Pi sends intermediate results lists to m data sources and receive its inter-
mediate result lists from m data sources. The communication cost for this operation is
2×m×|L|×b
Bandwidth

(note that the size of intermediate lists is equal to the size of lists).
In the final aggregation phase, Pi solves an equation system for each element in

the list. Thus, the computation time is |Li| × Ceq, where Ceq is the cost of solving an
equation with m unknowns.

The query response time for row-based aggregation query is (without loss of gener-
ality, assume all lists are size of |L|):

≈ |L| × Ch +
4 × m × b × |L|

Bandwidth
+

2 × m × |L|
CPUspeed

+ |L| × Ceq.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 5. The Query Response Time for Intersection Queries

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 39

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 6. The Query Response Time for Row-based Aggregation Queries

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 7. The Query Response Time for Column-based Aggregation Queries

The Cost of Column-Based Aggregation Query Processing
The column-based aggregation query processing consists of three phases: 1) intersec-
tion phase 2) local aggregation for intersection 3) global aggregation. In the intersection
phase, data source Pi sends its hashed lists to m data sources. The communication and
computation cost for this phase is:

Ch × |Li| +
m × b × |Li|
Bandwidth

The cost of computation in local aggregation for intersection phase is |Li|
CPUspeed

(data
sources calculates the sum of values in the intersection). Remember that there is no
communication in this phase. The cost of global aggregation phase is negligible since
the cost of the summation of m values using m parties is negligible in this context.
Therefore, the cost of column-based aggregation query processing is:

≈ Ch × |Li| +
m × b × |Li|
Bandwidth

+
|Li|

CPUspeed
.

40 F. Emekci, D. Agrawal, A. El Abbadi

5.3 Query Response Times over a Sample Scenario

We demonstrate the query response time of ABACUS for intersection and row-based
and column based aggregation queries over a sample scenario to show that it is scalable
and efficient. We compute the response times for queries in an environment where m
data warehouses each of which with a dimension table and a fact table size of 1 million.
We execute the queries over these data warehouses by varying the bandwidth and the
number of data warehouses involved, m. Figures 5, 6, and 7 show the query response
time for intersection, row-based aggregation and column-based aggregation queries.
During these calculations we take the size of key-value pair, b, as 1024 bits, the cost
of hashing, Ch, as 10−4 [5] seconds and the cost of solving an equation, Ceq , as 10−5

seconds (the time needed to solve an equation system with 20 unknowns in Matlab).
The analytical evaluations and the results over the sample scenario demonstrate that
ABACUS is scalable in terms of the number of parties participating in queries and the
cost is increasing linearly with the number of parties involved. In addition as results
show that the query processing is communication intensive operation since ABACUS
uses light-weight computations.

6 Conclusion

In this paper, we propose a distributed middleware, ABACUS, to perform intersection,
join and aggregation queries over multiple private data warehouses in a privacy preserv-
ing manner. In addition to this, we present new types of aggregation queries which are
needed for privacy preserving data sharing. Analytical evaluations demonstrate that the
proposed scheme is efficient and scalable.

References

1. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, N. Mishra, R. Mot-
wani, U. Srivastava, D. Thomas, J. Widom, and Y. Xu. Enabling privacy for the paranoids.
In Proc. of the 30th Int’l Conference on Very Large Databases VLDB, pages 708–719, Aug
2004.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases. In
Proc. of the 2003 ACM SIGMOD international conference on on Management of data, pages
86–97, 2003.

3. S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration of het-
erogeneous information sources. Data Knowl. Eng., 36(3):215–249, 2001.

4. U. Dayal and H. Hwang. View definition and generalization for database integration in a
multidatabase system. In IEEE Transactions on Software Engineering, volume 10, pages
628–644, 1984.

5. P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu. An-
alyzing and modeling encryption overhead for sensor network nodes. In Proc. of the 2nd
ACM international conference on Wireless sensor networks and applications, pages 151–
159. ACM Press, 2003.

6. O. Goldreich. Secure multi-party computation. Working Draft, jun 2001.
7. L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L. Wimmers.

Transforming heterogeneous data with database middleware: Beyond integration. IEEE Data
Engineering Bulletin, 22(1):31–36, 1999.

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 41

8. A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data manage-
ment systems. In Proc. of the 19th ICDE, pages 505–516, 2003.

9. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proc. of the 2003 ACM SIGMOD, pages 325–336,
2003.

10. M. W. N. Jefferies, C. Mitchell. A proposed architecture for trusted third party services.
Cryptography Policy and Algorithms Conference, July 1995.

11. M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation.
In ACM Symposium on Theory of Computing, pages 590–599, 2001.

12. Secure Hash Standart. http://www.itl.nist.gov/fipspubs/fip180-1.htm.
13. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

Causeway: Support for Controlling
and Analyzing the Execution

of Multi-tier Applications

Anupam Chanda1, Khaled Elmeleegy1,
Alan L. Cox1, and Willy Zwaenepoel2

1 Rice University, 6100 Main Street, Houston, Texas 77005, USA
{anupamc, kdiaa, alc}@cs.rice.edu

2 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
willy.zwaenepoel@epfl.ch

Abstract. Causeway provides runtime support for the development of
distributed meta-applications. These meta-applications control or ana-
lyze the behavior of multi-tier distributed applications such as multi-tier
web sites or web services. Examples of meta-applications include multi-
tier debugging, fault diagnosis, resource tracking, prioritization, and se-
curity enforcement.

Efficient online implementation of these meta-applications requires
meta-data to be passed between the different program components. Ex-
amples of metadata corresponding to the above meta-applications are
request identifiers, priorities or security principal identifiers. Causeway
provides the infrastructure for injecting, destroying, reading, and writing
such metadata.

The key functionality in Causeway is forwarding the metadata asso-
ciated with a request at so-called transfer points, where the execution of
that request gets passed from one component to another. This is done au-
tomatically for system-visible channels, such as pipes or sockets. An API
is provided to implement the forwarding of metadata at system-opaque
channels such as shared memory.

We describe the design and implementation of Causeway, and we eval-
uate its usability and performance. Causeway’s low overhead allows it to
be present permanently in production systems. We demonstrate its us-
ability by showing how to implement, in 150 lines of code and without
modification to the application, global priority enforcement in a multi-
tier dynamic web server.

1 Introduction

Many applications, e.g., web sites generating dynamic content and web service
applications, have multi-tiered implementations. A multi-tier application is com-
posed of multiple program components communicating among themselves to ex-
ecute incoming requests. In such applications, a request is executed by multiple
threads of control on different application components, the threads of control

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 42–59, 2005.
c© IFIP International Federation for Information Processing 2005

Causeway: Support for Controlling and Analyzing the Execution 43

exchanging data among themselves along communication channels. For exam-
ple, an application may be composed of a web server, an application server, and
a database server: requests are executed by all three programs communicating
with each other to exchange request data.

Often, systems to control or analyze the execution of multi-tier applications
are written to perform tasks like multi-tier debugging, fault diagnosis, resource
tracking, prioritization, and security enforcement. Examples include Pinpoint [5],
Magpie [4,9], and Domain and Type Enforcement (DTE) [3] for Unix systems.
We term these and similar systems that control or analyze the execution of
multi-tier applications as meta-applications.

Traditionally, there have been two approaches to writing such meta-
applications: a log-based approach, and a metadata-passing approach. The log-
based approach operates in two phases — first, execution events of the applica-
tion are recorded in logs, and next, the log records are analyzed. Magpie [4,9] and
TraceBack [2] are examples of systems employing this approach. The log-based
approach cannot affect the execution of requests in an online manner because pro-
cessing of a log record lags the corresponding execution event by a positive time
delay. Additionally, the execution events on the different tiers belonging to the
same request need to be identified and connected while processing the log records.

The metadata-passing approach propagates metadata — arbitrary, out-of-
band data — in addition to request data along execution paths. The meta-
application accesses and utilizes this metadata to achieve its goal. Often, the
metadata also serves in connecting a request’s execution events spread across
the tiers of the system, e.g., if it contains a request identifier. Several examples
of meta-applications using this approach exist in the literature, e.g., Pinpoint [5]
and DTE [3]. Pinpoint and DTE use request identifiers and security principal
identifiers as metadata respectively. These meta-applications use hand-crafted
code to handle and propagate metadata.

Unlike the log-based approach, the metadata-passing approach can affect the
execution of requests in an online manner, e.g., Real-Time CORBA [10] which
propagates priorities among application components to affect scheduling. Hence,
we adopt the metadata-passing approach to building meta-applications. Our
objective is to provide a framework that makes development of meta-applications
using this approach easier.

In this paper we introduce Causeway, a framework to facilitate the associa-
tion and propagation of metadata along request execution paths in a multi-tier
application. Causeway provides an interface to associate metadata with threads
of control and facilitates the propagation of metadata across communication
channels. Causeway aids the development of meta-applications by performing
all necessary management to handle and propagate metadata. This obviates
the need for hand-crafted code for the common requirements of different meta-
applications employing the metadata-passing approach.

The alternative to Causeway, propagating metadata at application level, in-
volves augmenting all application-level inter-process communication protocols —
a tedious solution. By making propagation of metadata a system-level function,

44 A. Chanda et al.

it becomes independent of the application-level communication protocol used.
Further, in a multi-tier application, it is possible that some individual compo-
nents are unaware of the presence of metadata or choose to ignore it. Consider
a three-tier system, where the middle tier component is unaware of metadata.
The front and the back-end tiers may still, however, need to access metadata.
In this scenario, system support for metadata propagation is required in the
middle tier.

Causeway performs automatic propagation of metadata across system-visible
communication channels. Such channels are those implemented in the operating
system kernel and system libraries, e.g., pipes and sockets. Augmented kernel
and system libraries provide Causeway’s support for system-visible channels.
Causeway provides an API to be called from application code to perform meta-
data propagation across system-opaque channels, e.g., shared memory. Support
for system-opaque channels is the essential difference between Causeway and
Stateful Distributed Interposition (SDI) [11].

We have implemented a prototype of Causeway, measured its overhead, and
built a useful meta-application using Causeway. We summarize our experience
with Causeway as follows:

– Adding support to propagate metadata across system-visible channels re-
quired modest effort.

– The measured overhead of Causeway to propagate metadata was small in
absolute cost (order of microseconds) and it scaled well with increasing meta-
data size. The overhead of Causeway, while not propagating any metadata,
was insignificant — less than 3% for a microbenchmark involving the pipe
channel. Thus Causeway may reasonably remain a part of a production en-
vironment whether implementing a meta-application or not.

– Using Causeway we could rapidly implement a distributed priority enforce-
ment system where the priority of a request is injected and propagated as
metadata, and accessed to implement global priority scheduling. This re-
quired writing only about 150 lines of code on top of Causeway to change
the priority of threads executing requests. We evaluated this system on an
implementation of the TPC-W [12] benchmark.

The rest of the paper is organized as follows. We describe the design of
Causeway in Section 2. In Section 3 we measure Causeway’s overhead with two
microbenchmarks. In Section 4 we evaluate Causeway’s complexity to support
system-visible channels, and measure the overhead of Causeway on an implemen-
tation of the TPC-W benchmark. We describe the distributed priority enforce-
ment system using Causeway in Section 5. Related work is covered in Section 6.
We conclude in Section 7.

2 Causeway Design

At an abstract level, Causeway works as follows. A request to an application is
executed by one or more threads of control, possibly in one or more tiers. Threads

Causeway: Support for Controlling and Analyzing the Execution 45

exchange request data along communication channels, e.g., sockets, pipes and
shared memory. Causeway’s interface supports injection, inspection, modifica-
tion and removal of metadata. Metadata is assigned to a thread when it performs
injection. When a thread sends request data to another thread along a channel,
Causeway transfers metadata from the former thread to the latter. Support for
metadata propagation is required at transfer points where an application thread
sends to or receives data from a channel. In this way, metadata, once injected,
is propagated along the request execution paths.

Causeway has two parts: (1) a set of interfaces that are used by applica-
tions to manage and utilize metadata, and (2) mechanisms that implement
propagation of metadata. First, we describe the structure and composition of
metadata.

2.1 Metadata

Metadata in Causeway consists of a two-tuple containing the metadata type
and the metadata value. Examples of metadata types include request priority,
request identifier, and security principal identifier. Meta-applications can define
new metadata types, if required.

2.2 Interfaces

Meta-applications can interact with Causeway in two ways — through an in-
terface to inject and access metadata and through a callback interface in which
Causeway calls handlers registered by the meta-application.

Metadata Interface. Causeway provides interfaces for injection, inspection,
modification, and removal of metadata. These interfaces may be called from
user-level or kernel-level.

Causeway manages metadata in a dictionary keyed by the address of the
associated entity. An entity is either a thread of control or data that is read from
or written to a channel. A thread’s metadata is propagated to the data written
on a write operation, subsequently this metadata is propagated from the data to
a thread performing a read operation. Further, a thread can remove metadata
associated with itself or a data entity. Table 1 shows the function signatures of
the Causeway API. The Causeway API performs metadata operations in the
following manner:

Table 1. The Causeway API

int cw type query(void *addr, int types[], int ntypes)
int cw data lookup(void *addr, int mtype, struct cw metadata *md p)
int cw data insert(void *addr, int mtype, struct cw metadata md)
int cw data remove(void *addr, int mtype)

46 A. Chanda et al.

– cw type query retrieves the collection of all metadata types associated with
addr in the types array of size ntypes. On successful completion,
cw type query returns the number of metadata types retrieved and -1 on
error. The types array must be large enough to hold all the metadata types
associated with addr otherwise an error is flagged.

– cw data lookup retrieves the metadata of type mtype associated with addr.
It returns 0 on successful completion and -1 on error.

– cw data insert inserts the given metadata md of type mtype and associates
it with addr, overwriting any prior metadata of that type. It returns 0 on
successful completion and -1 on error.

– cw data remove removes any existing metadata of type mtype associated
with addr. It returns 0 on successful completion and -1 on error.

Callback Interface. Using Causeway’s callback interface the meta-application
can register a transfer-point callback method. A transfer point is a point where
data is read from or written to a channel by a thread. At a transfer point
Causeway determines if the type of the metadata being passed has a callback
method registered. If a callback method exists, it is invoked with the metadata
as an argument. The callback method reads and possibly modifies the metadata.
The callback method can call arbitrary operating system code, e.g., to change
the priorities of threads.

The signatures of a callback method and the callback interface are shown
in Table 2. A callback method is of type callback t. The callback interface,
reg callback method, registers a given callback method for a given metadata
type at a transfer point.

Table 2. The Callback Interface

typedef void (*callback t)(struct cw metadata **md, int mtype);
callback t callback method;
void reg callback method(int mtype, callback t callback method);

2.3 Support for Propagation of Metadata

When a thread performs a write on a channel, the thread’s metadata is associated
with the data written into the channel. On a subsequent read on the channel by
a thread, metadata is propagated from the data and assigned to the thread.

There are two ways metadata can be assigned to a thread — injection and
propagation across a channel. Newly assigned metadata replaces the thread’s
existing metadata of the same type.

Transfer Points. Places where a thread writes to or reads from a channel are
transfer points. Channels are of two types: system-visible channels that occur
in the operating system kernel and system libraries, e.g., sockets and pipes,
and system-opaque channels that occur in the application, e.g., shared memory.

Causeway: Support for Controlling and Analyzing the Execution 47

Causeway exports a Systems Programming Interface (SPI) consisting of a single
function cw metadata xfer for the purpose of implementing transfer points.
cw metadata xfer takes a source entity and a destination entity as arguments.
It obtains the source entity’s metadata and assigns the obtained metadata to
the destination entity. At a transfer point for either a system-visible or system-
opaque channel, a single call to cw metadata xfer is performed.

2.4 System-Visible Channels

For system-visible channels, the metadata transfer SPI is automatically called
from an augmented kernel and system libraries to implement Causeway’s sup-
port for metadata propagation. Sockets and pipes are system-visible channels
supported by Causeway. Further, for a multi-threaded program, metadata needs
to be propagated between the user-level thread and the kernel-level thread on en-
try to and exit from the kernel because multiple user-level threads may be multi-
plexed on top of a kernel-level thread. Metadata propagation between a user-level
thread and a kernel-level thread constitutes additional system-visible channels in
Causeway. We enumerate below the transfer points for system-visible channels:

1. User-level thread to kernel-level thread: On entry to the kernel, Causeway
transfers metadata from the user-level thread to the kernel-level thread run-
ning it.

2. Kernel-level thread to user-level thread: On exit from the kernel, Causeway
transfers the kernel-level thread’s metadata to the user-level thread.

3. Kernel-level thread to message: When a kernel-level thread writes a message
on a socket or a pipe, its metadata is transferred to the message.

4. Message to kernel-level thread: When a kernel-level thread receives a message
from a socket or a pipe, metadata is transferred from the received message
to the kernel-level thread.

These transfer points occur in the operating system kernel and the threading
library.

Causeway handles sockets and pipes similarly. When a thread writes to a
socket (or a pipe), Causeway associates metadata from the thread to the data
written via the metadata transfer SPI described above. Similarly, on a subse-
quent read from the socket by another (or the same) thread, metadata is prop-
agated from the data to the thread.

The above applies for LOCAL sockets only. For INTERNET sockets, data is
encapsulated in IP packets for send and receive across sockets. Causeway encap-
sulates metadata, in addition to data, in the IP packets. For IPv4, Causeway
encapsulates metadata in the IP header as IP options. In particular, Causeway
defines a new IP option type, populates the IP header with the option type,
length, and payload. At the receiver side, metadata, if any, is extracted from
the received IP options. Since IP options can be a maximum of 40 bytes only,
with 1 byte each for the type and length fields, via this mechanism Causeway
can transfer at most 38 bytes of metadata in IP packets. This limit on metadata
size is deemed enough for most practical purposes. This limitation is an artifact

48 A. Chanda et al.

of Causeway’s implementation and not its design. A general purpose tunneling
protocol could be used to overcome this limitation, if required. For IPv6, Cause-
way uses the destination options in the IP header which does not have any size
limitation. Further details about that are outside the scope of this paper.

2.5 Shared Memory — System-Opaque Channel

For system-opaque channels, the application must be modified to call the meta-
data transfer SPI to perform propagation of metadata. Causeway supports meta-
data propagation across shared memory — a system-opaque channel imple-
mented in user-space. A transfer point needs to be inserted in the application
where a user-level thread reads from or writes to shared memory. Producer-
consumer is a popular model of shared memory usage. At an abstract level,
the model works as follows. Producers and consumers share a buffer or queue
of objects. A producer creates an object, acquires a lock to enter the critical
section, adds the object to the shared buffer or queue, and releases the lock.
A consumer acquires a lock to enter the critical section, retrieves and removes
an object from the shared buffer or queue, releases the lock, and then accesses
the retrieved object. The use of system-supported synchronization primitives,
like pthread mutex or pthread rwlock, simplifies the task of identifying the
producer-consumer communication channels through shared memory.

Two transfer points, one in the producer code and the other in the con-
sumer code are inserted. Both transfer points use the metadata transfer SPI.
The producer transfer point associates the producer thread’s metadata with the
produced object. The consumer transfer point retrieves the metadata associated
with the consumed object and propagates it to the consumer thread. Causeway
provides a user-level library that exports the metadata transfer SPI and manages
the metadata associated with shared memory objects.

2.6 Heterogeneity of Operating System Kernel and Hardware

It is quite common for a multi-tier application to be spread across machines
running heterogeneous operating system kernels on diverse hardware platforms.
The design of Causeway mandates that all inter-machine metadata propagation
be typed and be transmitted in network byte order. This ensures correct inter-
pretation of metadata at the receiver. Further, our implementation of Causeway
in FreeBSD lays out a blueprint for its implementation in other operating system
kernels. In Section 4.1 we list the transfer points in the FreeBSD kernel required
for the system-visible channels. An equivalent set of transfer points is required
in another operating system kernel, such as Linux.

2.7 Operating System Specific Meta-applications

Sometimes, parts of a meta-application may require modifications to the oper-
ating system kernel. Under such circumstances, the meta-application becomes
operating system specific. For example, we implemented a distributed priority
enforcement system on top of Causeway which may alter priorities of threads

Causeway: Support for Controlling and Analyzing the Execution 49

and processes in a system — an operating system specific task. Thus, this meta-
application is operating system specific. On the other hand, if all we wanted in a
meta-application is to tag identifiers with requests, it would require no operating
system modification other than Causeway itself.

3 Microbenchmarks

In this section we quantify the overhead imposed by our implementation of
Causeway at the transfer points for two system-visible channels. We chose light-
weight applications to provide maximum exposure to Causeway’s overhead. We
wrote two microbenchmarks: the first measuring the overhead associated with
the transfer points for metadata propagation between a user-thread and a kernel
thread, and the second measuring the overhead for the transfer points for the
pipe channel.

In the first microbenchmark, a process creates a pthread which invokes a
getpid call. This test brings out the cost of metadata propagation across the
user-kernel boundary, because on each entry to and exit from the kernel, meta-
data is transferred from user space to kernel and vice versa. We repeat the getpid
call multiple times and measure its average cost. We perform this experiment un-
der the following scenarios: (1) without inserting the transfer point, which is the
base case, (2) inserting the transfer point but transferring 0 bytes of metadata,
(3) transferring 1 byte of metadata, and (4) transferring 32 bytes of metadata.

Table 3 shows the results of the above experiment. The cost of getpid in-
creased by about 840 machine cycles when a transfer point was introduced. We
used a 2.4 GHz Pentium 4 Xeon, so this overhead translates to about 0.35 mi-
croseconds. This result shows the cost of having the Causeway framework but
not using it to propagate any metadata. The overhead increased by about 1500
machine cycles or about 0.6 microseconds when transferring 1 byte of metadata.
To transfer 32 bytes of metadata, the further increase in overhead was small:
about 40 machine cycles or 0.02 microseconds. In relative terms, the overhead
with respect to the base case ranged from about 12% to less than 35% to transfer
metadata in the above test.

The results of the above experiment show that the overhead of using Cause-
way is small. The overhead of inserting a transfer point is less than half of a
microsecond. The overhead of transferring 32 bytes of metadata is about 1 mi-
crosecond, and the overhead scales well with increasing metadata size.

Table 3. Causeway Overhead (getpid test)

Description Cost (machine cycles) Cost (microseconds) Overhead (%)
Base case 7001 2.92 -
0 byte metadata 7841 3.27 12.0
1 byte metadata 9369 3.90 33.8
32 bytes metadata 9409 3.92 34.4

50 A. Chanda et al.

Table 4. Causeway Overhead (pipe test)

Description Cost (machine cycles) Cost (microseconds) Overhead (%)
Base case 35782 14.9 -
0 byte metadata 36807 15.3 2.9
1 byte metadata 49858 20.8 39.3
32 bytes metadata 54383 22.66 52.0

The second microbenchmark measures the cost of transferring 1 byte of data
between two processes across a pipe. As before, we perform this experiment
under the four scenarios used in the previous microbenchmark. Table 4 shows
the result for the pipe test. The overhead of inserting a transfer point but passing
no metadata is similar to that of the getpid test. The overhead of passing
metadata is higher because the metadata is propagated across address spaces.
Nevertheless, the overhead of propagating up to 32 bytes of metadata is less than
8 microseconds, a small amount. Finally, the overhead scales well with increasing
metadata size. In this test Causeway’s overhead ranged from less than 3% to
about 52% over the base case.

Note that for the above measurements we could not use a microbenchmark
consisting of a network server and client as the cost of sending messages over the
network is several orders of magnitude higher than the overhead of Causeway in
terms of absolute cost and we would not have been able to detect the overhead
of Causeway with such a microbenchmark.

4 Evaluating Causeway

In this section we quantify the complexity involved in Causeway to insert trans-
fer points for system-visible channels, and transfer points in an implementa-
tion of the TPC-W [12] benchmark. We also measure Causeway’s overhead on
TPC-W.

4.1 Transfer Points for System-Visible Channels

Sockets, pipes, and user-level thread/kernel-level thread boundary are the
system-visible channels supported by Causeway. Six transfer points in the
FreeBSD 5.2 kernel support metadata propagation across these channels as
shown in Table 5. The user thread to kernel thread and kernel thread to user
thread transfer points are required if the application is multithreaded. The socket
and pipe transfer points are required if the application performs interprocess
communication. Transfer points within system-visible channels do not require
reimplementation for each new application.

4.2 Transfer Points for Apache and MySQL

We used Causeway to propagate metadata in an implementation of the TPC-
W [12] benchmark. Our implementation of the TPC-W benchmark used the

Causeway: Support for Controlling and Analyzing the Execution 51

Table 5. Transfer Points for System-visible Channels in the FreeBSD Kernel

Location Description File name Function name
Kernel User thread to kernel thread kern/kern kse.c thread user enter
Kernel Kernel thread to user thread kern/kern kse.c thread userret
Kernel Kernel thread to socket message kern/uipc socket.c sosend
Kernel Socket message to kernel thread kern/uipc socket.c soreceive
Kernel Kernel thread to pipe message kern/sys pipe.c pipe write
Kernel Pipe message to kernel thread kern/sys pipe.c pipe read

Apache web server (version 1.3.31) built with the PHP module (version 4.3.6)
and the MySQL database server (version 4.0.16). The TPC-W interactions are
implemented as PHP scripts.

Apache is a multi-process web server and does not use shared memory com-
munication among the different processes. Thus, no transfer points are required
in Apache.

MySQL is a multi-threaded program and it uses the libpthread library on
FreeBSD. Inspection of the MySQL source code revealed that though individual
MySQL pthreads access some shared data structure in a synchronized manner,
there is no communication between threads to exchange data corresponding to
a single request. In other words, a request in MySQL is executed in its entirety
by a single pthread. An incoming database connection is accepted by a listener
thread and handed over to a worker thread. The worker thread reads the request,
executes it and sends back the response. Hence, no transfer points are required
in MySQL as well.

In TPC-W, Apache and MySQL exchange messages across sockets. MySQL
uses user-level thread on top of kernel-level threads. Thus Causeway’s support
for metadata propagation across system-visible channels, viz., sockets, and user-
level thread and kernel-level thread boundary, suffices for our implementation of
TPC-W using Apache and MySQL. This support is provided in an augmented
FreeBSD kernel.

4.3 Overhead of Causeway on TPC-W

We conducted an experiment to evaluate the overhead imposed by Causeway on
our implementation of TPC-W under a realistic workload. We subjected TPC-
W to a workload consisting of emulated clients exercising the shopping mix [12]
workload. Apache, MySQL and the load generator ran on separate machines.
All the machines were 2.4 GHz Pentium Xeon with 2 Gigabytes of memory, and
were connected by switched Gigabit ethernet. We varied the number of concur-
rent emulated clients and measured the throughput (interactions per minute)
obtained from TPC-W. We compare the throughput obtained with the Cause-
way framework with that obtained without the Causeway framework (base case).
Under Causeway we transferred 4 bytes of metadata across each transfer point
for TPC-W. Table 6 shows the results of this experiment; Causeway’s overhead
on TPC-W’s throughput remains less than 5%, further it does not increase with

52 A. Chanda et al.

Table 6. TPC-W Throughput (interactions/minute) for Shopping Mix

No. of concurrent Throughput Throughput Causeway
emulated clients (base case) using Causeway Overhead(%)
10 89.4 89 4.91
50 424.8 411 3.25
100 844.2 826.4 2.11

increasing load on the system and remains fairly constant. This result shows
that Causeway may be used in a production environment without any substan-
tial performance degradation.

5 Example Use of Causeway: Multi-tier Priority
Propagation

Meta-applications to control and analyze the execution of applications can be
built easily using Causeway. We illustrate one such meta-application here.

Using Causeway we could rapidly implement a priority propagation sys-
tem, enabling a multi-tier application to prioritize the execution of requests.
Under this system, upon receiving a request the application injects a priority
as metadata, Causeway propagates this priority metadata with the execution
of the request to each of the tiers, and the meta-application uses the prior-
ity metadata to enforce priority scheduling on each tier. The meta-application
is automatically invoked on each tier by Causeway’s transfer point callback
mechanism.

The implementation of the multi-tier priority propagation system on top of
Causeway required writing about 150 lines of code. We tested the multi-tier pri-
ority propagation system with an implementation of the TPC-W benchmark [12].
No modifications were required in the TPC-W application code, other than the
injection of priority metadata.

5.1 Metadata Access

The priorities are injected into the system when a request arrives, using the
metadata access API of Causeway. We register transfer point callback meth-
ods at the transfer points from a kernel thread to a user thread, and from a
socket to a kernel thread. These callback methods change the priorities of the
user thread and the kernel thread respectively. The first callback method affects
the scheduling of MySQL pthreads while the second one achieves the same for
Apache processes.

5.2 Application

We use the TPC-W [12] benchmark as our application. TPC-W simulates an
online bookstore. Its implementation consists of a front-end web server, providing

Causeway: Support for Controlling and Analyzing the Execution 53

an HTTP front-end and serving static content, a middle-tier application that
implements the business logic, and a back-end database server that stores the
dynamic content of the site. The benchmark defines 14 interactions with the web
site, 13 of which access the database. 6 interactions write to the database, while
the others are read-only. Our hardware and software platforms are the same as
described earlier in Section 4.

5.3 Experiment

The goal of the experiment is to demonstrate that multi-tier priority propaga-
tion using Causeway, without application modification, has considerable benefits.
Our performance metric is the response time of the high-priority requests. We
show that the response time of high priority requests is relatively independent
of the load imposed on the system. We also demonstrate that enforcing priority
at both tiers (web server and database server) is superior to only enforcing it at
the first tier.

We define a foreground load as a sequence of 100 instances of each TPC-W
interaction, spaced out in time by one second. We define a background load
that directs a steady stream of read-only requests at the site. The background
load simulates visitors browsing the web site, while the foreground load simulates
customers performing the actions that may lead to purchases at the site, thereby
deserving higher priority. We use two different levels of background load: one
which overloads the system and one which imposes a moderate load without,
however, saturating the system.

We have two levels of priority in the system: a default priority and a high
priority. Requests originating from the background load are always tagged with
metadata indicating the default priority. To demonstrate the effect of priorities,
we perform two experiments, with requests from the foreground load tagged
with metadata either indicating the high priority or the default priority. In ad-
dition, to demonstrate the difference between single-tier and multi-tier priority
enforcement, we run an experiment in which on the web server the priorities are
enforced by the transfer point callback methods as described above, but on the
database server they are ignored.

5.4 Results

Table 7 shows the average response times (along with the 95% confidence inter-
vals) in milliseconds for each of the interactions under the following conditions:

1. No background load: This case shows the baseline response time for each
interaction.

2. No priority: The background load is present, but neither of the tiers enforce
priority scheduling based on the metadata.

3. Priority in first tier: The background load is present, and the first tier (the
web server) enforces priority scheduling based on the metadata.

4. Priority in both tiers: The background load is present, and both tiers enforce
priority scheduling based on the metadata.

54 A. Chanda et al.

Table 7. Average Response Time and 95% Confidence Interval (in milliseconds) for
the TPC-W Interactions under High Background Load

Inter- No back- No Priority Priority
action ground load priority in 1st. tier in all tiers

admin-confirm 60 (±0.2) 1936 (±3.8) 1993 (±38) 342 (±71)
admin-request 59 (±0.01) 1617 (±120) 868 (±85) 68 (±13)

best-sellers 918 (±49) 3173 (±986) 3016 (±234) 940 (±33)
buy-confirm 85 (±1.3) 1951 (±36) 1992 (±67) 1457 (±131)
buy-request 60 (±1) 1930 (±4.5) 1915 (±59) 81 (±36)
customer-reg 55 (±1.2) 931 (±88) 61 (±1.5) 60 (±1.6)

home 61 (±1.7) 1737 (±93) 1095 (±102) 63 (±2.2)
new-product 81 (±1.7) 1933 (±3) 1969 (±28) 85 (±4)
order-display 60 (±0.8) 1930 (±3) 1970 (±4) 64 (±4)
order-inquiry 40 (±0.01) 42 (±2.2) 40 (±1) 40 (±0.3)
product-detail 60 (±0.6) 1516 (±127) 966 (±100) 68 (±14)
search-request 60 (±0.03) 1533 (±127) 987 (±102) 61 (±0.7)
search-result 670 (±0.6) 2628 (±314) 2528 (±5.3) 671 (±1.5)
shopping-cart 70 (±0.9) 1931 (±4) 1984 (±6) 217 (±40.5)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70 80 90 100

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Run identifier

Interaction: search-request

No background load
No priority

Priority in 1st. tier
Priority in all tiers

Fig. 1. Response Time Distribution (Sorted in Descending Order) for Search-Request
Interaction (High Background Load)

As further illustration of the results, we show in Figure 1 the response times,
sorted in descending order, for the execution of the 100 requests of the search-
request interaction under the four cases as described above.

Causeway: Support for Controlling and Analyzing the Execution 55

Table 8. Average Response Time and 95% Confidence Interval (in milliseconds) for
the TPC-W Interactions under Moderate Background Load

Inter- No back- No Priority Priority
action ground load priority in 1st. tier in all tiers

admin-confirm 60 (±0.2) 95 (±6) 90 (±6) 65 (±1.3)
admin-request 60 (±0.2) 92 (±6) 65 (±2.7) 60 (±0.15)

best-sellers 918 (±49) 1092 (±165) 1137 (±158) 912 (±0.9)
buy-confirm 85 (±1.3) 136 (±6) 123 (±6) 94 (±1.8)
buy-request 60 (±1) 103 (±7) 99 (±6) 63 (±1.7)
customer-reg 55 (±1.3) 78 (±4.4) 62 (±2.6) 59 (±1.1)

home 61 (±1.9) 98 (±6.2) 82 (±5.5) 62 (±2)
new-product 81 (±1.7) 125 (±9.6) 101 (±7) 84 (±3.4)
order-display 60 (±0.8) 102 (±6.9) 101 (±6.5) 62 (±1.5)
order-inquiry 40 (±0.01) 40 (±0.15) 40 (±0.01) 40 (±0.01)
product-detail 60 (±0.6) 94 (±6) 64 (±2.4) 60 (±0.2)
search-request 60 (±0.04) 97 (±6.3) 65 (±2.8) 60 (±0.14)
search-result 670 (±0.62) 715 (±19.7) 728 (±11.8) 667 (±3.2)
shopping-cart 70 (±0.86) 110 (±6.2) 83 (±4.1) 73 (±1.1)

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 10 20 30 40 50 60 70 80 90 100

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Run identifier

Interaction: search-request

No background load
No priority

Priority in 1st. tier
Priority in all tiers

Fig. 2. Response Time Distribution (Sorted in Descending Order) for Search Request
(Moderate Background Load)

Table 7 and Figure 1 reflect the behavior under a background load that
pushes the system into overload. The same results for a moderate background
load are shown in Table 8 and Figure 2.

56 A. Chanda et al.

5.5 Discussion

The results overall confirm the benefits of multi-tier priority enforcement. With
priorities enforced at both tiers the response times approximate those under no
load, and they are substantially better than those in the absence of priorities or
in the presence of priorities only at the first tier. The results for single-tier prior-
ity enforcement are better than with no priorities, but inferior to using priorities
at both tiers. The differences are more outspoken in the case of overload, but
remain present even under more moderate loads. Given that Causeway allows
multi-tier priority propagation without modification of the application and with-
out noticeable overhead, we argue that this serves as a convincing demonstration
of its merits.

More detailed inspection of the results on a per-interaction basis leads to
some additional observations. First, in looking at Table 7 we see that for a large
number of the interactions the response time under load with multi-tier priorities
is almost identical to the response time under no load. For a few interactions,
however, the response under load is higher, even with the priorities. This ob-
servation is explained by the fact that the background load acquires read locks
on a certain table in the database, and the fact that the interactions that show
a slowdown under load acquire an exclusive lock on that table. As a result, in-
dependent of priorities, the foreground interactions need to wait for all current
readers to finish before they can proceed at the database. Under overload, there
can be a large number of such reads in progress, explaining the marked increases
in response time for the admin-confirm, buy-confirm, buy-request and shopping-
cart interactions. For the moderate load where only a very few such readers are
present, the differences almost vanish (see Table 8). For foreground interactions
that have no conflicts with the background load, there is almost no difference
between the the no-load case and the case of load and with multi-tier priorities.

Second, in a few cases, namely the customer-registration and the order-
inquire interactions, there is no difference between single-tier and multi-tier
priorities. This is the result of the fact that for these interactions there is no
access to the database or the cost is mainly governed by application execution
and not by database access. Conversely, for the interactions whose cost is pri-
marily governed by database access or for the interactions that acquire exclusive
locks on the database, there is a more pronounced difference between single-tier
and multi-tier priorities. In these cases, the benefit of enforcing priority at the
first tier is also limited relative to the case of not having priorities at all.

6 Related Work

Several meta-applications to control or analyze multi-tier applications exist in
the literature. The use of request tagging has been utilized to determine faults
in Internet services [5]. The resulting Pinpoint system uses instrumentation of
the J2EE platform to pass on request identifiers among the different compo-
nents of the system. Each component registers information in a log about the
request identifier, the component identifier and whether a particular operation

Causeway: Support for Controlling and Analyzing the Execution 57

results in success or failure. Failure is defined as throwing a Java exception, a
runtime exception, an infinite loop, etc. The log is statistically analyzed using
data clustering techniques to find faulty components. Pinpoint does not sup-
port applications spanning multiple machines, but the authors state that the
Java RMI libraries can be extended to pass request identifiers across machines.
Unlike Causeway, Pinpoint does not track execution events in the kernel as its
instrumentation does not extend beyond the J2EE platform.

Aguilera et al. [1] infer causal paths from message traces to locate nodes
causing performance bottlenecks; their implementation is based on the Pinpoint
system [5]. They collect traces of messages between nodes, process them offline
to find causal relationships among them, and study the delay patterns of the
messages to infer which node is causing the bottleneck. Their system is intended
to operate in a ”black-box” environment, and therefore tries to be minimally
invasive. Causeway is more invasive, requiring kernel and library changes, but
in turn provides more functionality. In particular, it’s deterministic rather than
being heuristic, and much more fine-grained.

Magpie [4,9] logs events, and extracts events belonging to a particular request
execution by performing temporal joins over the log of events. These joins are
based on application-specific schemas, which may require considerable expertise
and knowledge about the application. Magpie and request identification using
Causeway present an interesting set of tradeoffs. Magpie does not require kernel
or library modifications, and leverages event logging facilities already present in
Windows. In contrast, Causeway accepts the premise of such modifications, and
as a result avoids the need for detailed knowledge about the application.

TraceBack [2] provides a debugging facility in production systems. It can
identify what first went wrong in the event of a program crash, hang or exception.
It instruments the program to record control flow information at runtime, which
is later analyzed to locate the occurrence of the first fault.

DTE [3] propagates domain and type information among communicating
processes providing security and access control for interprocess communication.
While DTE provides security mechanisms, Causeway may be used to implement
arbitrary meta-applications.

Perhaps the work closest to Causeway is Stateful Distributed Interposition
(SDI) [11] which propagates contextual information along request execution
paths in a multi-tier application. Resource constraints and security classifica-
tion are examples of contextual information. Contextual information in SDI and
metadata in Causeway are analogous. SDI assumes all communication chan-
nels in a multi-tier program to be system-visible, and thus it does not propa-
gate contextual information across system-opaque channels. Causeway supports
metadata propagation across shared memory, a system-opaque channel.

7 Conclusions

We have designed Causeway, operating system support for facilitating develop-
ment of meta-applications to control and analyze multi-tier applications. Cause-

58 A. Chanda et al.

way provides interfaces for metadata injection and access which can be used for
propagation of metadata in multi-tier applications. Propagated metadata can
be accessed and used to implement the desired meta-application. We have im-
plemented Causeway in the FreeBSD operating system kernel. The complexity
of adding transfer points in the FreeBSD kernel for system-visible channels was
modest. Causeway’s support for system-visible channels suffices for metadata
propagation in an implementation of the TPC-W [12] benchmark using Apache
and MySQL — no modification to Apache or MySQL was required. We mea-
sured the overhead of Causeway and found it small enough so that it can be used
in a production environment. Further, the overhead scales well with increasing
metadata size and load on the application. We have demonstrated the use of
Causeway by implementing a multi-tier priority enforcing system and using it to
achieve global priority enforcement on our implementation of the TPC-W bench-
mark. This required adding only about 150 lines of code on top of Causeway.

As ongoing and future work we are implementing call path profiling of dis-
tributed programs on top of Causeway. Call path profiling [7,8] associates re-
source consumption of program execution with call paths. At any point in the
program execution, a call path is defined as the sequence of call sites used to
activate each of the procedure frames on the call stack when the given point
of execution is reached. Call path profilers are superior to call-graph profilers
like gprof [6] because they can distinguish resource consumption of a procedure
based on the call paths leading to it.

In a distributed program whose components perform Remote Procedure Calls
(RPCs) among themselves, we can use Causeway to propagate the context infor-
mation (call path) from the caller to the callee, and use this propagated context
information to annotate the callee’s profiles. Profiles of the caller and the callee
may then be stitched together in a single call path tree using these annotations.
The end result is an end-to-end call path profile of a distributed program —
such a profiler does not exist in the literature. This profiling system illustrates
another useful meta-application on top of Causeway.

References

1. M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance Debugging for Distributed Systems of Black Boxes. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages
74–89, Oct. 2003.

2. A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel. TraceBack:
First Fault Diagnosis by Reconstruction of Distributed Control Flow. In Conference
on Programming Language Design and Implementation (PLDI) 2005, pages 201–
212, June 2005.

3. L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A
Domain and Type Enforcement UNIX Prototype. In Fifth USENIX UNIX Security
Symposium, June 1995.

4. P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request
Extraction and Workload Modelling. In OSDI, pages 259–272, Dec. 2004.

Causeway: Support for Controlling and Analyzing the Execution 59

5. M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
Determination in Large, Dynamic Internet Services. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks (IPDS Track), pages
595–604, June 2002.

6. S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph execution
profiler. In SIGPLAN Symposium on Compiler Construction, pages 120–126, 1982.

7. R. J. Hall. Call path profiling. In Proceedings of the 14th International Conference
on Software Engineering, pages 296–306, 1992.

8. R. J. Hall and A. J. Goldberg. Call path profiling of monotonic program resources
in UNIX. In Proceedings of the USENIX Summer Technical Conference, 1993.

9. R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Narayanan. Request extraction
in Magpie: events, schemas and temporal joins. In SIGOPS EW’04: ACM SIGOPS
European Workshop, Sept. 2004.

10. Jon Currey. Real-Time CORBA Theory and Practice : A Standards-based Ap-
proach to the Development of Distributed Real-Time Systems. At
http://www.uninova.pt/∼jmf/aptr/Documentos/CorbaRT.pdf.

11. J. Reumann and K. G. Shin. Stateful Distributed Interposition. ACM Transactions
on Computer Systems, 22(1):1–48, Feb. 2004.

12. T. P. P. C. (TPC). TPC BENCHMARK W (web commerce). At
http://www.tpc.org/tpcw/, Feb. 2002.

MINERVA∞: A Scalable Efficient Peer-to-Peer
Search Engine

Sebastian Michel1, Peter Triantafillou2, and Gerhard Weikum1

1 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
{smichel, weikum}@mpi-inf.mpg.de

2 R.A. Computer Technology Institute and University of Patras, 26500 Greece
peter@ceid.upatras.gr

Abstract. The promises inherent in users coming together to form data
sharing network communities, bring to the foreground new problems for-
mulated over such dynamic, ever growing, computing, storage, and net-
working infrastructures. A key open challenge is to harness these highly
distributed resources toward the development of an ultra scalable, effi-
cient search engine. From a technical viewpoint, any acceptable solution
must fully exploit all available resources dictating the removal of any
centralized points of control, which can also readily lead to performance
bottlenecks and reliability/availability problems. Equally importantly,
however, a highly distributed solution can also facilitate pluralism in in-
forming users about internet content, which is crucial in order to preclude
the formation of information-resource monopolies and the biased visibil-
ity of content from economically-powerful sources. To meet these chal-
lenges, the work described here puts forward MINERVA∞, a novel search
engine architecture, designed for scalability and efficiency. MINERVA∞
encompasses a suite of novel algorithms, including algorithms for creating
data networks of interest, placing data on network nodes, load balancing,
top-k algorithms for retrieving data at query time, and replication algo-
rithms for expediting top-k query processing. We have implemented the
proposed architecture and we report on our extensive experiments with
real-world, web-crawled, and synthetic data and queries, showcasing the
scalability and efficiency traits of MINERVA∞.

1 Introduction

The peer-to-peer (P2P) approach facilitates the sharing of huge amounts of data
in a distributed and self-organizing way. These characteristics offer enormous
potential benefit for the development of internet-scale search engines, power-
ful in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, click streams, etc.) of a large user com-
munity participating in the sharing network. Finally, but perhaps even more
importantly, a P2P web search engine can also facilitate pluralism in informing
users about internet content, which is crucial in order to preclude the forma-
tion of information-resource monopolies and the biased visibility of content from
economically powerful sources.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 60–81, 2005.
c© IFIP International Federation for Information Processing 2005

MINERVA∞: A Scalable Efficient P2P Search Engine 61

Our challenge therefore was to exploit P2P technology’s powerful tools for
efficient, reliable, large-scale content sharing and delivery to build a P2P web
search engine. We wish to leverage DHT technology and build highly distributed
algorithms and data infrastructures that can render P2P web searching feasible.

The crucial challenge in developing successful P2P Web search engines is
based on reconciling the following high-level, conflicting goals: on the one hand,
to respond to user search queries with high quality results with respect to preci-
sion/recall, by employing an efficient distributed top-k query algorithm, and, on
the other hand, to provide an infrastructure ensuring scalability and efficiency
in the presence of a very large peer population and the very large amounts of
data that must be communicated in order to meet the first goal.

Achieving ultra scalability is based on precluding the formation of central
points of control during the processing of search queries. This dictates a solution
that is highly distributed in both the data and computational dimensions. Such a
solution leads to facilitating a large number of nodes pulling together their compu-
tational (storage, processing, and communication) resources, in essence increasing
the total resources available for processing queries. At the same time, great care
must be exercised in order to ensure efficiency of operation; that is, ensure that en-
gaging greater numbers of peers does not lead to unnecessary high costs in terms
of query response times, bandwidth requirements, and local peer work.

With this work, we put forward MINERVA∞, a P2P web search engine
architecture, detailing its key design features, algorithms, and implementation.
MINERVA∞ features offer an infrastructure capable of attaining our scalability
and efficiency goals. We report on a detailed experimental performance study
of our implemented engine using real-world, web-crawled data collections and
queries, which showcases our engine’s efficiency and scalability. To the authors’
knowledge, this is the first work that offers a highly distributed (in both the
data dimension and the computational dimension), scalable and efficient solution
toward the development of internet-scale search engines.

2 Related Work

Recent research on structured P2P systems, such as Chord [17], CAN [13], Skip-
Nets [9] or Pastry [15] is typically based on various forms of distributed hash
tables (DHTs) and supports mappings from keys to locations in a decentralized
manner such that routing scales well with the number of peers in the system.
The original architectures of DHT-based P2P networks are typically limited to
exact-match queries on keys. More recently, the data management community
has focused on extending such architectures to support more complex queries
[10,8,7]. All this related work, however, is insufficient for text queries that con-
sist of a variable number of keywords, and it is absolutely inappropriate for
full-fledged Web search where keyword queries should return a ranked result list
of the most relevant approximate matches [3].

Within the field of P2P Web search, the following work is highly related to our
efforts. Galanx [21] is a P2P search engine implemented using the Apache HTTP

62 S. Michel, P. Triantafillou, and G. Weikum

server and BerkeleyDB. The Web site servers are the peers of this architecture;
pages are stored only where they originate from. In contrast, our approach leaves
it to the peers to what extent they want to crawl interesting fractions of the Web
and build their own local indexes, and defines appropriate networks, structures,
and algorithms for scalably and efficiently sharing this information.

PlanetP [4] is a pub/sub service for P2P communities, supporting content
ranking search. PlanetP distinguishes local indexes and a global index to describe
all peers and their shared information. The global index is replicated using a
gossiping algorithm. This system, however, appears to be limited to a relatively
small number of peers (e.g., a few thousand).

Odissea [18] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds the
complete, Web-scale, index for a given text term (i.e., keyword or word stem).
Query execution uses a distributed version of Fagin’s threshold algorithm [5].
The system appears to create scalability and performance bottlenecks at the
single-node where index lists are stored. Further, the presented query execution
method seems limited to queries with at most two keywords. The paper actually
advocates using a limited number of nodes, in the spirit of a server farm.

The system outlined in [14] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and man-
ages the respective index structures. Particular emphasis is put on minimizing
the bandwidth used during multi-keyword searches. [11] considers content-based
retrieval in hybrid P2P networks where a peer can either be a simple node or a
directory node. Directory nodes serve as super-peers, which may possibly limit
the scalability and self-organization of the overall system. The peer selection for
forwarding queries is based on the Kullback-Leibler divergence between peer-
specific statistical models of term distributions.

Complementary, recent research has also focused into distributed top-k query
algorithms [2,12] (and others mentioned in these papers which are straightfor-
ward distributed versions/extensions of traditional centralized top-k algorithms,
such as NRA [6]). Distributed top-k query algorithms are an important com-
ponent of our P2P web search engine. All these algorithms are concerned with
the efficiency of top-k query processing in environments where the index lists
for terms are distributed over a number of nodes, with index lists for each term
being stored in a single node, and are based on a per-query coordinator which
collects progressively data from the index lists. The existence of a single node
storing a complete index list for a term undoubtedly creates scalability and ef-
ficiency bottlenecks, as our experiments have showed. The relevant algorithms
of MINERVA∞ ensure high degrees of distribution for index lists’ data and
distributed processing, avoiding central bottlenecks and boosting scalability.

3 The Model

In general, we envision a widely distributed system, comprised of great numbers
of peers, forming a collection with great aggregate computing, communication,

MINERVA∞: A Scalable Efficient P2P Search Engine 63

and storage capabilities. Our challenge is to fully exploit these resources in order
to develop an ultra scalable, efficient, internet-content search engine.

We expect that nodes will be conducting independent web crawls, discover-
ing documents and computing scores of documents, with each score reflecting
a document’s importance with respect to terms of interest. The result of such
activities is the formation of index lists, one for each term, containing relevant
documents and their score for a term. More formally, our network consists of a set
of nodes N , collectively storing a set D of documents, with each document having
a unique identifier docID, drawn from a sufficiently large name space (e.g., 160
bits long). Set T refers to the set of terms. The notation |S| denotes the cardi-
nality of set S. The basic data items in our model are triplets of the form (term,
docID, score). In general, nodes employ some function score(d, t) : D → (0, 1],
which for some term t, produces the score for document d. Typically, such a
scoring function utilizes tdf*idf style statistical metadata.

The model is based on two fundamental operations. The Post(t, d, s) op-
eration, with t ∈ T , d ∈ D, and s ∈ (0, 1], is responsible for identifying a
network node and store there the (t, d, s) triplet. The operation Query(Ti, k) :
return(Lk), with Ti ⊆ T , k an integer, and Lk = {(d, T otalScore(d)) : d ∈
D, TotalScore(d) ≥ RankKscore}, is a top-k query operation. TotalScore(d)
denotes the aggregate score for d with respect to terms in Ti. Although there
are several possibilities for the monotonic aggregate function to be used, we em-
ploy summation, for simplicity. Hence, TotalScore(d) =

∑
t∈Ti

score(d, t). For a
given term, RankKscore refers to the k-th highest TotalScore, smin (smax) refers
to the minimum (maximum) score value, and, given a score s, next(s) (prev(s))
refers to the score value immediately following (preceding) s.

All nodes are connected on a global network G. G is an overlay network,
modeled as a graph G = (N, E), where E denotes the communication links
connecting the nodes. E is explicitly defined by the choice of the overlay network;
for instance, for Chord, E consists of the successor, predecessor, and finger table
(i.e., routing table) links of each node.

In addition to the global network G, encompassing all nodes, our model
employs term-specific overlays, coined Term Index Networks (TINs). I(t) denotes
the TIN for term t and is used to store and maintain all (t, d, s) items. TIN I(t)
is defined as I(t) = (N(t), E(t)), N(t) ⊆ N . Note that nodes in N(t) have
in addition to the links for participating in G, links needed to connect them
to the I(t) network. The model itself is independent of any particular overlay
architecture.

I(t).n(si) defines the node responsible for storing all triplets (t, d, s) for which
score(d, t) = s = si. When the context is well understood, the same node is
simply denoted as n(s).

4 Design Overview and Rationale

The fundamental distinguishing feature of MINERVA∞ is its high distribu-
tion both in the data and computational dimensions. MINERVA∞ goes far

64 S. Michel, P. Triantafillou, and G. Weikum

beyond the state of the art in distributed top-k query processing algorithms,
which are based on having nodes storing complete index lists for terms and
running coordinator-based top-k algorithms [2,12]. From a data point of view,
the principle is that the data items needed by top-k queries are the triplets
(term, docID, score) for each queried term (and not the index lists containing
them). A proper distributed design for such systems then should appropriately
distribute these items controllably so to meet the goals of scalability and effi-
ciency. Thus, data distribution in MINERVA∞ is at the level of this, much finer
data grain. From a system’s point of view, the design principle we follow is to
organize the key computations to engage several different nodes, with each node
having to perform small (sub)tasks, as opposed to assigning single large task
to a single node. These design choices, we believe, will greatly boost scalability
(especially under skewed accesses).

Our approach to materializing this design relies on the employment of the
novel notion of Term Index Networks (TINs). TINs may be formed for every term
in our system, and they serve two roles: First, as an abstraction, encapsulating
the information specific to a term of interest, and second, as a physical mani-
festation of a distributed repository of the term-specific data items, facilitating
their efficient and scalable retrieval. A TIN can be conceptualized as a virtual
node storing a virtually global index list for a term, which is constructed by the
sorted merging of the separate complete index lists for the term computed at dif-
ferent nodes. Thus, TINs are comprised of nodes which collectively store different
horizontal partitions of this global index list. In practice, we expect TINs to be
employed only for the most popular terms (a few hundred to a few thousand)
whose accesses are expected to form scalability and performance bottlenecks.

We will exploit the underlying network G′s architecture and related algo-
rithms (e.g., for routing/lookup) to efficiently and scalably create and maintain
TINs and for retrieving TIN data items, from any node of G. In general, TINs
may form separate overlay networks, coexisting with the global overlay G1.

The MINERVA∞ algorithms are heavily influenced by the way the well-
known, efficient top-k query processing algorithms (e.g., [6]) operate, looking
for docIDs within certain ranges of score values. Thus, the networks’ lookup(s)
function, will be used using scores s as input, to locate the nodes storing docIDs
with scores s.

A key point to stress here, however, is that top-k queries Q({t1, ..., tr}, k)
can originate from any peer node p of G, which in general is not a member of
any I(ti), i = 1, ..., r and thus p does not have, nor can it easily acquire, the
necessary routing state needed to forward the query to the TINs for the query
terms. Our infrastructure, solves this by utilizing for each TIN a fairly small
number (relative to the total number of data items for a term) of nodes of G

1 In practice, it may not always be necessary or advisable to form full-fledged separate
overlays for TINs; instead, TINs will be formed as straightforward extensions of G:
in this case, when a node n of G joins a TIN, only two additional links are added to
the state of n linking it to its successor and predecessor nodes in the TIN. In this
case, a TIN is simply a (circular) doubly-linked list.

MINERVA∞: A Scalable Efficient P2P Search Engine 65

which will be readily identifiable and accessible from any node of G and can act
as gateways between G and this TIN, being members of both networks.

Finally, in order for any highly distributed solution to be efficient, it is cru-
cial to keep as low as possible the time and bandwidth overheads involved in the
required communication between the various nodes. This is particularly challeng-
ing for solutions built over very large scale infrastructures. To achieve this, the
algorithms of MINERVA∞ follow the principles put forward by top-performing,
resource-efficient top-k query processing algorithms in traditional environments.
Specifically, the principles behind favoring sequential index-list accesses to ran-
dom accesses (in order to avoid high-cost random disk IOs) have been adapted in
our distributed algorithms to ensure that: (i) sequential accesses of the items in
the global, virtual index list dominate, (ii) they require either no communication,
or at most an one-hop communication between nodes, and (iii) random accesses
require at most O(log|N |) messages.

To ensure the at-most-one-hop communication requirement for successive se-
quential accesses of TIN data, the MINERVA∞ algorithms utilize an order pre-
serving hash function, first proposed for supporting range queries in DHT-based
data networks in [20]. An order preserving hash function hop() has the property
that for any two values v1, v2, if v1 > v2 then hop(v1) > hop(v2). This guarantees
that data items corresponding to successive score values of a term t are placed
either at the same or at neighboring nodes of I(t). Alternatively, similar func-
tionality can be provided by employing for each I(t) an overlay based on skip
graphs or skip nets [1,9]. Since both order preserving hashing and skip graphs
incur the danger for load imbalances when assigning data items to TIN nodes,
given the expected data skew of scores, load balancing solutions are needed.

The design outlined so far, leverages DHT technology to facilitate efficiency
and scalability in key aspects of the system’s operation. Specifically, posting (and
deleting) data items for a term from any node can be done in O(log|N |) time,
in terms of the number of messages. Similarly, during top-k query processing,
the TINs of the terms in the query can be also reached in O(log|N |) messages.
Furthermore, no single node is over-burdened with tasks which can either require
more resources than available, or exhaust its resources, or even stress its resources
for longer periods of time. In addition, as the top-k algorithm is processing
different data items for each queried term, this involves gradually different nodes
from each TIN, producing a highly distributed, scalable solution.

5 Term Index Networks

In this section we describe and analyze the algorithms for creating TINs and
populating them with data and nodes.

5.1 Beacons for Bootstrapping TINs

The creation of a TIN has these basic elements: posting data items, inserting
nodes, and maintaining the connectivity of nodes to ensure the efficiency/scalabi-
lity properties promised by the TIN overlay.

66 S. Michel, P. Triantafillou, and G. Weikum

As mentioned, a key issue to note is that any node p in G may need to post
(t, d, s) items for a term t. Since, in general, p is not a member of I(t) and does
not necessarily know members of I(t), efficiently and scalably posting items to
I(t) from any p becomes non-trivial. To overcome this, a bootstrapping process
for I(t) is employed which initializes an TIN I(t) for term t. The basic novelty
lies in the special role to be played by nodes coined beacons, which in essence
become gateways, allowing the flow of data and requests between the G and I(t)
networks.

In the bootstrap algorithm, a predefined number of “dummy” items of the
form (t, �, si) is generated in sequence for a set of predefined score values si,
i = 1, ..., u. Each such item will be associated with a node n in G, where it
will be stored. Finally, this node n of G will also be made a member of I(t) by
randomly choosing a previously inserted beacon node (i.e., for the one associated
with an already inserted score value sj , 1 ≤ j ≤ i − 1) as a gateway.

The following algorithm details the pseudocode for bootstrapping I(t). It
utilizes an order-preserving hash function hop() : T × (0, 1] → [m], where m is
the size of the identifiers in bits and [m] denotes the name space used for the
overlay (e.g., all 2160 ids, for 160-bit identifiers). In addition, a standard hash
function h() : (0, 1] → [m], (e.g. SHA-1) is used. The particulars of the order
preserving hash function to be employed will be detailed after the presentation
of the query processing algorithms which they affect. The bootstrap algorithm
selects u “dummy” score values, i/u, i = 1, ..., u, finds for each such score value
the node n in G where it should be placed (using hop()), stores this score there
and inserts n into the I(t) network as well. At first, the I(t) network contains
only the node with the dummy item with score zero. At each iteration, another
node of n is added to I(t) using as gateway the node of G which was added
in the previous iteration to I(t). For simplicity of presentation, the latter node

Algorithm 1. Bootstrap I(t)
1: input: u: the number of “dummy” items (t, �, si), i = 1, ..., u
2: input: t: the term for which the TIN is created
3: p = 1/u
4: for i = 1 to u do
5: s = i × p
6: lookup(n.s) = hop(t, s) { n.s in G will become the next beacon node of I(t) }
7: if s = p then
8: N(t) = {n.s}
9: E(t) = ∅ {Initialized I(t) with n.s with the first dummy item}

10: end if
11: if s
= p then
12: n1 = hop(t, s − p) {insert n(s) into I(t) using node n(s − p) as gateway}
13: call join(I(t), n1, s)
14: end if
15: store (t, �, s) at I(t).n(s)
16: end for

MINERVA∞: A Scalable Efficient P2P Search Engine 67

can be found by simply hashing for the previous dummy value. A better choice
for distributing the load among the beacons is to select at random one of the
previously-inserted beacons and use it as a gateway.

Obviously, a single beacon per TIN suffices. The number u of beacon scores
is intended to introduce a number of gateways between G and I(t) so to avoid
potential bottlenecks during TIN creation. u will typically be a fairly small
number so the total beacon-related overhead involved in the TIN creation will
be kept small. Further, we emphasize that beacons are utilized by the algo-
rithm posting items to TINs. Post operations will in general be very rare com-
pared to query operations and query processing does not involve the use of
beacons.

Finally, note that the algorithm uses a join() routine that adds a node n(s)
storing score s into I(t) using a node n1 known to be in I(t) and thus, has the
required state. The new node n(s) must occupy a position in I(t) specified by the
value of hop(t, s). Note that this is ensured by using h(nodeID), as is typically
done in DHTs, since these node IDs were selected from the order-preserving
hash function. Besides the side-effect of ensuring the order-preserving position
for the nodes added to a TIN, the join routine is otherwise straightforward: if the
TIN is a full-fledged DHT overlay, join() is updating the predecessor/successor
pointers, the O(log|N |) routing state of the new node, and the routing state of
each I(t) node pointing to it, as dictated by the relevant DHT algorithm. If the
TIN is simply a doubly-linked list, then only predecessor/successor pointers are
the new node and its neighbors are adjusted.

5.2 Posting Data to TINs

The posting of data items is now made possible using the bootstrapped TINs.
Any node n1 of G wishing to post an item (t, d, s) first locates an appropriate
node of G, n2 that will store this item. Subsequently, it inserts node n2 into I(t).
To do this, it randomly selects a beacon score and associated beacon node, from
all available beacons. This is straightforward given the predefined beacon score
values and the hashing functions used. The chosen beacon node has been made
a member of I(t) during bootstrapping. Thus, it can “escort” n2 into I(t).

The following provides the pseudocode for the posting algorithm. By design,
the post algorithm results in a data placement which introduces two character-
istics, that will be crucial in ensuring efficient query processing. First, (as the
bootstrap algorithm does) the post algorithm utilizes the order-preserving hash
function. As a result, any two data items with consecutive score values for the
same term will be placed by definition in nodes of G which will become one-hop
neighbors in the TIN for the term, using the join() function explained earlier.
Note, that within each TIN, there are no ‘holes’. A node n becomes a member
of a TIN network if and only if a data item was posted, with the score value
for this item hashing to n. It is instructing here to emphasize that if TINs were
not formed and instead only the global network was present, in general, any
two successive score values could be falling in nodes which in G could be many
hops apart. With TINs, following successor (or predecessor) links always leads to

68 S. Michel, P. Triantafillou, and G. Weikum

Algorithm 2. Posting Data to I(t)
1: input: t, d, s: the item to be inserted by a node n1

2: n(s) = hop(t, s)
3: n1 sends (t, d, s) to n(s)
4: if n(s) /∈ N(t) then
5: n(s) selects randomly a beacon score sb

6: lookup(nb) = hop(t, sb) { nb is the beacon node storing beacon score sb }
7: n(s) calls join(I(t), nb, s)
8: end if
9: store ((t, d, s)

nodes where the next (or previous) segment of scores have been placed. This fea-
ture in essence ensures the at-most-one-hop communication requirement when
accessing items with successive scores in the global virtual index list for a term.

Second, the nodes of any I(t) become responsible for storing specific segments
(horizontal partitions) of the global virtual index list for t. In particular, an I(t)
node stores all items for t for a specific (range of) score value, posted by any
node of the underlying network G.

5.3 Complexity Analysis

The bootstrapping I(t) algorithm is responsible for inserting u beacon items. For
each beacon item score, the node n.s is located by applying the hop() function
and routing the request to that node (step 5). This will be done using G’s lookup
algorithm in O(log|N |) messages. The next key step is to locate the previously
inserted beacon node (step 11) (or any beacon node at random) and sending
it the request to join the TIN. Step 11 again involves O(log|N |) messages. The
actual join() routine will cost O(log2|N(t)|) messages, which is the standard
join() message complexity for any DHT of size N(t). Therefore, the total cost is
O(u × (log|N | + log2|N(t)|) messages.

The analysis for the posting algorithm is very similar. For each post(t, d, s)
operation, the node n where this data item should be stored is located and
the request is routed to it, costing O(log|N |) messages (step 3). Then a random
beacon node is located, costing O(log|N |) messages, and then the join() routine is
called from this node, costing O(log2|N(t)|) messages. Thus, each post operation
has a complexity of O(log|N |) + O(log2|N(t)|) messages.

Note that both of the above analysis assumed that each I(t) is a full-blown
DHT overlay. This permits a node to randomly select any beacon node to use
to join the TIN. Alternatively, if each I(t) is simply a (circular) doubly-linked
list, then a node can join a TIN using the beacon storing the beacon value that
is immediately preceding the posted score value. This requires O(log|N |) hops
to locate this beacon node. However, since in this case the routing state for each
node of a TIN consists of only the two (predecessor and successor) links, the cost
to join is in the worst case O(|N(t)|), since after locating the beacon node with
the previous beacon value, O(|N(t)|) successor pointers may need to be followed
in order to place the node in its proper order-preserving position. Thus, when

MINERVA∞: A Scalable Efficient P2P Search Engine 69

TINs are simple doubly-linked lists, the complexity of both the bootstrap and
post algorithms are O(log|N | + |N(t)|) messages.

6 Load Balancing

6.1 Order-Preserving Hashing

The order preserving hash function to be employed is important for several rea-
sons. First, for simplicity, the function can be based on a simple linear transform.
Consider hashing a value f(s) : (0, 1] → I, where f(s) transforms a score s into
an integer; for instance, f(s) = 106 × s. Function hop() can be defined then as

hop(s) = (
f(s) − f(smin)

f(smax) − f(smin)
× 2m) mod 2m (1)

Although such a function is clearly order-preserving, it has the drawback that
it produces the same output for items of equal scores of different terms. This
leads to the same node storing for all terms all items having the same score. This
is undesirable since it cannot utilize all available resources (i.e., utilize different
sets of nodes to store items for different terms). To avoid this, hop() is refined
to take as input the term name, which provides the necessary functionality, as
follows.

hop(t, s) = (h(t) +
f(s) − f(smin)

f(smax) − f(smin)
× 2m) mod 2m (2)

The term h(t) adds a different random offset for different terms, initiating the
search for positions of term score values at different, random, offsets within the
namespace. Thus, by using the h(t) term in hop(t, s) the result is that any data
items having equal scores but for different terms are expected to be stored at
different nodes of G.

Another benefit stems from ameliorating the storage load imbalances that
result from the non-uniform distribution of score values. Assuming a uniform
placement of nodes in G, the expected non-uniform distribution of scores will
result in a non-uniform assignment of scores to nodes. Thus, when viewed from
the perspective of a single term t, the nodes of I(t) will exhibit possibly severe
storage load imbalances. However, assuming the existence of large numbers of
terms (e.g., a few thousand), and thus data items being posted for all these
terms over the same set of nodes in G, given the randomly selected starting
offsets for the placement of items, it is expected that the severe load imbalances
will disappear. Intuitively, overburdened nodes for the items of one term are
expected to be less burdened for the items of other terms and vice versa.

But even with the above hash function, very skewed score distributions will
lead to storage load imbalances. Expecting that exponential-like distributions
of score values will appear frequently, we developed a hash function that is
order-preserving and handles load imbalances by assigning score segments of
exponentially decreasing sizes to an exponentially increasing number of nodes.
For instance, the sparse top 1/2 of the scores distribution is to be assigned to a
single node, the next 1/4 of scores is to be assigned to 2 nodes, the next 1/8 of
scores to 4 nodes, etc. The details of this are omitted for space reasons.

70 S. Michel, P. Triantafillou, and G. Weikum

6.2 TIN Data Migration

Exploiting the key characteristics of our data, MINERVA∞ can ensure further
load balancing with small overheads. Specifically, index lists data entries are
small in size and are very rarely posted and/or updated. In this subsection we
outline our approach for improved load balancing.

We require that each peer posting index list entries, first computes a (equi-
width) histogram of its data with respect to its score distribution. Assuming a
targeted |N(t)| number of nodes for the TIN of term t, it can create |N(t)| equal-
size partitions, with lowscorei, highscorei denoting the score ranges associated
with partition i, i = 1, ..., |N(t)|. Then it can simply utilize the posting algorithm
shown earlier, posting using the lowscorei scores for each partition. The only
exception to the previously shown post algorithm is that the posting peer now
posts at each iteration a complete partition of its index list, instead of just a
single entry.

The above obviously can guarantee perfect load balancing. However, subse-
quent postings (typically by other peers) may create imbalances, since different
index lists may have different score distributions. Additionally, when ensuring
overall load balancing over multiple index lists being posting by several peers,
the order-preserving property of the placement must be guaranteed. Our ap-
proach for solving these problems is as follows. First, again the posting peer
is required to compute a histogram of its index list. Second, the histogram of
the TIN data (that is, the entries already posted) is stored at easily identifi-
able nodes. Third, the posting peer is required to retrieve this histogram and
‘merge’ it with his own. Fourth, the same peer identifies how the total data
must now be split into |N(t)|, equal-size partitions of consecutive scores. Fi-
nally, it identifies all data movements (from TIN peer to TIN peer) necessary to
redistribute the total TIN data so that load balancing and order preservation is
ensured.

Detailed presentation of the possible algorithms for this last step and their
respective comparison is beyond the scope of this paper. We simply mention
that total TIN data sizes is expected to be very small (in actual number of
bytes stored and moved). For example, even with several dozens of peers posting
different, even large, multi-million-entry, index lists, in total the complete TIN
data size will be a few hundred MBs, creating a total data transfer movement
equivalent to that of downloading a few dozen MP3 files. Further, index lists’
data posting to TINs is expected to be a very infrequent operation (compared
to search queries). As a result, ensuring load balancing across TIN nodes proves
to be relative inexpensive.

6.3 Discussion

The approaches to index lists’ data posting outlined in the previous two sections
can be used competitively or even be combined. When posting index lists with
exponential score distributions, by design the posting of data using the order-
preserving hash function of Section 5.1, will be adequately load balanced and
nothing else is required. Conversely, when histogram information is available and

MINERVA∞: A Scalable Efficient P2P Search Engine 71

can be computed by posting peers, the TIN data migration approach will yield
load balanced data placement.

A more subtle issue is that posting with the order-preserving hash function
also facilitates random accesses of the TIN data, based on random score values.
That is, by hashing for any score, we can find the TIN node holding the entries
with this score. This becomes essential if the web search engine is to employ
top-k query algorithms which are based on random accesses of scores. In this
work, our top-k algorithms avoid random accesses, by design. However, the above
point should be kept in mind since there are recently-proposed distributed top-k
algorithms, relying on random accesses and more efficient algorithms may be
proposed in the future.

7 Top-k Query Processing

The algorithms in this section focus on how to exploit the infrastructure pre-
sented previously in order to efficiently process top-k queries. The main efficiency
metrics are query response times and network bandwidth requirements.

7.1 The Basic Algorithm

Consider a top-k query of the form Q({t1, ..., tr}, k) involving r terms that is
generated at some node ninit of G. Query processing is based on the following
ideas. It proceeds in phases, with each phase involving ‘vertical’ and ‘horizontal’
communication between the nodes within TINs and across TINs, respectively.
The vertical communications between the nodes of a TIN are occuring in parallel
across all r TINs named in the query, gathering a threshold number of data items
from each term. There is a moving coordinator node, that will be gathering the
data items from all r TINs that enable it to compute estimates of the top-k
result. Intermediate estimates of the top-k list will be passed around, as the
coordinator role moves from node to node in the next phase where the gathering
of more data items and the computation of the next top-k result estimate will
be computed.

The presentation shows separately the behavior of the query initiator, the
(moving) query coordinator, and the TIN nodes.

Query Initiator

The initiator calculates the set of start nodes, one for each term, where the
query processing will start within each TIN. Also, it randomly selects one of the
nodes (for one of the TINs) to be the initial coordinator. Finally, it passes on the
query and the coordinator ID to each of the start nodes, to initiate the parallel
vertical processing within TINs.

The following pseudocode details the behavior of the initiator.

Processing Within Each TIN

Processing within a TIN is always initiated by the start node. There is one start
node per communication phase of the query processing. In the first phase, the

72 S. Michel, P. Triantafillou, and G. Weikum

Algorithm 3. Top-k QP: Query Initiation at node G.ninit

1: input: Given query Q = {t1,.., tr}, k :
2: for i = 1 to r do
3: startNodei = I(ti).n(smax) = hop(ti, smax)
4: end for
5: Randomly select c from [1, ..., r]
6: coordID = I(tc).n(smax)
7: for i = 1 to r do
8: send to startNodei the data (Q, coordID)
9: end for

start node is the top node in the TIN which receives the query processing request
from the initiator. The start node then starts the gathering of data items for
the term by contacting enough nodes, following successor links, until a threshold
number γ (that is, a batch size) of items has been accumulated and sent to the
coordinator, along with an indication of the maximum score for this term which
has not been collected yet, which is actually either a locally stored score or the
maximum score of the next successor node. The latter information is critical for
the coordinator in order to intelligently decide when the top-k result list has
been computed and terminate the search. In addition, each start node sends to
the coordinator the ID of the node of this TIN to be the next start node, which is
simply the next successor node of the last accessed node of the TIN. Processing
within this TIN will be continued at the new start node when it receives the
next message from the coordinator starting the next data-gathering phase.

Algorithm 4 presents the pseudocode for TIN processing.

Algorithm 4. Top-k QP: Processing by a start node within a TIN
1: input: A message either from the initiator or the coordinator
2: tCollectioni = ∅
3: n = startNodei

4: while |tCollectioni| < γ do
5: while |tCollectioni| < γ AND more items exist locally do
6: define the set of local items L = {(ti, d, s) in n}
7: send to coordID : L
8: |tCollectioni| = |tCollectioni| + |L|
9: end while

10: n = succ(n)
11: end while
12: boundi = max score stored at node n
13: send to coordID : n and boundi

Recall, that because of the manner with which items and nodes have been
placed in a TIN, following succ() links, items are collected starting from the item
with the highest score posted for this term and proceeding in sorted descending
order based on scores.

MINERVA∞: A Scalable Efficient P2P Search Engine 73

Moving Query Coordinator

Initially, the coordinator is randomly chosen by the initiator to be one of the
original start nodes. First, the coordinator uses the received collections and runs
a version of the NRA top-k processing algorithm, locally producing an estimate
of the top-k result. As is also the case with classical top-k algorithms, the exact
result is not available at this stage since only a portion of the required infor-
mation is available. Specifically, some documents with high enough TotalScore
to qualify for the top-k result are still missing. Additionally, some documents
may also be seen in only a subset of the collections received from the TINs so
far, and thus some of their scores are missing, yielding only a partially known
TotalScore.

A key to the efficiency of the overall query processing process is the ability
to prune the search and terminate the algorithm even in the presence of missing
documents and missing scores. To do this, the coordinator first computes an
estimate of the top-k result, which includes only documents whose TotalScores
are completely known, defining the RankKscore value (i.e. the smallest score in
the top-k list estimate). Then, it utilizes the boundi values received from each
start node. When a score for a document d is missing for term i, it can be
replaced with boundi to estimate the TotalScore(d). This is done for all such
d with missing scores. If RankKscore > TotalScore(d) for all d with missing
scores then there is no need to continue the process for finding the missing scores,
since the associated documents could never belong to the top-k result. Similarly,
if RankKscore >

∑
i=1,...,r boundi, then similarly there is no need to try to find

any other documents, since they could never belong to the top-k result. When
both of these conditions hold, the coordinator terminates the query processing
and returns the top-k result to the initiator.

If the processing must continue, the coordinator starts the next phase, send-
ing a message to the new start node for each term, whose ID was received in the
message containing the previous data collections. In this message the coordina-
tor also indicates the ID of the node which becomes the coordinator in this next
phase. The next coordinator is defined to be the node in the same TIN as the
previous coordinator whose data is to be collected next in the vertical processing
in this TIN (i.e., the next start node at the coordinator’s TIN). Alternatively,
any other start node can be randomly chosen as the coordinator.

Algorithm 5 details the behavior of the coordinator.

7.2 Complexity Analysis

The overall complexity has three main components: the cost incurred for (i) the
communication between the query initiator and the start nodes of the TINs, (ii)
the vertical communication within a TIN, and (iii) the horizontal communication
between the current coordinator and the current set of start nodes.

The query initiator needs to lookup the identity of the initial start nodes
for each one of the r query terms and route to them the query and the chosen
coordinator ID. Using the G network, this incurs a communication complexity of
O(r× log|N |) messages. Denoting with depth the average (or maximum) number

74 S. Michel, P. Triantafillou, and G. Weikum

Algorithm 5. Top-k QP: Coordination
1: input: For each i: tCollectioni and newstartNodei and boundi

2: tCollection =
⋃

i tCollectioni

3: compute a (new) top-k list estimate using tCollection, and RankKscore
4: candidates = {d|d /∈top-k list}
5: for all d ∈ candidates do
6: worstScore(d) is the partial TotalScore of d
7: bestScore(d) := worstScore(d) +

∑
j∈MT boundj {Where MT is the set of term

ids with missing scores }
8: if bestScore(d) < RankKscore then
9: remove d from candidates

10: end if
11: end for
12: if candidates is empty then
13: exit()
14: end if
15: if candidates is not empty then
16: coordIDnew = pred(n)
17: calculate new size threshold γ
18: for i = 1 to r do
19: send to startNodei the data (coordIDnew , γ)
20: end for
21: end if

of nodes accessed during the vertical processing of TINs, overall O(r × depth)
messages are incurred due to TIN processing, since subsequent accesses within a
TIN require, by design, one-hop communication. Each horizontal communication
in each phase of query processing between the coordinator and the r start nodes
requires O(r × log|N |) messages. Since such horizontal communication takes
place at every phase, this yields a total of O(phases × r × log|N |) messages.
Hence, the total communication cost complexity is

cost = O(phases × r × log|N | + r × log|N | + r × depth) (3)

This total cost is the worst case cost; we expect that the cost incurred in
most cases will be much smaller, since horizontal communication across TINs
can be much more efficient than O(log|N |), as follows. The query initiator can
first resolve the ID of the coordinator (by hashing and routing over G) and
then determine its actual physical address (i.e., its IP address), which is then
forwarded to each start node. In turn, each start node can forward this from
successor to successor in its TIN. In this way, at any phase of query processing,
the last node of a TIN visited during the vertical processing, can send the data
collection to the coordinator using the coordinator’s physical address. The cur-
rent coordinator also knows the physical address of the next coordinator (since
this was the last node visited in its own TIN from which it received a message
with the data collection for its term) and of the next start node for all terms
(since these are the last nodes visited during vertical processing of the TINs,

MINERVA∞: A Scalable Efficient P2P Search Engine 75

from which it received a message). Thus, when sending the message to the next
start nodes to continue vertical processing, the physical addresses can be used.
The end result of this is that all horizontal communication requires one message,
instead of O(log|N |) messages. Hence, the total communication cost complexity
now becomes

cost = O(phases × r + r × log|N | + r × depth) (4)

As nodes are expected to be joining and leaving the underlying overlay network
G, occasionally, the physical addresses used to derive the cost of (4) will not be
valid. In this case, the reported errors will lead to nodes using the high-level IDs
instead of the physical addresses, in which case the cost is that given by (3).

8 Expediting Top-k Query Processing

In this section we develop optimizations that can further speedup the perfor-
mance of top-k query processing. These optimizations are centered on: (i) the
‘vertical’ replication of term-specific data among the nodes of a TIN, and (ii)
the ‘horizontal’ replication of data across TINs.

8.1 TIN Data Replication

There are two key characteristics of the data items in our model, which permit
their large-scale replication. First, data items are rarely posted and even more
rarely updated. Second, data items are very small in size (e.g. < 50 bytes each).
Hence, replication protocols will not cost significantly either in terms of replica
state maintenance, or in terms of storing the replicas.

Vertical Data Replication. The issue to be addressed here is how to appro-
priately replicate term data within TIN peers so to gain in efficiency. The basic
structure of the query processing algorithm presented earlier facilitates the easy
incorporation of a replication protocol into it. Recall, that in each TIN I(t),
query processing proceeds in phases, and in each phase a TIN node (the current
start node) is responsible for visiting a number of other TIN nodes, a successor
at a time, so that enough, (i.e., a batch size of) data items for t are collected.
The last visited node in each phase which collects all data items, can initiate
a ‘reverse’ vertical communication, in parallel to sending the collection to the
coordinator. With this reverse vertical communication thread, each node in the
reverse path sends to its predecessor only the data items its has not seen. In the
end, all nodes in the path from the start node to the last node visited will even-
tually receive a copy of all items collected during this phase, storing locally the
pair (lowestscore, highestscore), marking its lowest and highest locally stored
scores. Since this is straightforward, the pseudocode is omitted for space reasons.

Since a new posting involves all (or most) of the nodes in these paths, each
node knows when to initiate a new replication to account for the new items.

76 S. Michel, P. Triantafillou, and G. Weikum

Exploiting Replicas. The start node selected by the query initiator no longer
needs to perform a successor-at-a-time traversal of TIN in the first phase, since
the needed data (replicas) are stored locally. However, vertical communication
was also useful for producing the ID of the next start node for this TIN. A
subtle point to note here is that the coordinator can itself determine the new
start node for the next phase, even without receiving explicitly this ID at the end
of vertical communication. This can simply be done using the minimum score
value (boundi) it has received for term ti; the ID of the next start node is found
hashing for score prev(boundi).

Additionally, the query initiator can select as start nodes the nodes responsi-
ble for storing a random (expected to be high score) and not always the maximum
score, as it does up to now. Similarly, the coordinator when selecting the ID of
the next start node for the next batch retrieval for a term, it can choose to hash
for a score value that is lower than the score prev(boundi). Thus, random start
nodes within a TIN are selected at different phases and these gather the next
batch of data from the proper TIN nodes, using the TIN DHT infrastructure for
efficiency. The details of how this is done, are omitted for space reasons.

Horizontal Data Replication. TIN data may also be replicated horizontally.
The simplest strategy is to create replicated TINs for popular terms. This in-
volves the posting of data into all TIN replicas. The same algorithms can be
used as before for posting, except now when hashing, instead of using the term t
as input to the hash function, each replica of t must be specified (e.g., t.v, where
v stands for a version/replica number). Again, the same algorithms can be used
for processing queries, with the exception that each query can now select one of
the replicas of I(t), at random.

Overall, TIN data replication leads to savings in the number of messages and
response time speedups. Furthermore, several nodes are off-loaded since they
no longer have to partake in the query processing process. With replication,
therefore, the same number of nodes overall will be involved in processing a
number of user queries, except that each query will be employing a smaller set
of peers, yielding response time and bandwidth benefits. In essence, TIN data
replication increases the efficiency of the engine, without adversely affecting its
scalability. Finally, it should be stressed that such replication will also improve
the availability of data items and thus replication is imperative. Indirectly, for
the same reason the quality of the results with replication will be higher, since
lost items inevitably lead to errors in the top-k result.

9 Experimentation

9.1 Experimental Testbed

Our implementation was written in Java. Experiments were performed on 3GHz
Pentium PCs. Since deploying full-blown, large networks is not an option, we
opted for simulating large numbers of nodes as separate processes on the same
PC, executing the real MINERVA∞ code. A 10,000 node network was simulated.

MINERVA∞: A Scalable Efficient P2P Search Engine 77

A real-world data collection was used in our experiments: GOV. The GOV
collection consists of the data of the TREC-12 Web Track and contains roughly
1.25 million (mostly HTML and PDF) documents obtained from a crawl of the
.gov Internet domain (with total index list size of 8 GB). The original 50 queries
from the Web Track’s distillation task were used. These are term queries, with
each query containing up to 4 terms. The index lists contained the original
document scores computed as tf * log idf. tf and idf were normalized by the
maximum tf value of each document and the maximum idf value in the corpus,
respectively. In addition, we employed an extended GOV (XGOV) setup, with a
larger number of query terms and associated index lists. The original 50 queries
were expanded by adding new terms from synonyms and glosses taken from
the WordNet thesaurus (http://www.cogsci.princeton.edu/∼wn). The expansion
yielded queries with, on average, twice as many terms, up to 18 terms.

9.2 Performance Tests and Metrics

Efficiency Experiments. The data (index list entries) for the terms to be
queried were first posted. Then, the GOV/XGOV benchmark queries were exe-
cuted in sequence. For simplicity, the query initiator node assumed the role of a
fixed coordinator. The experiments used the following metrics:

Bandwidth. This shows the number of bytes transferred between all the nodes
involved in processing the benchmarks’ queries. The benchmarks’ queries were
grouped based on the number of terms they involved. In essence, this grouping
created a number of smaller sub-benchmarks.

Query Response Time. This represents the elapsed, “wall-clock” time for
running the benchmark queries. We report on the wall-clock times per sub-
benchmark and for the whole GOV and XGOV benchmarks.

Hops. This reports the number of messages sent over our network infras-
tructures to process all queries. For communication over the global DHT G, the
number of hops was set to be log|N | (i.e., when the query initiator contacts the
first set of start nodes for each TIN). Communication between peers within a
TIN requires, by design, one hop at a time.

To avoid the overestimation of response times due to the competition be-
tween all processes for the PC’s disk and network resources, and in order to
produce reproducible and comparable results for tests ran at different times,
we opted for simulating disk IO latency and network latency. Specifically, each
random disk IO was modeled to incur a disk seek and rotational latency of 9
ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network la-
tency we utilized typical round trip times (RTTs) of packets and transfer rates
achieved for larger data transfers between widely distributed entities [16]. We
assumed a RTT of 100 ms. When peers simply forward the query to a next peer,
this is assumed to take roughly 1/3 of the RTT (since no ACKs are expected).
When peers sent more data, the additional latency was dictated by a “large”
data transfer rate of 800Kb/s, which includes the sender’s uplink bandwidth, the

78 S. Michel, P. Triantafillou, and G. Weikum

receivers downlink bandwidth, and the average internet bandwidth typically
witnessed.2

Scalability Experiments. The tested scenarios varied the query load to the
system, measuring the overall time required to complete the processing of all
queries in a queue of requests. Our experiments used a queue of identical queries
involving four terms, with varying index lists characteristics. Two of these terms
had small index lists (with over 22,000 and over 42,000 entries) and the other
two lists had sizes of over 420,000 entries. For each query the (different) query
initiating peer played the role of the coordinator.

The key here is to measure contention for resources and its limits on the pos-
sible parallelization of query processing. Each TIN peer uses his disk, his uplink
bandwidth to forward the query to his TIN successor, and to send data to the
coordinator. Uplink/downlink bandwidths were set to 256Kbps/1Mbps. Simi-
larly, the query initiator utilizes its downlink bandwidth to receive the batches
of data in each phase and its uplink bandwidth to send off the query to the
next TIN start nodes. These delays define the possible parallelization of query
execution. By involving the two terms with the largest index lists in the queries,
we ensured the worst possible parallelization (for our input data), since they
induced the largest batch size, requiring the most expensive disk reads and
communication.

9.3 Performance Results

Overall, each benchmark experiment required between 2 to 5 hours for its real-
time execution, a big portion of which was used up by the posting procedure.

Figures 1 and 2 show the bandwidth, response times, and hops results for
the GOV and XGOV group-query benchmarks. Note, that different query groups
have in general mutually-incomparable results, since they involve different index
lists with different characteristics (such as size, score distributions etc).

In XGOV the biggest overhead was introduced by the 8 7-term and 6 11-term
queries. Table 1 shows the total benchmark execution times, network bandwidth
consumption, as well as the number of hops for the GOV and XGOV benchmarks.

Generally, for each query, the number of terms and the size of the corre-
sponding index list data are the key factors. The central insight here is that
the choice of the NRA algorithm was the most important contributor to the
overhead. The adaptation of more efficient distributed top-k algorithms within
MINERVA∞ (such as our own [12], which also disallow random accesses) can
reduce this overhead by one to two orders of magnitude. This is due to the fact
that the top-k result can be produced without needing to delve deeply into the
index lists’ data, resulting in drastically fewer messages, bandwidth, and time
requirements.

2 This figure is the average throughput value measured (using one stream – one cpu
machines) in experiments conducted for measuring wide area network throughput
(sending 20MB files between SLAC nodes (Stanford’s Linear Accelerator Centre)
and nodes in Lyon France [16] using NLANR’s iPerf tool [19].

MINERVA∞: A Scalable Efficient P2P Search Engine 79

GOV

0

10000

20000

30000

40000

50000

60000

2 3 4

Number of Query Terms

To
ta

l B
an

dw
id

th
 in

 K
B

GOV

0

200

400

600

800

1000

1200

2 3 4
Number of Query Terms

To
ta

l T
im

e
in

 S
ec

on
ds

GOV

0

2000

4000

6000

8000

10000

12000

2 3 4
Number of Query Terms

To
ta

l N
um

be
r o

f H
op

s

Fig. 1. GOV Results: Bandwidth, Execution Time, and Hops

XGOV

0

20000

40000

60000

80000

100000

120000

4 5 6 7 8 9 10 11 12 13 14 15 18

Number of Query Terms

To
ta

l B
an

dw
id

th
 in

 K
B

XGOV

0

200

400

600

800

1000

1200

1400

1600

1800

4 5 6 7 8 9 10 11 12 13 14 15 18

Number of Query Terms

To
ta

l T
im

e
in

 S
ec

on
ds

XGOV

0

5000

10000

15000

20000

25000

4 5 6 7 8 9 10 11 12 13 14 15 18

Number of Query Terms
To

ta
l N

um
be

r o
f H

op
s

Fig. 2. XGOV Results: Bandwidth, Execution Time, and Hops

Table 1. Total GOV and XGOV Results

Benchmark Hops Bandwidth(KB) Time(s)
GOV 22050 130189 2212

XGOV 146168 744700 10372

The 2-term queries introduced the biggest overheads. There are 29 2-term, 7
3-term, and 4 4-term queries in GOV.

Figure 3 shows the scalability experiment results. Query loads tested rep-
resent queue sizes of 10, 100, 1000, and 10000 identical queries simultaneously
arriving into the system. This figure also shows what the corresponding time
would be if the parallelization contributed by the MINERVA∞ architecture was
not possible; this would be the case, for example, in all related-work P2P search
architectures and also distributed top-k algorithms, where the complete index
lists at least for one query term are stored completely at one peer. The scala-
bility results show the high scalability achievable with MINERVA∞. It is due
to the “pipelining” that is introduced within each TIN during query process-
ing, where a query consumes small amounts of resources from each peer, pulling
together the resources of all (or most) peers in the TIN for its processing. For
comparison we also show the total execution time in an environment in which
each complete index list was stored in a peer. This is the case for most related
work on P2P search engines and on distributed top-k query algorithms. In this
case, the resources of the single peer storing a complete index list are required

80 S. Michel, P. Triantafillou, and G. Weikum

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

Query Load: Queue Size
To

ta
l E

xe
cu

tio
n

Ti
m

e
in

 S
ec

on
ds

Minerva
Infinity
no parallel
processing

Fig. 3. Scalability Results

for the processing of all communication phases and for all queries in the queue.
In essence, this yields a total execution time that is equal to that of a sequen-
tial execution of all queries using the resources of the single peers storing the
index lists for the query terms. Using this as a base comparison, MINERVA∞ is
shown to enjoy approximately two orders of magnitude higher scalability. Since
in our experiments there are approximately 100 nodes per TIN, this defines the
maximum scalability gain.

10 Concluding Remarks

We have presented MINERVA∞, a novel architecture for a peer-to-peer web
search engine. The key distinguishing feature of MINERVA∞ is its high-levels
of distribution for both data and processing. The architecture consists of a suite
of novel algorithms, which can be classified into algorithms for creating Term
Index Networks, TINs, placing index list data on TINs and of top-k algorithms.
TIN creation is achieved using a bootstrapping algorithm and also depends on
how nodes are selected when index lists data is posted. The data posting algo-
rithm employs an order-preserving hash function and, for higher levels of load
balancing, MINERVA∞ engages data migration algorithms. Query processing
consists of a framework for highly distributed versions of top-k algorithms, rang-
ing from simple distributed top-k algorithms, to those utilizing vertical and/or
horizontal data replication. Collectively, these algorithms ensure efficiency and
scalability. Efficiency is ensured through the fast sequential accesses to index
lists’ data, which requires at most one hop communication and by algorithms
exploiting data replicas. Scalability is ensured by engaging a larger number of
TIN peers in every query, with each peer being assigned much smaller sub-
tasks, avoiding centralized points of control. We have implemented MINERVA∞
and conducted detailed performance studies showcasing its scalability and effi-
ciency.

Ongoing work includes the adaptation of recent distributed top-k algorithms
(e.g., [12]) into the MINERVA∞ architecture, which have proved one to two
orders of magnitude more efficient than the NRA top-k algorithm currently
employed, in terms of query response times, network bandwidth, and peer loads.

MINERVA∞: A Scalable Efficient P2P Search Engine 81

References

1. J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 384–393, Jan. 2003.

2. P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks,
PODC 2004.

3. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, 2002.

4. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Com-
munities. Technical Report DCS-TR-487, Rutgers University, Sept. 2002.

5. R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83–99, 1999.

6. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci., 66(4), 2003.

7. P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-partitioned
data with applications to peer-to-peer systems. In VLDB, pages 444–455, 2004.

8. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot:
content-based publish/subscribe over p2p networks. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 254–273, New
York, NY, USA, 2004. Springer-Verlag New York, Inc.

9. N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality properties. In USITS, 2003.

10. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the internet with pier. In VLDB, pages 321–332, 2003.

11. J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proceedings of CIKM03, pages 199–206. ACM Press, 2003.

12. S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for distributed
top-k query algorithms. In VLDB Conference, 2005.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161–
172. ACM Press, 2001.

14. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Proceed-
ings of International Middleware Conference, pages 21–40, June 2003.

15. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

16. D. Salomoni and S. Luitz. High performance throughput tuning/measurement.
http://www.slac.stanford.edu/grp/scs/net/talk/High perf ppdg jul2000.ppt.2000.

17. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM 2001, pages 149–160. ACM Press, 2001.

18. T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shan-
mugasunderam. Odissea: A peer-to-peer architecture for scalable web search and
information retrieval. Technical report, Polytechnic Univ., 2003.

19. A. Tirumala et al. iperf: Testing the limits of your network. http://dast.nlanr.net/
projects/iperf/. 2003.

20. P. Triantafillou and T. Pitoura. Towards a unifying framework for complex query
processing over structured peer-to-peer data networks. In DBISP2P, 2003.

21. Y. Wang, L. Galanis, and D. J. de Witt. Galanx: An efficient peer-to-peer search
engine system. Available at http://www.cs.wisc.edu/ yuanwang.

An Optimal Overlay Topology for Routing
Peer-to-Peer Searches

Brian F. Cooper

Center for Experimental Research in Computer Systems,
College of Computing, Georgia Institute of Technology

cooperb@cc.gatech.edu

Abstract. Unstructured peer-to-peer networks are frequently used as the overlay
in various middleware toolkits for emerging applications, from content discov-
ery to query result caching to distributed collaboration. Often it is assumed that
unstructured networks will form a power-law topology; however, a power-law
structure is not the best topology for an unstructured network. In this paper, we
introduce the square-root topology, and show that this topology significantly im-
proves routing performance compared to power-law networks. In the square-root
topology, the degree of a peer is proportional to the square root of the popular-
ity of the content at the peer. Our analysis shows that this topology is optimal
for random walk searches. We also present simulation results to demonstrate that
the square-root topology is better, by up to a factor of two, than a power-law
topology for other types of search techniques besides random walks. We then
describe a decentralized algorithm for forming a square-root topology, and evalu-
ate its effectiveness in constructing efficient networks using both simulations and
experiments with our implemented prototype. Our results show that the square-
root topology can provide a significant performance improvement over power-law
topologies and other topology types.

Keywords: peer-to-peer search, overlay topology, random walks.

1 Introduction

Peer-to-peer search networks have gone from serving as application-specific overlays to
become generally useful components in systems for finding and distributing content. In
particular, “unstructured” peer-to-peer networks, such as those in Gnutella and Kazaa,
continue to remain popular and widely deployed. Even with the advent of more “struc-
tured” networks for content-based routing (such as [1,2,3]), unstructured networks con-
tinue to be important, both because of their usefulness for content discovery [4] and
because they can be used together with structured networks in so-called hybrid sys-
tems [5,6]. Several types of systems have an unstructured topology as a sub-network:
superpeer networks [7] use an unstructured topology to connect the superpeers, caching
networks [8] use an unstructured topology to connect caches, scientific collaboration
networks [9] use an unstructured topology to locate data sets, and so on. Since a variety
of middleware tools implement an unstructured peer-to-peer network, it is important to
investigate techniques for optimizing unstructured topologies.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 82–101, 2005.
c© IFIP International Federation for Information Processing 2005

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 83

Unstructured networks tend toward power-law topologies, and several techniques
for searching in power-law topologies have been developed. One especially effective
technique is to conduct a “random walk,” where each peer forwards a search message
to a random neighbor until results have been found [10,11,12]. This technique requires
far fewer messages than Gnutella’s original flooding-based algorithm, and results have
shown that random walk searches are a scalable and effective way to find content in a
peer-to-peer network.

Although these techniques have been developed to work with power-law topolo-
gies, a power-law network is not the best network for a random walk. Implementing a
protocol that causes the network to converge to a more efficient topology can signifi-
cantly improve search performance. In this paper, we introduce the square-root topol-
ogy, where the degree of each peer is proportional to the square root of the popularity
of the content at the peer (measured in terms of the number of submitted searches that
match the peer’s content). We present analysis based on random walks in Markov chains
to show that the square-root topology is not only better than power-law networks, it is
in fact optimal in the number of hops needed to find content. Intuitively, the probability
that a random walk quickly reaches a peer is proportional to the degree of the peer, and
if peers with popular content have correspondingly high degrees, then most searches
will quickly reach the right peers and find matching content. Simulation results confirm
our analysis, showing that a random walk requires up to 45 percent fewer hops in a
square-root topology than in a power-law topology.

We also present simulation results to show that several other walk-based techniques
perform better in a square-root topology than in a power-law topology. One technique
is suggested by Adamic et al [10], who propose biasing random walks toward high
degree peers. If peers track their neighbors’ content, then high degree peers will have
knowledge of the content of many peers, and searches will quickly be evaluated over a
large amount of content. Another technique is suggested by Lv et al [11], who argue for
starting multiple parallel random walks for the same search. This technique reduces the
time before searches complete, though it requires roughly the same total number of mes-
sages. A third technique is to bias random walks based on previous results from peers,
as suggested by Yang and Garcia-Molina [13]. In each case, the square-root topology
performs better than a power-law topology, decreasing the number of messages per
search by as much as 50 percent.

Next, we introduce a decentralized algorithm, square-root-construct, for building
and maintaining the square-root topology as peers join and leave the system. Each peer
uses purely local information to estimate the popularity of its content, avoiding the need
for tracking the global distribution of popularities among peers. Then, each peer adds
or drops connections to other peers to achieve its optimal degree. Simulation results as
well as experiments using our implemented peer-to-peer system prototype demonstrate
the performance advantages of the square-root topology. For example, in a network of
1,000 peers running on a cluster in our lab, a random topology required more than twice
the bandwidth of a topology maintained using square-root-construct.

A related result to the square-root topology was obtained by Cohen and Shenker
[14], who suggested that content be replicated proactively to improve search efficiency.
Their result showed that the optimal replication was the square-root replication, where

84 B.F. Cooper

the number of copies of a content object is proportional to the square root of the ob-
ject’s popularity. Our results are complementary, as we deal with the number of neigh-
bors each peer has rather than the number of copies of each document. In particular, our
square-root topology can be used in cases where a square-root replication is not feasible,
such as applications where there are high storage and bandwidth costs for replicating
content. Moreover, in cases where square-root replication is used, a square-root topol-
ogy still provides better efficiency than a power-law topology, with an improvement of
more than 50 percent.

We are implementing a flexible peer-to-peer content location middleware toolkit,
called Overlay-Dynamic Information Networks (ODIN). ODIN can be layered on top of
existing data repositories (such as document repositories, local filesystems or scientific
databases) to connect these repositories into a large scale searching network for use by
different applications. The square-root topology forms the basis of the overlay networks
constructed in ODIN. In this paper, we focus on the square-root topology, and show its
usefulness for a wide range of different searching techniques that might be employed
by peer-to-peer middleware like ODIN. In particular, our contributions include:

• We define the square-root topology, and give analysis based on random walks in
Markov chains to show that a square-root topology is optimal for random walk
searches. (Section 2)

• We present simulation results to show that a square-root topology is better than
a power-law topology for a variety of search techniques, and when square-root
replication is used. (Section 3)

• We develop a distributed algorithm, square-root-construct, for dynamically build-
ing the square-root topology based on purely local information available to a peer.
(Section 4)

• We present results from simulations and from our prototype that demonstrate the ef-
fectiveness of square-root-construct for constructing efficient topologies.
(Section 5)

We examine related work in Section 6, and present our conclusions in Section 7.

2 Network Topologies

Random walk searches were initially introduced as a way to optimize searches in power-
law networks [10], and recent research often takes the power-law topology as a given
(see for example [11,7]). While random walk searches are better than Gnutella-style
search broadcasts in power-law networks, power-law networks are not the best structure
for random-walk searches. In this section, we provide analysis showing that square-root
networks provide optimal performance for random walk searches, and thus are better
than power-law networks. Our analysis is backed up with simulation results for different
scenarios in Section 3.

2.1 Background

A peer-to-peer search network is a partially connected overlay of peers, sitting on top of
a fully connected underlying network (such as the Internet.) The main reason to keep the

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 85

overlay network partially connected is to reduce the state that each peer must maintain.
Since each peer only has to stay connected to a few neighbors, no peer has to know
about all of the peers in the system or understand the whole topology. Furthermore,
a peer only needs to react to changes concerning its immediate neighbors; changes to
remote parts of the topology do not directly affect peers. This limited state and localized
impact of changes improves scalability, even when there is a high amount of peer churn,
with many peers joining and leaving the system.

The topology of the overlay network is built up over time in a decentralized way.
Peers that join the system connect to peers that are already in the system, and the choice
of neighbors is essentially random in many existing systems. Topologies in these sys-
tems tend toward a power-law distribution, where some long-lived peers have many con-
nections while most peers have a few connections. Formally, in a power-law network,
the number of neighbors of the ith most connected peer is proportional to 1/iα, where α
is a constant that determines the skew of the distribution. Larger α results in more skew.

A simple random walk search starts at one peer in the network, and is processed
over that peer’s content. That peer then forwards the search to one or a subset of its
neighbors, who each process and forward the query. In this way, the search “walks”
around the network, until it terminates according to some stopping criterion. There
are several alternatives for terminating the walk [11]: a walk can be given a time-to-
live which limits the number of hops the walk makes, or the walk can terminate after
G results have been found, where G is a user-defined parameter (the “goal”). Several
researchers have adapted random walk searches in various ways to make them less
random and more efficient. We examine these adaptations in more detail in Section 3.

2.2 The Square-Root Topology

Consider a peer-to-peer network with N peers. Each peer k in the network has degree
dk (that is, dk is the number of neighbors that k has). The total degree in the network is
D, where D =

∑N
k=1 dk. Equivalently, the total number of connections in the network

is D/2.
We define the square-root topology as a topology where the degree of each peer

is proportional to the square root of the popularity of the peer’s content. Formally, if
we define gk as the proportion of searches submitted to the system that are satisfied by
content at peer k, then a square-root topology has dk ∝ √

gk for all k.
We now show that a square-root topology is optimal for random walk searches.

Imagine a user submits a search s that is satisfied by content at a particular peer k.
Of course, until the search is processed by the network, we do not know which peer k
is. How many hops will the search message take before it arrives at k, satisfying the
search? The expected length of the random walk (called the hitting time or mean first
passage time) depends on the degree of k:

Lemma 1. If the network is connected (that is, there is a path between every pair of
peers) and non-bipartite, then the expected number of hops for search s to reach peer
k is D/dk.

This result is shown in [15], and is derived using the properties of Markov chains. We
now briefly summarize the reasoning behind the lemma. A Markov chain consists of a

86 B.F. Cooper

set of states, where the probability of transitioning from state i to state j depends only on
i and j, and not on any other history about the process. For our purposes, the states of the
Markov chain are the peers in the system, and 1 ≤ i, j ≤ N . Associated with a Markov
chain is a transition matrix T that describes the probability that a transition occurs from
a state i to another state j. In our context, this transition probability is the probability that
a search message that is at peer i is next forwarded to peer j. With simple random walks,
the transition probability from peer i to peer j is 1/di if i and j are neighbors, and zero
otherwise. The result in [15] depends only on the node degrees, and not on the structure;
that is, the expected length of a walk does not depend on which peers are connected to
which other peers. This property follows from the fact that the Markov chain converges
to the same stationary distribution regardless of which vertices are connected.

This model assumes peers forward search messages to a randomly chosen neighbor,
even if that search message has just come from that neighbor or has already visited this
neighbor. This assumption simplifies the Markov chain analysis. Previous proposals for
random walks [11] have noted that avoiding previously visited peers can improve the effi-
ciency of walks, and we examine this possibility in simulation results in the next section.

Using the transition matrix, we can calculate the probability that a search message
is at a given peer at a given point in time. First, we define an N element vector V0,
called the initial distribution vector; the kth entry in V represents the probability that a
random walk search starts at peer k. The entries of V sum to 1. Given T and V0, we can
calculate V1, where the kth entry represents the probability of the search being at peer
k after one hop, as V1 = TV0. In general, the vector Vm, representing the probabilities
that a search is at a given peer after m hops, is recursively defined as Vm = TVm−1.

Under the conditions of the lemma (the network is connected and non-bipartite),
Vm converges to a stationary distribution vector Vs, representing the probability that a
random walk search visits a given peer at a particular point in time. Most importantly
for our purposes, it can be shown [15] that the kth entry of Vs is dk/D. In other words,
in the steady state, the probability that a search message is at a given peer k is dk/D.

What is the expected number of hops before a search reaches its goal? We can treat
the search routing as a series of experiments, each choosing a random peer k from the
population of N peers with probability dk/D. A “successful” experiment occurs when
a search chooses a peer with matching content. The expected number of experiments
before the search message successfully reaches a particular peer k is a geometric ran-
dom variable with expected value 1

dk/D = D
dk

. This is the result given by Lemma 1.
If a given search requires D/dk hops to reach peer k, how many hops can we expect

an arbitrary search to take before it finds results? For simplicity, we assume that a search
will be satisfied by a single unique peer. We define gk to be the probability that peer k
is the goal peer; gk ≥ 0 and

∑N
k=1 gk = 1. The gk will vary from peer to peer. The

proportion of searches seeking peer k is gk, and the expected number of hops that will
be taken by peers seeking peer k is D/dk (from Lemma 1), so the expected number of
hops taken by searches (called H) is:

H =
N∑

k=1

gk · D

dk
(1)

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 87

How can we minimize the expected number of hops taken by a search message? It
turns out that H is minimized when the degree of a peer is proportional to the square
root of the popularity of the documents at that peer. This is the square-root topology.

Theorem 1. H is minimized when

dk =
D
√

gk∑N
i=1

√
gi

(2)

Proof. We use the method of Lagrange multipliers to minimize equation (1). Recall
the constraint that all degrees dk sum to D; that is, the constraint for our optimization
problem is f = (

∑N
k=1 dk) − D = 0. We must find a Lagrange multiplier λ that

satisfies ∇H = λ∇f (where ∇ is the gradient operator). First, treating the gk values as
constants,

∇H =
N∑

k=1

−D · gk · d−2
k · ûk (3)

where ûk is a unit vector. Next,

λ∇f = λ

N∑
k=1

ûk =
N∑

k=1

λûk (4)

Because ∇H = λ∇f , we can set each term in the summation of equation (3) equal to
the corresponding term of the summation of equation (4), so that −D · gk · d−2

k · ûk =
λûk. Solving for dk gives

dk =
√

D · gk√
−λ

(5)

Now we will eliminate λ, the Lagrange multiplier. Substituting equation (5) into f gives

N∑
k=1

(
√

D · gk√
−λ

) = D (6)

and solving gives
1√
−λ

=
D√

D
∑N

k=1
√

gk

(7)

If we change the dummy variable of the summation in equation (7) from k to i, and
substitute back into equation (5), we get equation (2). �

Theorem 1 shows that the square-root topology is the optimal topology over a large
number of random walk searches. Our analysis shows that D, the total degree in the
network, does not impact performance: substituting equation (2) into equation (1) elim-
inates D. Thus, any value of D that ensures the network is connected is sufficient. Note
also that our result holds regardless of which peers are connected to which other peers,
because of the properties of the stationary distribution of Markov chains.

Finally, peer degrees must be integer values; it is impossible to have a third of a
connection for example. Therefore, the optimal peer degrees must be calculated by
rounding the value calculated in equation (2).

88 B.F. Cooper

3 Experimental Results for the Square-Root Topology

Our analysis of the square-root topology is based on an idealized model of searches
and content. Real peer-to-peer systems are less idealized; for example, searches may
match content at multiple peers. In this section we present simulation results to illustrate
the performance of a square-root topology for realistic scenarios. We use simulation
because we wish to examine the performance of large networks (i.e., tens of thousands
of peers) and it is difficult to deploy that many live peers for research purposes on the
Internet.

Our primary metric is to count the total number of messages sent under each search
method. Searches terminate when “enough” results were found, where “enough” is de-
fined as a user specified goal number of results G. In summary, our results show:

• Random walks perform best on the square-root topology, requiring up to 45 per-
cent fewer messages than in a power-law topology. The square-root topology also
results in up to 50 percent less search latency than power-law networks, even when
multiple random walks are started in parallel.

• The square-root topology is the best topology when proactive replication is used,
and the combination of square-root topology and square-root replication provides
higher efficiency than either technique alone.

• Other search techniques based on random walks, such as biased high-degree [10],
biased towards most results or fewest result hop neighbors [13], and random walks
with statekeeping [11] performed best on the square-root topology, decreasing the
number of messages sent by as much as 52 percent compared to a power-law
topology.

• The square-root topology performed better than other topology structures as well,
including a constant degree network, and a topology with peer degrees directly
proportional to peer popularity. In super-peer networks [7] the square-root was the
best topology for connecting the supernodes.

In this section, we first describe our experimental setup, and then present our results.

3.1 Experimental Setup

Our experimental results were obtained using a discrete-event peer-to-peer simulator
that we have developed. Our simulator models individual peers, documents and queries,
as well as the topology of the peer-to-peer overlay. Searches are submitted to individual
peers, and then walk around the network according to the specified routing algorithm.
Our simulations used networks with 20,000 peers. Simulation parameters are listed in
Table 1.

Because the square-root topology is based on the popularity of documents stored
at different peers, it is important to accurately model the number of queries that match
each document, and the peers at which each document is stored. It is difficult to gather
accurate and complete query, document and location data for tens of thousands of real
peers. Therefore, we use the content model described in [16], which is based on a trace
of real queries and documents, and more accurately describes real systems than sim-
ple uniform or Zipfian distributions. In particular, we downloaded text web pages from

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 89

Table 1. Experimental parameters

Parameter Value

Number of peers 20,000
Documents 631,320
Queries submitted 100,000
Goal number of results 10
Average links per peer 4
Minimum links per peer 1

1,000 real web sites, and evaluated keyword queries against the web pages. We then
generated 20,000 synthetic queries matching 631,320 synthetic documents, stored at
20,000 peers, such that the statistical properties of our synthetic content model matched
those of the real trace. The resulting content model allowed us to simulate a network of
20,000 peers. In our simulation, we repeatedly submitted random queries chosen from
the set of 20,000 to produce a total of 100,000 query submissions. In [16] we describe
the details of this method of generating synthetic documents and queries, and provide
experimental evidence that the content model, though synthetic, results in highly accu-
rate simulation results. Most importantly, the synthetic model retains an accurate dis-
tribution of the popularity of peer content, which is critical for the construction of the
square-root topology.

3.2 Random Walks

First, we conducted an experiment to examine the performance of random walk searches
in different topologies. In this experiment, queries matched documents stored at differ-
ent peers, and had a goal G = 10 results. We compared three different topologies:

• A square-root topology, generated by assigning a degree to each peer based on
equation (2), and then creating links between randomly chosen pairs of peers based
on the assigned degrees.

• A low-skew power-law topology, generated using the PLOD algorithm [17]. In this
network, α = 0.58.

• A high-skew power-law topology, generated using the PLOD algorithm, with
α = 0.74.

The results of our experiment are shown in Figure 1. As the figure shows, random
walks in the square-root topology require 8,940 messages per search, 26 percent less
than random walks in the low-skew power-law topology (12,100 messages per search)
and 45 percent less than random walks in the high-skew power-law topology (16,340
messages per search). In the power-law topologies, searches tend toward high degree
peers, even if the walk is truly random and not explicitly directed to high degree peers
(as in [10]). Unless these high degree peers also have the most popular content, the result
is that searches have a low probability of walking to the peer with matching content,
and the number of hops and thus messages increases. If the power-law distribution is
more skewed, then the probability that searches will congregate at the wrong peers is
higher and the total number of messages necessary to get to the right peers increases.

90 B.F. Cooper

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Square−root Power−law Power−law
low−skew high−skew

A
ve

ra
ge

 n
um

be
r

m
es

sa
ge

s
se

nt
 p

er
 s

ea
rc

h

Fig. 1. Random walk searches on different topologies

Table 2. Parallel random walks: search latency (ticks)

Walks Square-root Power-law Power-law
low-skew high-skew

1 8930 12090 16350
2 4500 6210 8970
5 1800 2490 3740
10 904 1250 1880
20 454 630 947
100 96 130 194

Even though random walks perform best in the square-root topology, a large number
of messages need to be sent (8,940 messages in a network of 20,000 peers in the above
results). However, this result is a significant improvement over traditional Gnutella-
style search: flooding in a high-skew power-law network, with a TTL of five in order to
find at least ten results on average, requires 17,700 messages per search. Moreover, the
above results are for simple, unoptimized random walks. Adding optimizations such as
proactive replication or neighbor indexing significantly reduces the cost of a random
walk search, and results for these techniques (presented in the next sections) show that
the square-root topology is still best.

Another issue with random walks is that the search latency is high, as queries may
have to walk many hops before finding content. To deal with this, Lv et al [11] propose
creating multiple, parallel random walks for each search. Since the network processes
these walks in parallel, the result is significantly reduced search latency (even though
the total number of messages is not reduced). We ran experiments where we created 2, 5,
10, 20, and 100 parallel random walks for each search, and measured search latency as

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 91

the number of simulation time ticks required to find the goal content (one tick represents
the time to process a search and forward it one hop.) These results are shown in Table 2.

As the table shows, the square-root topology provided the lowest search latency,
regardless of the number of parallel walks that were generated. The improvement for
the square-root topology was consistently 27 percent compared to the low-skew power-
law topology, and 50 percent compared to the high-skew power-law topology. Even
when searches are walking in parallel, the square root topology helps those search walks
quickly arrive at the peers with the right content.

3.3 Proactive Replication

The square-root topology is complementary to the square-root replication described
in [14]. In situations where it is feasible to proactively replicate content, the square-root
replication specifies that the number of copies made of content should be proportional
to the square root of the popularity of the content. The square-root topology can be used
whether or not proactive replication is used, but the combination of the two techniques
can provide significant performance benefits.

We conducted an experiment where we proactively replicated content according to
the square-root replication. Each peer was assigned capacity equal to twice the con-
tent they were already storing, and this extra capacity was used to store proactively
replicated copies. We then connected peers in the square-root, high-skew power-law,
and low-skew power-law topologies, and measured the performance of random walk
searches. Again, G = 10.

The results are shown in Figure 2. As expected, proactive replication provided
better performance than no replication (e.g., Figure 1). Proactive replication performs
best with the square-root topology, requiring only 2,830 messages per search, 42 percent

0

1000

2000

3000

4000

5000

6000

7000

Square−root Power−law Power−law
low−skew high−skew

A
ve

ra
ge

 n
um

be
r

m
es

sa
ge

s
se

nt
 p

er
 s

ea
rc

h

Fig. 2. Random walk searches with proactive replication

92 B.F. Cooper

less than in the low-skew power-law network (4,830 messages) and 56 percent less than
in the high-skew power-law network (6,390 messages). Proactive replication makes
more copies of the documents that a search will match, while the square-root topology
makes it easier for the search to get to the peers where the documents are stored. The
combination of the two techniques provides more efficiency than either technique alone.
For example, in our experiment, the square root topology with proactive replication
required 68 percent fewer messages than the square root topology without replication.

3.4 Other Search Walk Techniques

Next, we examined the performance of other walk-based techniques on different topolo-
gies. We compared three other techniques based on random walks:

• Biased high degree: messages are preferentially forwarded to neighbors that have
the highest degree [10].

• Most results: messages are forwarded preferentially to neighbors that have returned
the most results for the past 10 queries [13].

• Fewest result hops: messages are forwarded preferentially to neighbors that returned
results for the past 10 queries who have travelled the fewest average hops [13].

In each case, ties are broken randomly. For the biased high degree technique, we ex-
amined both neighbor-indexing (peers track their neighbors’ content) and no neighbor-
indexing. Although [13] describes several ways to route searches in addition to most
results and fewest result hops, these two techniques represent the “best” that the au-
thors studied: fewest result hops requires the least bandwidth, while most results has
the best chance of finding the requested number of matching documents.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Biased high Biased high Most results Fewest result

degree − neighbor degree − no hops

indexing neighbor indexing

A
ve

ra
ge

 n
um

be
r

m
es

sa
ge

s
se

nt
 p

er
 s

ea
rc

h

Square root
Power−law low−skew
Power−law high−skew

Fig. 3. Other walk-based search techniques

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 93

The results are shown in Figure 3. As the figure shows, in each case the square-root
topology is best. The most improvement is seen with the biased high degree technique,
where the improvement on going from the high-skew power-law topology (17,250 mes-
sages on average) to the square-root topology (8,280 messages on average) is 52 per-
cent. Large improvements are achieved with the fewest result hops technique (44 per-
cent improvement versus the high-skew power-law topology) and most results (41 per-
cent improvement versus the high-skew power-law topology). The smallest improve-
ment observed was for the biased high degree technique with neighbor indexing; the
square-root topology offers a 16 percent decrease in messages compared to the low-
skew power-law topology. Overall, the square-root topology provides the best perfor-
mance, even with the extremely efficient biased high degree/neighbor indexing combi-
nation. Moreover, the square-root topology can be used even when neighbor indexing
is not feasible.

The combination of square-root topology, square-root replication and biased high
degree walking with neighbor indexing provides even better performance. Our results
(not shown) indicate that this approach is extremely efficient, requiring only 248 mes-
sages per search on average. Again, the square-root topology is better than the power-
law topology when square-root replication and neighbor indexing are used. Using all
three techniques together results in a searching mechanism that contacts less than 2
percent of the system’s peers on average while still finding sufficient results.

Finally, the results so far assume state-keeping [11], where peers keep state about
where the search has been. Then, peers can avoid forwarding searches to neighbors
that the search has already visited. We also ran experiments for no statekeeping. The
results (not shown) demonstrate that the square-root topology is better than power-law
topologies, whether or not statekeeping is used.

3.5 Other Topologies

We also tested the square-root topology in comparison to several other network struc-
tures. First, we compared against two simple structures:

• Constant-degree topology: every peer has the same number of neighbors. In our
simulations, each peer had five neighbors.

• Proportional topology: every peer had a degree proportional to their popularity gk

(rather than proportional to
√

gk as in the square-root topology).

Our results show that the square-root topology is best, requiring 10 percent fewer
messages than the constant degree network, and 7 percent fewer messages than the
proportional topology. Although the improvement is smaller than when comparing the
square-root topology to power-law topologies, these results again demonstrate that the
square-root topology is best. Moreover, the cost of maintaining the square-root topology
is low, as we discuss in Section 4, requiring easily obtainable local information. Thus,
it clearly makes sense to use the square-root topology instead of constant degree or
proportional topologies.

A widely used topology in many systems is the super-peer topology [7,18]. In this
topology, a fraction of the peers serve as super-peers, aggregating content information
from several “leaf” pears. Then, searches only need to be sent to super-peers. The super-
peers are connected using a normal unstructured topology (which, like other topologies,

94 B.F. Cooper

tends to form into a power-law structure). We ran simulations using a standard super-
peer topology, in which searches are flooded to super-peers. We compared this standard
topology to a super-peer topology that used the square-root topology and random walks
between super-peers. The results indicate a significant improvement using our tech-
niques: the square-root super-peer network required 54 percent fewer messages than a
standard super-peer network.

4 Constructing Square-Root Networks

In order for the square-root topology to be useful in peer-to-peer systems, there must be
a lightweight, distributed algorithm for constructing the topology. We cannot expect a
centralized planner to organize peers into the square root topology, nor can we expect in-
dividual peers to keep a large amount of state about the rest of the network. In particular,
it is too costly in a large network to expect each peer to track all of the queries in the net-
work or the popularity of content at all the other peers in order to compute equation (2). In
this section, we describe an algorithm, called square-root-construct, that allows peers to
construct the square-root topology in a distributed manner, using only local information.

In our algorithm, when peers join the network, they make random connections to
some number of other peers. The number of initial connections that peer k makes is
denoted d0

k . The actual value of d0
k is not as important as the fact that peers make enough

connections to keep the network connected. Then, as peer k is processing queries, it
gathers information about the popularity of its content. From this information, peer k
calculates its first estimate of its ideal degree, d1

k. If the ideal degree d1
k is more than

d0
k, peer k adds d1

k − d0
k connections, and if the ideal degree is less than d0

k, peer k
drops d0

k − d1
k connections. Over time, peer k continues to track the popularity of its

content, and recomputes its ideal degree (d2
k, d3

k...). Whenever its ideal degree estimate
is different from its actual degree, peer k adds or drops connections. As in other peer-to-
peer systems, peers can find new neighbors using a hostcatcher at a well known address,
or by caching peer addresses from network messages.

Peers use purely local information to estimate the popularity of their content. In
particular, each peer k maintains two counters: Qk

total, the total number of queries seen
by k, and Qk

match, the number of queries that match k’s content. Then, peers can es-
timate gk in equation (2) as Qk

match/Qk
total. As peer k sees more and more queries, it

can continue to recompute its estimate of gk in order to calculate successive estimates
of its ideal degree.

It is much more difficult to estimate the denominator of equation (2), which is the
sum of the square roots of the popularity of all of the peers. Luckily, we can avoid this
problem, since we have another degree of freedom: D, the sum of the dk values for
all peers. Recall from our analysis in Section 2.2 that D does not impact the overall
performance of the system, as long as the system remains connected. Therefore, we
can choose D ∝

∑N
i=1

√
gi, and substituting such a D into equation (2) eliminates∑N

i=1
√

gi. More formally, we choose a maximum degree dmax, representing the degree
we want for a peer whose popularity gk = 1. Of course, it is unlikely that any peer will
have content matching all queries, so the actual largest degree will almost certainly be
less than dmax. Then, we define D as:

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 95

D = dmax ·
N∑

i=1

√
gi (8)

Substituting equation (8) into equation (2) gives the ideal degree of a peer as:

dk = dmax · √gk ≈ dmax ·
√

Qk
match/Qk

total (9)

If the popularity of a peer’s content is very low, then dk will be very small. If peer
degrees are too small, the network can become partitioned, which will prevent content
at some peers from being found at all. In the worst case, because dk must be an integer,
we must round equation (9), so the ideal degree might be zero. Therefore, we define a
value dmin, which is the minimum degree a peer will have. The degree a peer will aim
for is:

dk =

{
round(dmax ·

√
Qk

match/Qk
total) if greater than dmin

dmin otherwise
(10)

Our algorithm square-root-construct can be summarized as follows:

• We choose a maximum degree dmax and minimum degree dmin, and fix them as
part of the peer-to-peer protocol.

• Peer k joins, and makes some number d0
k of initial connections; dmin ≤ d0

k ≤ dmax.

• Peer k tracks Qk
match and Qk

total, and continually computes dk according to equa-
tion (10).

• When the computed dk differs from peer k’s actual degree, k adds or drops connec-
tions.

Eventually, this method will cause the network to converge to the square root topology;
as peers see more queries their estimates of their popularity will become increasingly
accurate. Simulation results in the next section show that the network converges fairly
quickly to an efficient structure.

Our algorithm also deals with situations where peer popularities change. Then peers
will see more or fewer matching queries for their content, and will adjust their gk es-
timates and degrees accordingly. In this situation, we may decide to use a decay factor
μ to decrease the importance of older information in the estimate of gk (0 ≤ μ ≤ 1).
Periodically, peer k would multiply both Qk

match and Qk
total by μ. Then, newer samples

would have greater weight, and the network would converge more quickly according to
the new distribution of popularities.

5 Experimental Results for the Square-Root-Construct Algorithm

We conducted two experiments to evaluate the effectiveness of square-root-construct.
First, we ran simulations with 20,000 peers. Then, we validated our simulation results
by running an experiment with our implemented peer-to-peer prototype in a network
with 1,000 peers. Both experiments show that the square-root-construct algorithm ef-
fectively produces an efficient square-root topology.

96 B.F. Cooper

5.1 Simulation Results

We ran simulations to measure the performance of searches over time as the topology
adapted under the square-root-construct algorithm, and compared the performance to
searches in square-root and power-law topologies constructed a priori using complete
knowledge about peers and queries. We used the same experimental setup as described
in Section 3. The parameters for the square-root-construct algorithm are shown in Ta-
ble 3. We experimented with several parameter settings, and found that these settings
worked well in practice. In particular, they produced connected networks with approxi-
mately the same total degree as the networks from experiments in Section 3.

Figure 4 shows the number of messages per search, calculated as a running average
every 1,000 queries. As the figure shows, initially the performance of the network be-
ing adaptively constructed with the square-root-construct algorithm is not quite as good
as the a priori square-root topology. However, the performance quickly improves, and
after about 8,000 queries the performance of the adaptive square-root topology is con-
sistently as good as the topology constructed a priori. (Other experiments show that the
time for convergence to the performance of the a priori structure varies linearly with the
number of peers in the network.) The square-root-construct network already performs

Table 3. Parameters for square-root-construct

Parameter Value

dmax 160
dmin 3
d0

k 4

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
ve

ra
ge

 n
um

be
r

m
es

sa
ge

s
se

nt
 p

er
 s

ea
rc

h

Queries submitted

Power−law high−skew
Power−law low−skew
Square−root−construct (adaptive)
Square−root (a priori)

Fig. 4. Square-root-construct versus topologies constructed a priori

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 97

better than the power-law networks after 1,000 queries (the first data point). Although
1,000 queries are only enough to provide rough estimates of peer popularity, even rough
estimates are able to produce a more efficient topology than a power law network.

5.2 Prototype Measurements

We have implemented a prototype peer-to-peer middleware toolkit, called Overlay-
Dynamic Information Networks (ODIN), and we used it to test the square-root topology
and square-root-construct algorithm with queries over real data. ODIN is implemented
in C++, and communicates using XML messages over HTTP connections. Each peer
connects to randomly chosen peers, whose addresses are gathered from a “host-catcher”
at a well known address or from the headers of messages observed in the network. Our
peers used the square-root-construct algorithm (with parameters from Table 3) to adapt
the network topology as they processed searches. We compared this network to one con-
structed using a traditional (i.e. Gnutella) unstructured topology policy. In this policy,
peers connected to random remote peers, always trying to keep at least five connections
alive but without aiming for a particular topology.

For our experiment, we downloaded 169,902 HTML pages (4.04 GB total) from
1,000 web sites. We then started 1,000 peers on cluster machines in our lab, and each
peer stored the content from one web site. Peers processed queries over the full text of
web pages using standard techniques (the cosine distance and TF/IDF weights [19]).
We generated 20,000 keyword queries from the downloaded data with query terms
matching the distribution observed in several real user query sets [20]. Each query was
submitted to a randomly chosen peer.

Figure 5 shows a running average (every 1,000 queries) of the total network
bandwidth required per search. As the figure shows, the network using the square-root

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

350

400

450

T
ot

al
 b

an
dw

id
th

 p
er

 s
ea

rc
h

(K
B

)

Queries submitted

Random topology
Square−root−construct

Fig. 5. Bandwidth required for search messages

98 B.F. Cooper

construct algorithm initially performs poorly but then improves significantly, eventually
requiring half the bandwidth on average of the network constructed randomly. Once
each peer builds an accurate estimate of the popularity of its content, and adjusts its de-
gree accordingly, the total bandwidth used drops below 180 KB per search, compared
to 415 KB per search for the random topology.

In return for this higher efficiency, the square-root-construct network must send
more control traffic (connect and disconnect messages) between peers. In fact, the
square-root network requires 5.4 times as much bandwidth for control messages than in
the random network. However, this cost is far outweighed by the savings in search band-
width; an extra 4.6 KB per search on average for control messages results in a savings
of 238 KB in search bandwidth per search on average. We can conclude that the extra
control traffic is insignificant compared to the benefits of the square-root-topology.

6 Related Work

Random walk searches in peer-to-peer networks were proposed by Adamic et al [10] in
order to cope with the unique characteristics of power-law networks. Follow-on work
by others showed how to enhance performance by using replication [11,14], parallel
random walks [11] and biased random walks of various types [13]. Most of this work
assumes an existing topology, either power-law, random, or some other organization. In
our results sections we examined each of these techniques. Other techniques have been
proposed, such as “intelligent search” [21], routing indices [22], result caching [23]
and so on. We have not yet tested the square-root topology against an exhaustive list
of techniques, although we are continuing to gather data about its effectiveness for
various techniques. Gkantsidis, Mihail and Saberi [24] discuss how to use random walks
and flooding together to achieve high efficiency. Our square-root topology can be used
together with their techniques to achieve even higher performance.

Some investigators have looked at building efficient topologies for peer-to-peer
searches. Pandurangan et al [25] discuss building low diameter networks, although
their focus is on Gnutella-style flooding for which low diameter is important. Lv et
al [12] presented a dynamic algorithm for load balancing in peer-to-peer networks.
Their goal is to shift load onto high capacity nodes. To achieve this load balancing,
overloaded nodes must find nearby nodes to take over some of their connections. Our
approach, while similarly using adaptivity, has a different goal of shifting load onto
the most popular nodes. Moreover, our algorithm allows a peer to simply drop a con-
nection without having to find a peer to take it over. While our approach can reduce
overall load in the system, it does not achieve the load balancing that Lv et al’s ap-
proach does. It may be possible to extend our techniques to take both popularity and
capacity into account. Gia [4] is a system that combines several techniques, including
topology adaptation and biasing random walks toward high-capacity nodes. Their goal
is load balancing to improve efficiency. It may be possible to combine our techniques
with theirs.

Several investigators have examined peer-to-peer systems analytically; examples
include models for peer behavior [26], download traffic [27], data semantics [28], and

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 99

so on. Gkantsidis, Mihail and Saberi [29] demonstrate analytically that random walks
are useful to locate popular content in two cases: a) when the topology forms a super-
peer network, and b) when the same search is issued repeatedly. We expand on their
work in several ways. First, our analysis holds for both popular and rare items; in fact,
the square root topology is specifically optimized to provide efficient searching over a
wide range of item popularities. Second, while their analysis and simulation is limited
to pure random walks, we demonstrate that the square-root topology is efficient for
a wide range of search techniques, such as biased random walks, random walks with
proactive replication, and so on. Third, we show that the square-root topology is useful
both in the case of super-peer networks and in flat networks.

Several investigators have proposed more structured peer-to-peer networks, some-
times known as distributed hash tables (DHTs). Examples include CHORD [1],
CAN [2], Pastry [3], and others. In these systems, the topology is structured accord-
ing to protocol rules in order to ensure high efficiency. Despite the advent of DHTs,
research in and deployment of unstructured systems continues. One reason is the con-
tinuing popularity of unstructured systems such as Gnutella and Kazaa, and another rea-
son is the difficulty experienced, at least until recently [5,30], with using DHTs for key-
word search. Chawathe et al [4] discuss several reasons why both unstructured networks
and DHTs are worthy of study. Loo et al [5,6] discuss a hybrid structured/unstructured
architecture for information discovery, and our work could impact the design of the
unstructured part of such a hybrid system.

In a previous workshop paper [31], we have examined a narrow application of
the square root topology in situations where it is not feasible to replicate data or in-
dexes. Here, we examine the usefulness of the square root topology for a wide range
of searching techniques (including proactive replication, supernode networks, and other
approaches to using replication).

7 Conclusions

We have presented the square-root topology, and shown that implementing a protocol
that causes the network to converge to the square root topology, rather than a power-law
topology, can provide significant performance improvements for peer-to-peer searches.
In the square-root topology, the degree of each peer is proportional to the square root
of the popularity of the content at the peer. Our analysis shows that the square-root
topology is optimal in the number of hops required for simple random walk searches.
We also present simulation results which demonstrate that the square-root topology is
better than power-law topologies for other peer-to-peer search techniques. Next, we
presented an algorithm for constructing the square-root topology using purely local
information. Each peer estimates its ideal degree by tracking how many queries match
its content, and then adds or drops connections to achieve its estimated ideal degree.
Results from simulations and our prototype show that this locally adaptive algorithm
quickly converges to a globally efficient square-root topology. Our results show that the
combination of an optimized topology and efficient search mechanisms provides high
performance in unstructured peer-to-peer networks.

100 B.F. Cooper

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proc. SIGCOMM. (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. SIGCOMM. (2001)

3. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In: Proc. IFIP/ACM International Conference on Dis-
tributed Systems Platforms. (2001)

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-like
P2P systems scalable. In: Proc. SIGCOMM. (2003)

5. Loo, B., Hellerstein, J., Huebsch, R., Shenker, S., Stoica, I.: Enhancing P2P file-sharing with
an Internet-scale query processor. In: Proc. Conference on Very Large Data Bases. (2004)

6. Loo, B., Huebsch, R., Stoica, I., Hellerstein, J.: Enhancing P2P file-sharing with an Internet-
scale query processor. In: Proc. International Workshop on Peer-to-Peer Systems. (2004)

7. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proc. ICDE. (2003)
8. Kalnis, P., Ng, W., Ooi, B., Papadias, D., Tan, K.: An adaptive peer-to-peer network for

distributed caching of OLAP results. In: Proc. SIGMOD. (2002)
9. Agarwal, D., Berket, K.: Supporting dynamic ad hoc collaboration capabilities. In: Proceed-

ings of the 2003 Conference for Computing in High-Energy and Nuclear Physics (CHEP 03).
(2003)

10. Adamic, L., Lukose, R., Puniyani, A., Huberman, B.: Search in power-law networks. Phys.
Rev. E 64 (2001) 46135–46143

11. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-
to-peer networks. In: Proc. of ACM Int’l Conf. on Supercomputing (ICS’02). (2002)

12. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make Gnutella scalable? In: Proc. of
the 1st Int’l Workshop on Peer to Peer Systems (IPTPS). (2002)

13. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Proc. ICDCS.
(2002)

14. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. In:
Proc. SIGCOMM. (2002)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New
York, NY (1995)

16. Cooper, B.F.: A content model for evaluating peer-to-peer searching techniques. In: Proc.
ACM/IFIP/USENIX Middleware Conference. (2004)

17. Palmer, C., Steffan, J.: Generating network topologies that obey power laws. In: Proc.
GLOBECOM. (2000)

18. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Loser, A.:
Super-peer-based routing and clustering strategies for RDF-based peer-to-peer networks. In:
Proc. WWW. (2003)

19. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York,
N.Y. (1999)

20. Cahoon, B., McKinley, K.S., Lu, Z.: Evaluating the performance of distributed architectures
for information retrieval using a variety of workloads. ACM Transactions on Information
Systems 18 (2000) 1–43

21. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-
to-peer networks. In: Proc. CIKM. (2002)

22. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proc. ICDCS.
(2002)

An Optimal Overlay Topology for Routing Peer-to-Peer Searches 101

23. Bhattacharjee, B.: Efficient peer-to-peer searches using result-caching. In: Proc. IPTPS.
(2003)

24. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes for unstructured peer-to-peer
networks. In: Proc. INFOCOM. (2005)

25. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter P2P networks. In: Proc.
IEEE Symp. on Foundations of Computer Science. (2001)

26. Ge, Z., Figueiredo, D., Jaiswal, S., Kurose, J., Towsley, D.: Modeling peer-peer file sharing
systems. In: Proc. INFOCOM. (2003)

27. Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measurement, mod-
eling and analysis of a peer-to-peer file-sharing workload. In: Proc. SOSP. (2003)

28. Bernstein, P., et al: Data management for peer-to-peer computing: A vision. In: Proc.
WebDB. (2002)

29. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: Proc.
INFOCOM. (2004)

30. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proc. ACM/IFIP/
USENIX International Middleware Conference. (2003)

31. Cooper, B.F.: Quickly routing searches without having to move content. In: Proc. IPTPS.
(2005)

Combining Flexibility and Scalability in a Peer-to-Peer
Publish/Subscribe System

Chi Zhang1, Arvind Krishnamurthy2, Randolph Y. Wang1,
and Jaswinder Pal Singh1

1 Princeton University
2 Yale University

Abstract. The content-based publish/subscribe model has been adopted by many
services to deliver data between distributed users based on application-specific
semantics. Two key issues in such systems, the semantic expressiveness of con-
tent matching and the scalability of the matching mechanism, are often found
to be in conflict due to the complexity associated with content matching. In this
paper, we present a novel content-based publish/subscribe architecture based on
peer-to-peer matching trees. The system achieves scalability by partitioning the
responsibility of event matching to self-organized peers while allowing customiz-
able matching functionalities. Experimental results using a variety of real world
datasets demonstrate the scalability and flexibility of the system.

Keywords: publish/subscribe, matching, peer-to-peer.

1 Introduction

The deployment and application of event-based publish/subscribe services has
increased considerably over the past years. A number of emerging applications, rang-
ing from simple personal tools to large-scale and critical systems, benefit from this
paradigm. Examples include stock quote notification, Internet news feeds, real-time
traffic control, and various monitoring/management systems. Publish/subscribe systems
deliver events from publishers to subscribers based on their interests. Publishers and
subscribers can be completely unaware of one another and communicate via the mes-
sage brokers that match events to interested data users. This decoupling provides an
attractive communication mechanism for building large scale distributed systems.

The expressiveness of subscriber interests is a key factor in such middlewares.
Early publish/subscribe systems like TIBCO [20] and CORBA event channels [13] are
subject-based. Subscribers join a set of subject groups that they are interested in and
receive all messages associated with the subjects.

Content-based publish/subscribe systems allow more flexibility in specifying sub-
scriber interests. Subscriptions specify filters on event contents. Only those events with
attributes matching the filters are delivered to the subscriber. A typical application is
stock quote notification. The events carry attributes of prices and trade volumes of in-
dividual stocks. Subscribers may specify triggering ranges of price or volume for the
stocks that they are interested in. They get notification once events matching their sub-
scriptions occur. Another scenario is literature reference tracking. Researchers may sub-
scribe to new publications matching certain keywords in their titles, abstracts or bodies.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 102–123, 2005.
c© IFIP International Federation for Information Processing 2005

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 103

They may also choose to track new papers from certain authors or citing certain previ-
ous works. In both examples, content-based filtering provides fine-grained control on
the relevance of messages.

However, the power of expressiveness introduces an additional cost of matching
events to the complex filters specified by subscribers. As the system scales with the
number of subscriptions and the volume of event messages, a centralized matching
solution cannot meet the computation and communication requirements. Therefore, we
seek a solution to the scalability issue by distributing the matching responsibility to
many machines. In particular, we leverage peer-to-peer overlay techniques to build a
highly scalable publish/subscribe system. In our system, broker nodes self-organize and
maintain a decentralized data structure that stores the subscriptions, match the events
to the subscriptions, and deliver the events to relevant subscribers. Broker nodes may
be added to or removed from the system without global coordination. A key problem
facing such a scalable system is how to partition the workload among participating peers
in a load-balanced fashion.

The flexibility provided by content expressiveness creates challenges to system scal-
ability. While a subject-based publish/subscribe system can easily partition the work-
load of event delivery to a large set of servers by hashing the subjects among the
servers, content-based systems have more complex subscription structures that impede
the workload partition. Three factors contribute to this difficulty:

1. High dimensionality of the content space: a general publish/subscribe system
might have to operate in a setting that involves a large number of attributes. To
make things even worse, subscribers and publishers do not always speak the same
schema. Subscribers seldom know in advance the schemas used by (potentially
many) publishers. Even if they do, they might be interested in only a subset of it.

2. Type flexibility: attributes may have various types that require different filtering
tests.

3. Skewed data distribution: is common in real world subscriptions and events. It
can create a load imbalance in the system that throttles the scalability.

Previous work on workload partitioning usually impose restrictions on the flexibil-
ity of subscriptions and events. In [22] and [19], the set of attributes and their values
are hashed to decide the servers managing the subscriptions. This requires events and
subscriptions to follow certain pre-defined schemas, and only works well with equality
tests. It is difficult to efficiently support range subscriptions in such systems. Megh-
doot [9] leverages CAN [15] to partition the multi-attribute space. Though it can support
range subscriptions, it is still confined to numerical attributes and also can not handle
skewed distributions efficiently.

Our Solution

In this paper, we propose a peer-to-peer architecture that achieves high scalability and
generality. We address the expressiveness problem with a modular matching tree struc-
ture. This tree organizes the subscriptions into hierarchical groups based on their sim-
ilarity. It supports flexible schemas and multiple attribute types in subscriptions and
events, and allows customization of new attributes and filtering types. We distribute

104 C. Zhang et al.

this matching tree in a peer-to-peer system where each peer processor manages a small
fragment of the tree. They maintain the distributed tree by peer-wise communications
without global coordination.

Events can enter the system from any processor. A decentralized tree navigation al-
gorithm is used to forward the events to those tree fragments that may contain matching
subscriptions. In experiments using several real world data sets, the proposed system
demonstrates excellent scalability: the distributed event matching only visits a small
number of processors, processors maintain a small amount of state about peers, and the
workload is well-balanced across the processor set.

The next section gives a survey of related work. Section 3 details the structure of
the matching tree. Section 4 discusses how the tree is distributed and how to navigate
the tree in a decentralized manner. Section 5 focuses on how the distributed tree is
maintained in the face of churn and changing load conditions. Section 6 presents exper-
imental results.

2 Related Work

Several centralized algorithms for content-based publish-subscribe [8,7,2,10] have been
proposed to address the efficiency of the matching operation. Our matching tree bears
some similarity to previous work, such as [2,10], which also use search tree structures.
The key differences are: 1) Our matching tree is more flexible, partitioning the sub-
scriptions by both schema content and attribute value, while [2,10] only partition by the
attribute value specified in subscriptions. 2) We distribute the matching tree amongst
peer processors to address the scalability problem.

Distributed content-based publish/subscribe systems deploy a network of broker
servers to efficiently match and deliver events. Examples include Elvin [17], Siena [4],
and Gryphon [2]. Elvin uses a central server to store subscriptions and match events.
Therefore, it still imposes a bottleneck at the matching engine. Siena and Gryphon
distribute the responsibility of matching events to a set of distributed servers. Events
follow a multicast tree to reach all matching subscribers. However, they require the
subscriptions to be replicated on all servers. This causes a burden on server management
and is a stumbling block to scalability.

To address this scalability problem, several systems consider the partitioning of
content-space and the subscription set. Riabov et al. have proposed clustering algo-
rithms that partition similar subscriptions into multicast groups. EDN [22] partitions
the content space subject to the restriction that the schema is fixed. For equality test, the
attribute IDs and values are hashed to generate a key to locate the server managing it.
For inequality tests, EDN uses an R-tree to decide offline how to assign subscriptions to
processors, and requires each processor to maintain a complete map of this assignment.
This approach is limited to small-scale systems with a fixed set of subscriptions, and it
is also unclear as to whether it works efficiently for high dimensional content space.

Peer-to-peer overlays have emerged as a promising approach to realizing highly
scalable distributed systems. Several systems provide application-level multicast [12,3]
that divides the data dissemination responsibilities amongst peers. They do not, how-
ever, address the selective delivery of events. Recently, Distributed Hash Tables (DHTs)
have been employed to build scalable publish/subscribe systems. Scribe [5] uses

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 105

Pastry [16] to build a subject-based publish/subscribe service. It hashes each topic to a
peer, which then acts as the rendezvous point. The routing paths from subscribers to the
rendezvous point form a multicast tree for this subject. This approach, however, can not
be adapted to efficiently support the content-based publish/subscribe model.

A few previous projects have addressed content-based publish/subscribe in peer-to-
peer systems. [19] partitions the content-space by hashing a set of selected attributes
and their values into peer processors. The domain of attribute values are partitioned
into intervals for the hashing. A range subscription may need to be decomposed to
multiple intervals, resulting in storage and matching inefficiency. Furthermore, the sub-
scriptions and events are limited by the pre-selected attribute sets. Meghdoot [9] re-
laxes the restrictions on subscriptions. It uses CAN [15] to manage the multi-attribute
content-space. A subscription defines a rectangular region in the D-attribute content
space bounded by the minimal and maximal value specified. Unspecified attributes take
the whole value range. The hyper-rectangle is projected to a point in a 2D-dimension
CAN constructed from the minimal and maximal values of the D-dimension rectangle.
An event is then mapped to a rectangle in the 2D space, and the mapping is performed in
a manner such that the rectangle covers all subscription points relevant to the event. This
novel approach reduces the subscription matching problem into a range query operation
in CAN. The drawback with this approach is that subscriptions are limited to numerical
comparisons. Other tests like keyword subset can not be supported. Furthermore, the
subscriptions are only mapped to the upper-left side of the diagonal hyper-plane of the
CAN space, which may create load imbalance.

3 Content-Based Event Matching

In this section, we start by describing the specification of events and subscriptions in our
system. We then present the main data structure, the matching tree, used in the system.

We also note that we focus primarily on the logical organization and navigation of
the matching tree in this section. The distributed operation and maintenance of the tree
will be presented in following sections.

3.1 Content-Based Publish/Subscribe Model

We adopt a general event-space model with multiple attributes, based on the models
used in previous systems [7,4,2]. The contents of an event message is represented by a
set of attribute-value pairs. Each attribute has a unique name or ID. We support several
types of attributes: numerical (integer, floating point, and date/time), string, and set.
The event message can be represented as e = {A1 = v1, A2 = v2, . . . , Ak = vk}.
Events from different publishers may use different schemas, but we assume a consistent
assignment of unique attribute IDs and their types across the publishers to avoid naming
confusion. One could also employ hierarchical namespaces to achieve this coordination.

As an example, consider an event from a research reference database. Its con-
tents may be formulated as [title = TTT, date = YY/MM, authors = {A, B, C},
references = {D1, D2, ...Dn}], where title has string type, date is numerical, and
authors and references fields are both of type set, meaning they include an unordered
list of keys.

106 C. Zhang et al.

Table 1. Predicates supported in the system

type tests
Numerical =, <, ≤, >, ≥

String =, <, ≤, >, ≥, prefix match
Set �, ⊇

A subscription is a conjunction of predicates over the attributes. Each predicate
specifies a boolean test over an attribute. The test specified by a predicate depends
on the type of the attribute. Table 1 lists the type of tests supported in our system.
Disjunction of predicates can be expressed by the “OR” of multiple conjunctions, so
we treat a disjunctive subscription as a set of independent conjunctive subscriptions.

We do not require events and subscriptions to use the same schemas. There may
be a large number of possible attributes, while any event and subscription may specify
only a subset of attributes. An event matches a subscription if every predicate specified
is satisfied by the attribute-value content of the event message. Not all attributes in
the event need to appear in the matching subscription. The additional attributes do not
affect the matching results, since the subscription does not care about the values of these
attributes. However, the event does not match a subscription if an attribute specified in
the subscription’s predicates is missing from the event. This semi-structured matching
capability is important for environments with heterogeneous publishers. Some systems,
like EDN [22], require all events to use the same schema. Such restrictions limit the
generality of the system and thus is not desirable.

3.2 Content-Space Partition with a Matching Tree

We propose a matching tree algorithm to partition a general event space. A hierarchical
tree structure is used to partition the set of subscriptions based on their predicates. Each
internal node partitions the subscriptions by a similarity test, so similar subscriptions
can be grouped to the same tree branch. In order to adapt to flexible attribute sets and
schemas, we build the similarity tests dynamically.

Two types of similarities are used in the tests. The first is the similarity of the at-
tribute set. The test takes an attribute from the subscriptions and hashes its name. The
subscriptions are assigned to one of two branches based on the hash value. After recur-
sive partitioning with several levels of internal nodes, each branch will have subscrip-
tions sharing the same attribute. The second type groups subscriptions having similar
value constraints for a common attribute. Depending on the type of this attribute, the test
assigns the subscriptions to two branches. For convenience, we label the child branches
of an internal node L and R. In addition, there is a wildcard branch, labeled as *, for
subscriptions that do not contain the attribute specified by the internal node.

Figure 1 gives an example of the matching tree used for subscriptions to research
publications. The root node partitions the subscriptions based on attributes specified
in their predicates. It takes the first attribute in the subscription (A1), hashes the name
(A1.name), and assigns the subscription to one of two branches based on the demarcat-
ing value of 5 for the result of the hash. The left child node of the root further partitions
the subscriptions based on the value of the date attribute. If a subscription has a predi-
cate that tests the date attribute, then it is stored in one or both of the L and R branches.

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 107

{author Y} {author Z, refs D} {title == T}

ii

E

iA .value < 03/05 ?
A .name == ’date’

< *

ii

E

A .name == ’authors’

< *

H(A .items[0]) < 7 ?i

< *

H(A .name) < 5 ?1

{date==04/05, authors X}

{date>12/04, refs D} {date>12/04, refs D}

navigation path of event {date=05/05, authors={Y, Z}}

Fig. 1. Matching Tree

For instance, if the range of the predicate on the ‘date’ attribute intersects with the
range (0, 03/05), the subscription would be inserted in the left branch; if it intersects
with the range [03/05,∞), it would be inserted in the right branch; and a subscription
that covers a broad range, like {date > 12/04, authors � X}, would be inserted in
both branches. If a subscription’s first attribute hashes to a value less than 5 and if that
subscription does not have any predicates referring to the date attribute, then it is stored
in the wild-card * branch. The right child of the root node partitions the subscriptions
based on how they test the authors attribute. Since authors is a set attribute, we pick
any of the keys specified in the predicate testing the authors attribute, and hash it to
decide the branch the subscription belongs to. The subscription {title == T } falls
into the default branch ∗, since it does not contain any predicates testing the authors
attribute.

Event messages also navigate the same matching tree to find matching subscrip-
tions. Figure 1 gives an example of how an event is handled. The event starts from the
root node. It is passed on to both branches, because the attributes in the event, date and
authors, hash to the L and R branches respectively. The event is further propagated
through the R branch at the left child node based on its date value. At the right child
node, both L and R branches are followed, because the elements in the authors field
hash to either side of the pivot value 7. At the leaf nodes, a centralized matching algo-
rithm like the counting algorithm [7] is used to match the event to the set of matching
subscriptions.

Next, we give further details regarding the two partitioning methods.

3.3 Partitioning the Attribute Set

The first type of partitioning tries to group together subscriptions that test similar at-
tributes. We first order the predicates of a subscription based on their selectivity. For sim-
plicity, we order equality tests before subset tests, and consider inequalities as the least
selective. More sophisticated techniques that take into account data distribution to order
predicates regarding their selectivity are also possible. We then take the most selective
predicate in the subscriptions, and hash the attribute name into a bin H(A1.name).

108 C. Zhang et al.

Each child branch manage a sequence of hash bins and the subscriptions falling into
the sequence. A pivot value separates the hash bins of the left and right branches.

While a subscription only descends into either the left or the right branch of this
internal node, an event may follow both branches. Given an event {A1 = v1, A2 =
v2, . . . , Ak = vk}, the left branch is taken if any of the hash values H(Ai.name)
corresponds to the bins on the left side of the pivot. Similarly, the right branch is taken
if any of the hash values corresponds to right-hand side bins. In general, when this
form of partitioning is performed iteratively at multiple internal nodes, an event with k
attributes navigates into at most k branches under attribute set partitioning.

Given a set of subscriptions in a leaf node, we choose the pivot value that evenly par-
titions the subscriptions. When the subscriptions’ most selective attribute is the same,
either because of user subscription pattern or due to prior partitioning of the attribute
set, we partition based on the second and third most selective attributes. Therefore, the
state information maintained in an attributed set partitioning node includes the order
of the attribute being hashed, the range of hash bins owned by this node, and the pivot
value used for partitioning.

3.4 Partitioning Attribute Content

After partitioning the attribute set, each branch of the matching tree contains subscrip-
tions with similar attributes. We can therefore partition further using the value ranges
of their common attributes. We apply different strategies based on the attribute’s data
type.

– Value range partition applies to numerical attributes. It splits the value range of
the attribute by a pivot value. The value range specified by predicates in the sub-
scriptions are compared to the pivot. If the whole range falls to the left/right of
the pivot, the subscription is assigned to the left/right branch. Otherwise, the sub-
scription is replicated into both branches. This strategy is therefore suitable for
subscriptions specifying narrow value ranges, for example, equality tests. The at-
tribute set partitioning policy that gives priority to highly selective predicates also
improves efficiency of value range partition. While subscriptions may be replicated
in both branches, an event only descends into one of them. So this approach reduces
matching cost by using additional storage.

– Min/max partition divides the set of subscriptions instead of the value space. The
minimal/maximal value in the constraints is used to decide the branch it belongs
to. Therefore, a subscription is only assigned to one of the left/right branches. Con-
sequently, an event may need to navigate into both branches to locate matching
subscriptions. Figure 2 illustrates differences between the three strategies used to
partition range constraints on a numerical attribute.

– String value partition is similar to value range partitioning. A subscription with
a prefix predicate may be assigned to both branches if the prefix includes the pivot
string.

– Set partition hashes the keys specified in the subscriptions and divides the hashed
key space into two halves across a pivot key. A subscription specifying several keys
for the set attribute may choose to follow the branch decided by any of the keys.
An event message would have to navigate into all branches that its set members

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 109

(a) Partition by Value Range (b) Partition by Min Value (c) Partition by Max Value

Fig. 2. Partitioning options based on a numerical attribute

hash to. This is necessary to ensure that all related subscriptions can be reached.
Therefore, an event message specifying k keys for the set attribute may navigate
into up to k branches under multiple levels of set partitioning.

In all of the above mentioned types of attribute content based partitioning, the de-
fault ∗ branch may be taken if a subscription does not specify the attribute. An event
always traverses into the ∗ branch if it exists, unless the attribute being partitioned is
the only one specified in the event.

3.5 Choosing Partition Method

The matching tree grows by splitting leaf nodes. We aim at distributing the subscrip-
tions in the leaf node evenly to the branches of the newly formed internal node. The
two partitioning methods described above have different levels of effectiveness under
different situations. When the subscriptions carry sets of attributes that differ signifi-
cantly, partitioning the value space of any single attribute may only work on a small
part of subscriptions while leaving the majority in the wildcard branch. Attribute set
partitioning is more effective in this case. After subscriptions with the same attributes
are grouped together, partitioning the content of this attribute will yield more balanced
results.

When a leaf node needs to be partitioned, we scan the subscriptions in the node,
and count the number of subscriptions associated with each attribute. We try to partition
the attributes that appear in at least half of the subscriptions, and choose the partition
method that yields best load balance, defined as the largest number of subscriptions in
the branches after split. If such attributes do not exist, we partition the attribute set.

Besides the partitioning approaches discussed above, we also use a special “parti-
tion” method that replicates the set of subscriptions to both children branches. An event
may choose to follow any of the mirrored branches. As the branches are assigned to
different processors, this replication spreads out the load of event matching. We use
this method when the processor managing the leaf node is saturated by the event traffic
targeting the leaf node. Such event hot spots may be found in some subscriptions that
match a broad range of events, for example, {V olume ≥ P1} in stock quote notifica-
tion service (Section 6.1).

3.6 Extensibility

The above discussion illustrates that several different partitioning methods are used in
our system. Generally, for each data type, the system needs at least one partitioning
method to decide how the subscriptions and the events navigate the matching tree. Each
partitioning method is implemented as a module that provides three interface functions:

110 C. Zhang et al.

– Subscription branching: given the state in the node, decide which branch(es) a new
subscription needs to take.

– Event branching: given the state in the node, decide which branch(es) an event
message needs to take.

– Node split: given the set of subscriptions in a leaf node, decide the best way to
partition the subscriptions once the leaf node gets overloaded.

This modular design allows new data and predicate types to be introduced into our
system, therefore ensuring generality.

4 Peer-to-Peer Matching Tree with Brushwood

In this section, we present the design of our peer-to-peer architecture. We distribute the
matching tree using peer-to-peer overlay techniques in order to achieve the following:

– Balanced distribution: We partition the matching tree into a set of subtrees, so
that the workload of managing subscriptions and matching events can be divided
among peer processors in a balanced manner.

– Locality and ability to support complex event filtering: Since the distribution
is at the granularity of subtrees, related subscriptions are stored on the same pro-
cessor. Furthermore, the generality of the matching tree ensures that our system
can handle subscriptions with range predicates and efficiently match events to such
subscriptions.

– Symmetric distribution that avoids hotspots: We ensure that no processor in
the system is subject to inordinately high load. We avoid distribution schemes that
assign the root of the matching tree to a single processor, which is then subject
to handling every new event or subscription. Instead, we make all subtrees self-
contained and independent. Each processor maintains the path from the root of the
matching tree to the root of the subtree in addition to maintaining the full set of
internal nodes and leaf nodes of the subtree. An event or subscription could be
routed to any one of the processors, which can either handle it locally or forward it
to the appropriate processor(s).

– Scalability: We require that processors maintain small amounts of state regarding
the current state of the system. In particular, each processor in our system keeps
track of a logarithmic number of peers in the system. Peers periodically exchange
information regarding their portion of the matching tree, so that they can maintain a
weakly consistent partial view of the global matching tree. This partial view allows
the processors to forward subscriptions and event messages to relevant matching
tree nodes.

4.1 Brushwood

We extend the Brushwood framework described in our position paper [24] to build
the peer-to-peer matching tree. Brushwood is a peer-to-peer search tree designed for
scalable indexing of high dimensional data. Here we adapt its distributed organization
for the publish-subscribe needs.

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 111

Tree Distribution: Brushwood partitions a search tree into self-contained fragments
cooperatively managing the distributed tree. Figure 3 (a) illustrates our approach in
distributing a matching tree. The edges are labeled as ‘L’, ‘R’ and ‘*’ for left, right and
default branches. We linearize the tree nodes by pre-order traversal and then partition
them into eight fragments separated by the dotted vertical bars. This partitioning method
preserves locality of similar subscriptions since the low level subtrees are not split. The
tree fragments are assigned to eight processors A - H , shown as the rectangles below
the tree. We identify the fragments, and the processors managing them, with its left
boundary. The left boundary is defined as the the left-most tree node in the partition
under pre-order traversal. This boundary can be uniquely identified by the sequence of
edge labels along the path from the root of the matching tree to the boundary node.
We use this sequence as the Tree ID of the tree fragment. The Tree ID of each of the
fragments are shown in the processor rectangles.

Data Structure Maintained by Each Processor: In a dynamic peer-to-peer system,
processor joins and departures are frequent events. Each join/departure changes the lo-
cation of some subtree. Therefore, we can not afford to replicate across all processors
the global map of which processor owns which portion of the tree. Instead, a processor
only maintains a partial tree view, which is a sub-graph of the global matching tree.
This partial tree of a processor consists of the following: 1) all the leaf nodes managed
by the processor, 2) the left boundary nodes of some selected peer processors, and 3)
all internal tree nodes along the paths from the root of the matching tree to the nodes
specified above in (1) and (2). Information about the peer boundary nodes are collected
by contacting peer processors. The construction of the partial view is, therefore, a lo-
calized operation with cost proportional to the number of peers. The selection of peer
processors is discussed later in this section. Figure 4 shows the partial view of A and D.

Event Handling: When a new event is received by a processor, the event is processed
using the partial tree view. The event is propagated through the partial tree view, starting
from the root of the partial tree, to determine which portions of the tree are related to the
event. During this process, one or more of the following types of actions are performed:

– The event is relevant to one or more of the local leaf nodes managed by this pro-
cessor. The matching can be then performed locally.

– The event needs to be routed to a remote leaf node managed by a peer.
– The event is relevant to some obscure nodes corresponding to unknown portions of

the matching tree that is not managed by any peer. The event is then routed to some
peer that is more likely to be aware of the obscure node.

Example: Now we show how to perform event matching in a distributed tree with an
example event message {A1 = 20, A2 = 90}. Assume the event enters the system from
processor A. A navigates its partial tree to find all subtrees that may contain subscrip-
tions matching this event. In this case, subtrees RR, R∗ and ∗ are involved. A forwards
the query to the processors managing these regions. RR is managed by peer D. Ob-
scure nodes R∗ and ∗ have to be reached by overlay routing. We route the messages to
the peer that is farthest in the same direction as the obscure node (given the pre-order

112 C. Zhang et al.

A < 10 ?1

A < 4 ?1 2A < 87 ?max(A) < 15 ? 1

C D E F G HA B

L
R

L R * L R *

*

*RL

L R

R*L **LL L* RL RRL *L *R

A
LL

B
L*

C
RL

D
RRL

E
R*L

F
*L

G
*R

H
**

(a) Partition of a Matching Tree (b) Skip Graph

Fig. 3. Peer-to-peer Matching Tree

Local leaf node Remote node obscure node

A < 10 ?1

A < 4 ?1

B D

max(A) < 15 ? 1

A

L

L L

R *

RR *

A < 4 ?1 2A < 87 ?

A < 10 ?1

BA D

max(A) < 15 ? 1

C E G

L

L L L

L

R *

R R R

R

** *

(a) Partial View of A (b) Partial View of D

Fig. 4. Partial Tree Views from Processor A and D

linearization of tree nodes) without passing over the target. In this example, all three
subtrees are forwarded to peer D for further matching. D further navigates its partial
tree to identify related regions to be searched. It performs local matching in subtree
RR, and forwards the message to E and G for further matching. Event matching is
therefore performed starting from any processor by “jumping” among the processors
instead of traversing a distributed tree path from the root to the target. Each forwarding
step refines the subtrees that need to be searched. The number of hops is logarithmic
in the number of processors, regardless of tree depth. Subscription insertion follows a
similar procedure.

4.2 Routing Substrate

We now consider the question of establishing peers. To ensure system scalability, we
limit the amount of state information managed by individual processors. Each proces-
sor only maintains log N peers and their partition boundaries in an N -processor sys-
tem. Therefore, each node join and departure can be handled efficiently by contacting
only log N processors. A tree navigation can be done within log N steps regardless of
the shape of the tree. We extend Skip Graphs/Nets [1,11] to achieve such an efficient
lookup.

Conceptually, a processor in a Skip Graph maintains log N levels of peer pointers,
pointing to exponentially farther peers in the linear ordering of N processors. Figure 3
(b) depicts the overlay structure of the Skip Graph among the eight processors. Each

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 113

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

M
ax

 N
od

e
D

eg
re

e

Number of Nodes(x1000)

Chord-in
Chord-out

Skip Graphs
 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

M
ax

/M
ea

n
R

ou
tin

g
Lo

ad

Number of Nodes(x1000)

Chord
Skip Graphs

(a) Max Node Degree (b) Skew of Routing Load

Fig. 5. Routing Imbalance under Skewed Key Distribution

processor uses a random membership vector to decide its peers. At level i, the peers are
the nearest processors on the left and right sides with membership vectors that match
the processor’s membership vectors for the first i bits.

Brushwood routing depends on a linear ordering of partitions. In this sense, any
linear space DHT routing facility can be used. We choose Skip Graphs for two reasons.
First of all, Skip Graphs do not impose constraints on the nature and structure of keys. It
can work with complex keys, like the variable-length Tree IDs, as long as there is a total
ordering. Second, even if one can encode tree nodes into key values, such unhashed and
often skewed keys can cause routing imbalances in some DHTs, as they use key values
to decide the peering relation. Skip Graphs do not suffer from this problem because
its peering is decided by purely random membership vectors, even though the keys are
unhashed.

We simulated Chord [18] and Skip Graphs with a skewed key distribution to show
the imbalance in routing. Figure 5 (a) depicts the maximal processor degrees of Chord
and Skip Graphs with 1K∼32K processors. The processor keys are derived from a nor-
mal distribution with standard deviation 0.125 in the range [0, 1]. With such unhashed
keys, Chord processors falling into the sparsely populated regions will manage larger
portions of the keyspace, and are therefore likely to have a large number of in-bound
peers. Furthermore, the imbalance in peer distribution also leads to imbalance in routing
costs. We route 1000 messages between random pairs of nodes. Figure 5 (b) shows the
imbalance as the ratio of maximal routing load to mean load. We observed similar rout-
ing imbalances in Meghdoot, which employs CAN for routing in (skewed) subscription
content space. We present this result in Section 6.

5 Maintaining the Partition Tree

In this section, we discuss the maintenance of the dynamic matching tree in a peer-
to-peer setting. The major challenges are: 1) the frequent processor joins and depar-
tures, typically referred to as churn, and 2) balancing the workload among the dynamic
processor set. Our design leverages Skip Graphs to achieve efficient routing while
maintaining only a logarithmic number of peers. Therefore, the processor joins and
departures only result in small maintenance overheads. Balancing the workload asso-
ciated with publish/subscribe events is important for the scalability of the system. The

114 C. Zhang et al.

challenges that it presents in the context of the distributed matching tree differ from
what previous work in DHTs have addressed. Therefore, we focus on this issue in this
section. Our solution is based on a limited, loosely consistent knowledge about global
load distribution. What is interesting about our scheme is that we use the distributed
matching tree to aggregate this information.

5.1 Gossip-Based Aggregation

In most peer-to-peer systems, periodical polling of peer nodes is necessary for detect-
ing failures. We piggyback load information in the pair-wise heart-beat traffic between
peers. Peer processors aggregate the global load information from these gossip mes-
sages. This approach is inspired by previous work [21].

Each processor maintains load summaries for the nodes in its partial tree view. This
summary corresponds to the workload of the matching subtree rooted at the node and
the resources available on the processors that maintain the subtree. In particular, it in-
cludes the following information: 1) the total number of subscriptions in the subtree; 2)
the total rate of events visiting the subtree; 3) the total capacity of processors managing
the subtree. The first two items show the load associated with subscription storage and
event matching. The third summarizes the resource devoted for managing the load. We
define capacity as the network bandwidth of the processor instead of storage, since this
is the limiting factor for matching and delivering events. This information reflects the
heterogeneity of participating processors. The load-to-capacity ratio in the summary
indicates whether the subtree is overloaded or underloaded.

Periodically, a processor sends to peers its load summaries about nodes along its
Tree ID path (Section 4.1). Recall that this path stretches from the root to the first node
(under pre-order) belonging to the processor. Figure 6 illustrates the Tree ID paths of
peer B and D, and the gossip messages they send to A.

A maintains the storage and event processing load for the subtree it manages lo-
cally. After receiving load summaries from its peers, A can aggregate the load for the
internal nodes in its partial tree. The summary about the root node gives the global load
information. This information is loosely consistent. It is easy to see that the aggrega-
tion converges within O(log N) steps in a N -processor system, because information
about one processor reaches all other processors within O(log N) forwarding steps, the

A < 4 ?1

A < 10 ?1

max(A) < 15 ? 1A < 4 ?1

A < 10 ?1A < 10 ?1

max(A) < 15 ? 1

A B D

Summary sent by peer BLeaf nodes managed by A Summary sent by peer D

Fig. 6. Gossiping and aggregation of load information

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 115

diameter of a Skip Graph. With a typical heart-beat interval of 30 seconds, the aggrega-
tion converges within several minutes, during which time the overall load is unlikely to
change by a substantial amount.

5.2 Processor Join

When a new processor joins the system, it contacts a known processor P that is cur-
rently in the system. P uses the load summary in its partial tree view to direct the join
request. It navigates the tree, locally, to find a subtree with a high load level, as deter-
mined by the ratio of total load to capacity associated with the subtree. If this subtree
is remote or obscure (defined in Section 4.1), the join request is forwarded towards that
subtree, and eventually reaches a peer Q with high load level. This forwarding process
is similar to the distributed tree navigation for inserting subscriptions and matching
events.

After receiving the join request, Q divides the set of leaf nodes it manages and
hands over one half to the joining processor. If there is only one leaf node, or if one leaf
node has significantly higher load than others, this leaf is partitioned using algorithms
described in Section 3.5. The joining processor receives from Q the leaf nodes, which
also determines the new Tree ID of the joining processor. The processor then joins the
Skip Graph and establishes its partial tree view by contacting the peers.

Section 3.5 describes two strategies of leaf node partitioning: split or replicate. If the
high load is caused by larger than average number of subscriptions, we choose one of
the various options to partition the set of subscriptions among the new branches. If the
load is caused by high event rate to the subscriptions, we may replicate the subscriptions
in the new branches to spread out the event processing load.

5.3 Processor Departure and Failures

Processors in the system may leave gracefully or fail/quit silently without warning. In
the former case, it notifies its peers of the intention to leave and hands over the set of
leaf nodes and subscriptions to its left-hand side peer, and the Skip Graph will route
corresponding messages to this peer after the processor’s departure.

Failures and non-cooperative departures are detected by periodic heart-beat mes-
sages. If a processor P does not hear from a peer for several consecutive heart-beat
intervals, this peer is marked as failed and is excluded from the partial tree view. If the
peer is the immediate right-hand side peer, P takes over the responsibility of managing
the leaf nodes of the failed peer. In order to avoid data loss, we can replicate subscrip-
tions to left hand side peers during normal operation. This replication strategy is used
in many peer-to-peer systems [16,18,15].

5.4 Reactive Load Balancing

Besides the load-balanced join process, reactive load balancing of heavily loaded pro-
cessors is also desirable. Such imbalance may be caused by insertion of new subscrip-
tion, transfer of data after peer departure, or change of event traffic pattern. Processors
in the system detect load imbalance from the global load information. If a processor
sustains significantly higher load than global average, it can start a load balancing pro-
cess by navigating the distributed tree to find an underloaded processor. This processor

116 C. Zhang et al.

is forced to quit its current position, offload its work to its neighboring processor, and
rejoin the system as the overloaded processors’ neighbor in order to take over half of
the load from the overloaded processor.

6 Experimental Results

In this section, we present our experimental results. We use two very different real world
datasets for publish/subscribe workload. We also evaluate system scalability with larger
synthetic workloads. We start by describing the example applications and the datasets
before presenting the experimental results.

6.1 Example Applications

Stock quote alert is a popular publish/subscribe service. Users subscribe to events about
stock price changes and transaction volume fluctuations. Such services are usually im-
plemented with DBMS triggers in a centralized server. Similar subscriptions that spec-
ify numerical data ranges may be found in other systems like monitoring and sensor
networks. Therefore, we use stock quote alert as one of our representative applications.

We use the stock quote dataset collected by Gupta et al. to evaluate Meghdoot [9]. It
was obtained from Yahoo! Finance [23] by downloading the daily quotes of 100 stocks
from 2/Jan/1998 to 31/Dec/2002. This event set contains 115,353 events. The schema
and value range of the events are summarized in Table 2. The data distribution is highly
skewed. Most stock prices/volumes are within a relatively narrow range, except for a
few high price/volume stocks quotes.

We follow the method used in [9] to generate stock subscriptions. Subscriptions
randomly select one of five templates designed to model common user interests in stock
events. Table 3 lists the subscription templates and their probabilities. The parameters
are generated using random draws from uniform distributions over the data ranges of the
corresponding fields, while maintaining the constraints. The fifth template is a “rare”
case of a broad subscription that matches any stock with trading volume above a given
parameter. In the real world, users are usually interested in events specific to a narrow
group of stocks. Therefore, this template is assigned a relatively low probability.

While stock quote events exhibit a well-formed schema with numerical attributes,
a number of applications use semi-structured data representations. We use the CiteSeer
scientific literature digital library [6] as a representative data source for such applica-
tions. CiteSeer uses the Open Archives Initiative [14] protocol to publish the metadata
of its literature collection. This metadata is encoded in XML, which accomodates semi-
structured data and allows for efficient data manipulation. We parse the XML records

Table 2. Schema of Stock Quote Events

Attribute Date Symbol Open High Low Close Volume
Type String String Float Float Float Float Integer

Minimal 2/Jan/98 aaa 0 0 0 0 0
Maximal 31/Dec/02 zzzzz 500 500 500 500 310000000

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 117

Table 3. Templates of Stock Quote Subscriptions

Subscription Prob. Description
{Symbol = P1 ∧ P2 ≤ Open ≤ P3} 20% Notify when stock P1 opens with price between P2 and P3.
{Symbol = P1 ∧ Low ≤ P2} 35% Notify when the price of stock P1 is at most P2.
{Symbol = P1 ∧ High ≥ P2} 35% Notify when the price of stock P1 is at least P2.
{Symbol = P1 ∧ V olume ≥ P2} 5% Notify when stock P1 is traded at least P2.
{V olume ≥ P1} 5% Notify when any stock is traded more than P1.

published by CiteSeer to generate events one per publication, with the following ex-
tracted attributes: Date, Title, Authors, Subject, and References. We further extract Key-
words from the subject line by removing stop words and obtaining the stems of the re-
maining words. The Authors, Keywords, and References fields are represented with the
Set type defined in Section 3.1. Note that some fields, like References, might be miss-
ing in some cases due to incomplete records. A total of 574,128 events are extracted.

We generate three types of subscriptions for our experiments:

– {Authors � P}: notify when the author list of a newly published paper includes
P . We select parameter P from the list of authors appearing in the data set, with
probability proportional to the occurrence frequency.

– {Keywords ⊇ P}: notify when a newly published paper includes the keyword list
P . P is a set of one to three keywords selected randomly from the set of keywords
in the data set, with probability proportional to keyword occurrence frequencies.

– {References � P}: notify when a newly published paper cites another document
P . Again, P is randomly chosen according to data distribution.

Besides the above two publish/subscribe data sets, we also use a synthetic workload to
test system scalability, similar to that used in [4]. This workload uses events and sub-
scriptions that specify one of more of 1000 numerical attributes. This synthetic work-
load models a general purpose publish/subscribe system that does not limit the users to
a small set of pre-defined schemas. Each subscription specifies 1 to 10 predicates. Each
predicate randomly selects an attribute, a comparison operator of =, >, <, ≤ or ≥, and
a value between 0 to 999. We use either an uniform or a zipf distribution (α = 0.8)
to select the attributes. The operator and value fields are chosen uniformly randomly.
Published events randomly specify between 1 to 20 attributes and their values, under
the same distribution as for subscriptions.

We compare Brushwood matching tree against Meghdoot for the stock quote alert
experiments. Meghdoot uses CAN to partition the multi-dimensional content-space to
peer nodes. Meghdoot does not support the CiteSeer data set (due to the presence of
set predicates) or the synthetic workload (due to the large number of attributes and the
flexible event schema). So for these datasets, the experiments only evaluate our system
under different parameters.

6.2 System Scalability

We first use the synthetic workload to evaluate system scalability. We simulate from
1024 to 16384 peer processors. The number of subscriptions is fixed at 1 million. The

118 C. Zhang et al.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
um

be
r

of
 P

ro
ce

ss
or

s
V

is
ite

d

Total Number of Processors

Publish Zipf
Publish uniform
Subscribe Zipf

Subscribe uniform

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
um

be
r

of
 M

es
sa

ge
s

pe
r

O
pe

ra
tio

n

Total Number of Processors

Publish Zipf
Publish uniform
Subscribe Zipf

Subscribe uniform

(a) Number of Processors Visited (b) Number of Messages

Fig. 7. Synthetic workload: cost vs. system scale

number of event messages is 110000. We start with a single processor and add the
remaining at random intervals, in order to simulate a peer join process. In the mean
time, we insert the subscriptions into the system. We count the number of messages for-
warded for inserting subscriptions and publishing events as a measure of the communi-
cation cost. Some of the messages require further processing at the recipients: to insert
a subscription or to match an event to local subscriptions. We measure this cost as the
number of processors processing the request. We refer to this number as the textitspan
of the operation, and the processors as visited by the operation. For subscriptions, it
is the number of sites the subscription is replicated to. For events, it is the number of
nodes that need to perform predicate evaluation or matching.

Figure 7 depicts the average number of processors visited and the average num-
ber of messages forwarded for a subscription/event. Even with 16384 nodes, a typical
publishing event spans less than 1% of the processors, showing good scalability. The
maximal span we observed is about 250.

When attributes are selected using the Zipf distribution, the span of publishing
events increases much faster than under uniform distribution. The reason is that a
skewed distribution generates many similar subscriptions and events. In order to balance
the load, these closely related subscriptions are partitioned across different processors.
Events matching such subscriptions have to visit more partitions.

An interesting trend in Figure 7 is that the event span decreases when the number of
processors increase from 12288 to 16384 (for Zipf distributed attributes). Meanwhile,
the degree of subscription replication (indicated by the number of processors visited for
subscription insertion) increases from 2 to 4. This is because that as more processors
join, while the total number of subscriptions remains the same, our tree partitioning
algorithm devotes the newly joined processors to store replicated subscriptions, thereby
decreasing the number of processors that an event has to visit.

6.3 Stock Quote Alert

Next we evaluate the performance of our system and Meghdoot using the stock quote
dataset. We scale the system from 128 processors to 8192 (the N parameters in the
graphs). We also scale the number of subscriptions proportionally to the number of
processors (100N).

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 119

Figure 8 shows the number of messages forwarded by subscription insertion and
event matching as we increase the number of peer processors. Compared to Meghdoot,
our scheme shows a substantially lower cost for processing events. This is first because
we partition the subscription set based on data distribution. Meghdoot uses CAN’s par-
titioning method that splits a zone into halves of equal sizes (The reason for this regular
split is to avoid interleaving of the zone spaces that can significantly increase the num-
ber of peering zones.) Therefore it suffers load imbalance under the highly skewed
dataset. In order to alleviate this imbalance, Meghdoot replicates the overloaded nodes,
resulting in a higher number of subscription messages. Another reason is the flexible
value partitioning method used in the matching tree (Section 3.4). Meghdoot partitions
the subscriptions by Min/Max range specified for the attributes. This approach splits
the subscriptions into non-overlapping sets, but an event may need to visit both zones
after the split. We use value range partitioning method that allows events to visit only
one branch after the partition. Our approach also replicate some subscriptions, but only
limited to broad ones. So the subscription cost is still lower than that of Meghdoot.

Figure 9 shows the histogram of event spans (the number of processors visited by
the event). Under all three settings of system scale, our scheme demonstrates relatively
small and stable span, due to reasons discussed above.

Next, we compare the load balance of the two systems. We consider several aspects
of load balance: subscription storage, event matching, and routing state. Routing state
is represented by the number of peers that processors maintain.

Figure 10 (a) presents the cumulative distribution (CDF) of the number of subscrip-
tions managed by the processors. Our system exhibits evenly balanced storage loads,
while most of the subscriptions in Meghdoot are managed by a small number of nodes.
The imbalance in Meghdoot is due to the fact that only some of the zones (the portion
of the CAN space above the diagonal plane) are used to store subscriptions. Moreover,
the constraint of equal-space partitioning also limits its ability to achieve balanced load
under skewed data distribution.

Figure 10 (b) depicts the CDF of the percentage of events prcessed by the proces-
sors. Note that each event may be examined by multiple processors, so the total is higher
than the number of events submitted to the system. Our system shows better load bal-

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 M

es
sa

ge
 p

er
 O

pe
ra

tio
n

Total Number of Processors

Meghdoot Publish
Brushwood Publish

Meghdoot Subscribe
Brushwood Subscribe

Fig. 8. Stock: Number of Messages vs. System
Scale

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

N
um

be
r

of
 P

ro
ce

ss
or

s
V

is
te

d
pe

r
E

ve
nt

Percentage of Events

Meghdoot N=8192
Meghdoot N=1024

Meghdoot N=128
Brushwood N=8192
Brushwood N=1024
Brushwood N=128

Fig. 9. Stock: Distribution of Number of Pro-
cessors Visited for Publishing an Event

120 C. Zhang et al.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 P
er

ce
nt

ag
e

of
 S

ub
sc

rip
tio

ns

Percentage of Processors

Meghdoot N=8192
Meghdoot N=1024
Meghdoot N=128

Brushwood N=8192
Brushwood N=1024
Brushwood N=128

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 P
er

ce
nt

ag
e

of
 E

ve
nt

s

Percentage of Processors

Meghdoot N=8192
Meghdoot N=1024
Meghdoot N=128

Brushwood N=8192
Brushwood N=1024
Brushwood N=128

(a) Subscription Storage (b) Event Processing

Fig. 10. Stock: load distribution

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 P

ee
rs

 p
er

 P
ro

ce
ss

or

Percentage of Processors

Meghdoot N=8192
Meghdoot N=1024

Meghdoot N=128
Brushwood N=8192
Brushwood N=1024
Brushwood N=128

Fig. 11. Stock: Distribution of Number of Peers per Node

ance in event processing, because the subscriptions are more evenly partitioned among
the peers. Some of the subscriptions match very broad range of events (like those only
specifying Volume in Table 3), Both Brushwood and Meghdoot replicate some subscrip-
tions to share the event matching load. Therefore, there is not a significant difference
between the two schemes in balancing the loads associated with event processing.

We discussed the routing state balance problem in Section 4.2. In Skip Graphs,
the peering relationship is decided by random membership vectors, and hence is not
affected by skewed key distributions. Meghdoot uses CAN for overlay routing, which
decides peering by zone neighborhood. Therefore, larger zones may have more peers if
the zones are partitioned into different sizes under a skewed data distribution. In a high
dimensional space, this imbalance is more significant since zones can make contact
along more dimensions. Figure 11 confirms this intuition.

6.4 Literature Reference Notification

Now we present the results of the CiteSeer experiments. We use simulation settings
similar to the above tests, except that the subscriptions choose parameter values based

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 121

on a real distribution derived from the data set, instead of using uniform random dis-
tributions. Figure 12 shows the CDF of the subscription storage and event matching
load on the processors. Although the contents of subscriptions and events have skewed
distributions, the load balancing mechanisms in Brushwood ensure good load balance.

Figure 13 (a) (b) shows the cost of inserting subscriptions and the cost of processing
events. Both the number of messages and the number of nodes visited are small. Since
the attributes Authors, Keywords, and References are of Set type, the span of subscrip-
tion and event messages is mainly decided by the number of items specified. In this
real-world data set, the number of authors, keywords and references are usually small.
Therefore the Brushwood approach performs well. However, we do observe a sharp in-
crease in publishing cost as the number of processors is increased from 4096 to 8192.
This is due to the dynamic load balancing mechanism discussed in Section 5.4. As the
peer population increases, popular subscriptions can receive a significant number of
subscribers. Therefore, peers maintaining them get overloaded and split their load to
more processors. As a result, events involving such subscriptions have to flood more

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 N
um

be
r

of
 S

ub
sc

rip
tio

ns

Percentage of Processors

N=8192
N=1024
N=128

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 N
um

be
r

of
 E

ve
nt

s

Percentage of Processors

N=8192
N=1024

N=128

(a) Subscription Storage (b) Event Processing

Fig. 12. CiteSeer: cumulative load distribution

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 P

ro
ce

ss
or

s
V

is
ite

d

Total Number of Processors

Brushwood Publish
Brushwood Subscribe

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 M

es
sa

ge
s

pe
r

O
pe

ra
tio

n

Total Number of Processors

Brushwood Publish
Brushwood Subscribe

(a) Number of Processors Visited (b) Number of Messages

Fig. 13. CiteSeer: cost of operations vs. system scale

122 C. Zhang et al.

peers, while each peer still maintains a reasonable share of load (Figure 13). We did
not observe such a trend in previous experiments because their subscription values are
drawn from a uniform distribution. Though there is an increase in publishing cost, we
do note that the reactive load balancing mechanism manages to balance load even in the
face of skewed subscription patterns.

7 Conclusions

In this paper, we propose a content-based publish/subscribe middleware built by dis-
tributing a matching tree over a peer-to-peer system. The main contribution is in the
decentralized navigation and management algorithms for the distributed matching tree
in peer-to-peer settings. Our system achieves efficient event matching while requiring
only small amounts of state to be maintained by the peers. Processors in the system build
partial views of the global tree based on information about only a logarithmic number of
peers. Therefore, the system provides high scalability. Compared to other peer-to-peer
approaches, it imposes no restrictions over the schemas associated with subscriptions
and events. The use of a matching tree provides more generality and extensibility in the
types of data and predicates that can be supported. The peer-to-peer tree also provides
aggregated load information that assists reactive load balancing. Experiments demon-
strate that the proposed design effectively supports real world subscription scenarios.
Besides publish/subscribe, we have used the Brushwood framework to build other ap-
plications, including high dimensional index and distributed file systems. We believe
that the combination of techniques brought together in Brushwood (such as the ability
to support search tree data structures, efficient decentralized navigation using partially
consistent views, load-balance using aggregated information) shows promise as a pow-
erful toolkit for building scalable distributed applications.

References

1. J. Aspnes and G. Shah. Skip Graphs. In Proceedings of Symposium on Discrete Algorithms,
2003.

2. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
efficient multicast protocol for content-based publish-subscribe systems. In ICDCS, 1999.

3. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
SIGCOMM, 2002.

4. A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In SIGCOMM, 2003.
5. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE : A large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
communications, 2002.

6. CiteSeer. http://www.citeseer.org/.
7. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algo-

rithms and implementation for very fast publish/subscribe systems. In SIGMOD, 2001.
8. J. Gough and G. Smith. Efficient recognition of events in a distributed system. In Proc. of

the 18th Australasian Computer Science Conference, 1995.
9. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-based pub-

lish/subscribe over p2p networks. In Proc. of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware, 2004.

Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System 123

10. E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate matching algorithm
for database rule systems. In SIGMOD, 1990.

11. N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In USITS, 2003.

12. Y. hua Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In SIGMETRICS,
2000.

13. Object Management Group. Corba event service specification (version 1.1), March 2001.
14. Open Archives Initiative. http://www.openarchives.org/.
15. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-

able network. In Proceedings of ACM SIGCOMM, 2001.
16. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for

large-scale peer-to-peer systems. In Middleware, 2001.
17. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service

with quenching. In Proceeding of AUUG97, 1997.
18. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-

to-peer lookup service for internet applications. In SIGCOMM, 2001.
19. D. Tam, R. Azimi, and H.-A. jacobsen. Building content-based publish/subscribe systems

with distributed hash tables. In Internation Workshop on Databases, Information Systems
and Peer-to-Peer Computing, 2003.

20. TIBCO. http://www.tibco.com/.
21. R. van Renesse and K. P. Birman. Scalable management and data mining using astrolabe. In

IPTPS, 2002.
22. Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang. Subscription par-

titioning and routing in content-based publish/subscribe networks. In 16th International
Symposium on Distributed Computing, 2002.

23. Yahoo! Finance. http://finance.yahoo.com/.
24. C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood: Distributed trees in peer-to-peer

systems. In IPTPS, 2005.

WReX: A Scalable Middleware Architecture to
Enable XML Caching for Web-Services

Junichi Tatemura1, Oliver Po1, Arsany Sawires2,�,
Divyakant Agrawal1, and K. Selçuk Candan1

1 NEC Laboratories America,
10080 North Wolfe Road,

Suite SW3-350, Cupertino, CA 95014
{tatemura, oliver, agrawal, candan}@sv.nec-labs.com

2 Department of Computer Science,
University of California Santa Barbara,

Santa Barbara, CA 93106
arsany@cs.ucsb.edu

Abstract. Web service caching, i.e., caching the responses of XML web
service requests, is needed for designing scalable web service architec-
tures. Such caching of dynamic content requires maintaining the caches
appropriately to reflect dynamic updates to the back-end data source.
In the database, especially relational, context, extensive research has ad-
dressed the problem of incremental view maintenance. However, only a
few attempts have been made to address the cache maintenance problem
for XML web service messages. We propose a middleware solution that
bridges the gap between the cached web service responses and the back-
end dynamic data source. We assume, for generality, that the back-end
source has a general XML logical data model. Since the RDBMS technol-
ogy is widely used for storing and querying XML data, we show how our
solution can be implemented when the XML data source is implemented
on top of an RDBMS. Such implementation exploits the well-known ma-
turity of the RDBMS technology. The middleware solution described in
this paper has the following features that distinguish it from the existing
technology in this area: (1) It provides declarative description of Web
Services based on rich and standards-based view specification language
(XQuery/XPath); (2) No knowledge of the source XML schema is as-
sumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size
of the auxiliary data needed for the cache maintenance does not depend
on the source data size, therefore, the solution is highly scalable. Experi-
mental evaluation is conducted to assess the performance benefits of the
proposed approach.

Keywords: web services, caching, XML views, path expressions, XML-
relational mapping.

� This work has been done during the author’s summer internship at NEC.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 124–143, 2005.
c© IFIP International Federation for Information Processing 2005

WReX: A Scalable Middleware Architecture to Enable XML Caching 125

1 Introduction

Performance degradation of a Web Service can significantly impact the response
times of front-end applications that use it. Especially for Web Services that
provide dynamic content to many users (such as product information services),
latency observed by the users is caused not only by the network transmission,
but mainly by server overload at the back-end application. Offloading processing
from the back-end applications is thus essential in providing Web Services scal-
ability. Therefore, caching is a key enabling technology for scalable Web Service
delivery.

A Web Service cache must handle request and response messages (typically
formatted using XML); thus the cache must process (e.g., parse XML content of)
a request message to identify the response message to be returned. Therefore, a
standard HTTP cache cannot be directly employed when caching Web Services.
Furthermore, in order to achieve loose coupling of remote services, Web Services
usually handle messages with coarser granularities than traditional distributed
object messaging such as CORBA. This fact makes it more difficult to map
data source updates to the cached messages. Caching messages for data-driven
Web Services thus requires middleware support for appropriate propagation of
updates from the source to the cache.

It is commonly understood that an XML data/query model can be imple-
mented on a relational model to leverage from the proven and highly-optimized
storage and query capabilities already provided by existing relational database
systems [15]. Thus, one approach to caching Web Service could be to apply ex-
isting technologies that manage data dependency between web content and data
in relational databases, such as Data Update Propagation (DUP)[3], view inval-
idation [2], invalidation based on query templates [4], and many other works on
view maintenance. However, these relational approaches will be very inefficient
because an XML query can involve too many join operations when translated
into SQL.

In this paper, we propose a middleware architecture, WReX, that bridges
the semantic gaps among Web Service messages, a relational data model, and
an XML data model, for caching Web Services. To make the proposed mid-
dleware solution applicable to various data sources, the WReX represents the
source data in the caches as XML views and provides a declarative way to de-
fine Web Services to access the data. The WReX architecture (Sections 3 and
4) aims at resolving the impedance mismatch between the cached data content
and the underlying database technology by applying recent XML-specific view
maintenance techniques transparently in a relational setting.

Consequently, the WReX introduced in this paper consists of two complemen-
tary components: (1) Web Service Content Description (WSCD) mechanism fills
the gap between Web Service messages and XML views of the source data and (2)
XML view maintenance mapped to relational storage fills the gap between XML
views and updates to the source data. This novel middleware architecture has
the following features that distinguish it from the previous works: (1) It provides
declarative description of Web Services based on rich and standards-based view

126 J. Tatemura et al.

specification language (XQuery/XPath); (2) No knowledge of the source XML
schema is assumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size of the aux-
iliary data needed for the cache maintenance does not depend on the source
data size, therefore, the solution is highly scalable. Experimental evaluation is
conducted to assess the performance benefits of the proposed approach. Exper-
imental evaluations presented in Section 5 establish the performance benefits of
the WReX middleware approach.

2 Cache-Enabled Service Middleware Architecture

Figure 1 illustrates WReX, a Web Service middleware architecture enhanced
with web service caching. WReX consists of a Web Service Application Server,
an XML Data Source, and an Update Manager, which are implemented on top
of a common Web computing platform (e.g., a J2EE application server and a
relational database server). WReX lets users describe and deploy Web Services
that deliver content generated from their own data sources. Given the description
of a Web Service, the middleware manages request/response message caches.

A Web Service application is deployed on top of the WS Application Server
and the XML Data Source as can be seen Figure 1. The application has three
major parts: (1) data (data source to be published), (2) content logic (descrip-
tion of message content to be generated from the data source) , and (3) man-
agement logic (user authentication, logging, and metering). The cache-enabled
Web Service application server consists of the following components: (1) Various
management components, (2) a message content cache component, (3) a con-
tent processor, and (4) an XPath cache. Management components manipulate
messages (e.g., insert data in the header) genereted by the content processor.

Management components handle management tasks such as user accounting
and monitoring with approprite transformation of message content. Web service

WS Application (Data Service)

XML Data Source

WS Application Server

RDBMS

Data
Source

update

aux

Update Manager

Management
Components

Content
Processor

Application
Content Logic:
WSDL+WSCD

Application Data:
Any XML

XPath
Cache

Content
Cache

deploy deploy

WS
Client update

SQL

XPath
query

XML-Relational Mapping

Application
Management

Logic

Fig. 1. WReX: Web Service Caching Architecture

WReX: A Scalable Middleware Architecture to Enable XML Caching 127

messages that contain management information are much less reusable even if
actual content delivered to the user (e.g., product information) is reusable. By
separating management functions as these components, WReX lets the other
components focus on managing relationships between message content and the
source data and makes cache more applicable.

The content logic specifies how to generate content of a message in response
to a request message from a Web Service client. A shortcoming of the existing
technologies is that, the Web Service definition language (WSDL) only defines
interfaces (such as data types) of request/response messages, but does not pro-
vide content relationship between request and response messages [18]. To bridge
this gap, we introduce a description platform, Web Service Content Description
(WSCD), which provides a template of a response message that can contain ref-
erences to data in a request message and queries to the source data. When the
application server receives a request message, it generates a response message by
integrating a message template and content fragments retrieved from the data
source. Caching is applied to both generated response messages (Content Cache)
and retrieved content from the source (XPath Cache).

This approach is similar to JSP (Java Server Pages) or ESI (Edge Side In-
cludes). JSP provides a template of dynamic web pages and lets the application
server construct a page from the template and content fragments generated by
applications. Several application servers provide caching functionality for such
content fragments in order to reduce application overload. ESI is a markup
language used to define web content components for dynamic assembly and
delivery of web pages at edge servers. The edge server dynamically integrates
fragments into a web page and needs to retrieve only non-cacheable or expired
fragments from the original servers. Datta et al. [5] has extended this approach
to enable more flexible content composition on the edge server resulting in en-
hanced cacheability and reusability of content. In this sense, our approach can be
seen as an extension of the JSP/ESI concept from HTML to XML context with
XML cache update management. Another related example is the Weave manage-
ment system [19] that enables the user to create Web content using declarative
specification and caches various intermediary data such as views of relational
data, XML page fragments, and HTML pages. Although it supports XML con-
tent generation from relational databases, update maintenance between cached
XML content and data source is based on time stamps and specified with event-
condition-action rules.

To enable caching of XPath queries to the data source as well as the message
responses from the Web Service itself, the Update Manager needs to monitor
updates in the data source and identify changes in the cached results. Here, note
that an XML-aware data source is commonly implemented on an XML-aware
RDBMS, which can leverage from the maturity of RDBMS implementations,
extensive tuning, proven scalability, sophisticated query processing and query
optimizers. However, even though the underlying DBMS is relational, tradi-
tional view/cache management solutions for relational data can not be directly
applied to an XML data/query model. For example, CachePortal [2] automates

128 J. Tatemura et al.

cache update management based on a view invalidation technique in a relational
model. However, when a query involves many join operations, which is the case of
XML queries in a relational model, it is very inefficient due to costs from an ex-
tra database snapshot and over invalidation. Therefore, we introduce an update
management middleware component which benefits from the relational nature
of the back-end database, while deploying XML-specific view management tech-
niques (i.e., the Update Manager that accesses the data source through SQL
queries (Figure 1)).

2.1 Web Service Content Description (WSCD)

Given a service request, the Web Service generates response messages based
on the service logic. The interface between the request and response is usually
defined using WSDL (Web Service Definition Language). WSDL, on the other
hand, does not describe content relationships between request and response mes-
sages, which are needed for managing updates. We propose Web Service Content
Description (WSCD) language that describes how a response message is gener-
ated for a given operation specified in WSDL. Formally, the WSCD for a service
operation o consists of three parts: (V, T, S), where V is the variable assignment
definition, T is the template definition, and S is the source references.

– The variable assignment definition V defines how to extract data from a
request message. Mapping from a request message to variables is given by
pairs of name and XPaths: V = {(namei, xpathi)}. Given a request message,
which can be seen as an XML document, V generates a specific variable as-
signment v = {namei = valuei}. In addition to the generation of a response
message, v is used as the identity of the message cache: the identity consists
of an operation name and a variable assignment (o, v).

– The template T defines the content of a response message with references to
the variables V . The template can contain XQuery expressions to dynami-
cally insert data derived from the data source.

– The source reference S maps URIs of data source service endpoints to doc-
ument URIs referred to by XQuery expressions in T .

Figure 2 shows an example of a WSCDdescription. Elements <cd:Variables>,
<cd:Template>, <cd:ServiceEPR> correspond to (V, T, S), respectively.

A variable is defined with a part of the request message (i.e. input) of a
WSDL operation and an XPath expression that indicates data within the part.
Combined with WSDL binding information, it is translated to a full XPath
expression applied to a request message, for example:

“/Envelope/Body/GetBookRequest/Category/text()”

in case of the SOAP literal binding. A template specifies an XML content of a
part of the response message (i.e., output) of a WSDL operation. It can contain
an XQuery specified in <cd:Query>. The query may refer to variables defined in
the variables part.

WReX: A Scalable Middleware Architecture to Enable XML Caching 129

<cd:WSCD xmlns:cd=... operation="GetBook">
<cd:Variables>
<cd:Let name="category" part="body"

path="/GetBookRequest/Category/text()"/>
<cd:Let name="maxprice" part="body"

path="/GetBookRequest/Max/text()"/>
<cd:Let name="minprice" part="body"

path="/GetBookRequest/Min/text()"/>
</cd:Variables>
<cd:Template part="body">
<GetBookResponse>

<cd:Query>FOR ... LET... WHERE... RETURN...</cd:Query>
</GetBookResponse>
</cd:Template>
<cd:ServiceEPR .../>
</cd:WSCD>

Fig. 2. Example of Web Service Content Description

Note that WSCD is meant to provide a simple specification of message con-
tent in a request-response Web Service operation. If the user wants a full set
of programming functionality to create Web Service (such as event handling), a
special programming language for Web Services, such as XL [8], could be used
instead of WSCD. In fact, since XL uses XQuery expressions to access data,
a possible extension of WReX is to support the XL language, in addition to
WSCD, for services with complicated interactions.

Our WSCD approach is also related to “declarative web services” [1], used
for composing dynamic XML documents by importing fragments. For optimized
data management, a declarative web service that provides fragments is defined
as an XQuery on data sources. Although they focus on data replication issues in
a distributed environment, they also state possibility of querying cost reduction
through an update propagation mechanism, on which we focus in this paper.

2.2 Cache Management Using WSCD

The WSCD description of Web Service messages provides a framework to manage
Web Service caching. First, the system needs to identify the matching incoming
requests and cached response messages. This task is done by extracting values
from an incoming message with XPath expressions in the variable definition V
since the cache identity is given as a variable assignment (o, v). Efficient filtering
[7] can be applied to process multiple XPath matching results in a scalable
manner. Then we focus on the second task: to manage update dependencies
between cached messages and the data at the source.

As described above, the WSCD template contains a set of XQuery expressions
XQ = {xqi} to insert dynamic data from the source into response messages.
Since an XQuery expression xq contains references to the variables V and the
source S, what the system needs to manage is an XQuery instance (xq, v, S):

130 J. Tatemura et al.

when the result of an XQuery instance is updated, the message cache items that
contain this result must be updated or invalidated.

An XQuery statement accesses documents (i.e., the source data) through
XPath expressions. Thus, a set of XPath expressions XP = {xpi} is extracted
from XQueries XQ and is given to the XPath cache component, which caches
an XPath instance: (xp, v, S). The XPath Cache receives an XPath query from
XQuery Processor and returns the query result from the cache. If it is not cached,
the XPath Cache issues an XPath query to the data source. The data source
returns the query result and makes available auxiliary data required to maintain
XPath cache (Section 3).

When the Update Manager observes updates in the data source, it determines
the impact of the source update to cached XPath results. During this process, the
Update Manager uses the auxiliary data and update data to identify the cache
updates. It may also access the source data if needed. Then it maintains cached
results in the XPath Cache affected by the update. Consequently, message cache
items that refer to the affected XPath instances are also either invalidated or
maintained. In order to effectively manage update dependency between message
cache and the data source, the WReX uses our XML-specific view maintenance
techniques described next.

3 XPath Cache Maintenance

In this section we describe the data model and the incremental XPath mainte-
nance technique WReX relies on. Further details of both are presented in [13].

3.1 Data Model

As described earlier, the underlying logical model of the data source is XML.
Each XML data source is represented as an ordered tree in which every node n
is a pair 〈n.id, n.label〉 where n.id is a node identifier that uniquely identifies the
node and n.label is a string that describes the node type and/or value. We use
upper-case letters to represent the node labels. For example, A, B, and C are
node labels. We use numeric subscripts to distinguish different nodes that have
the same label. Thus, Ai and Aj refer to two distinct nodes with the same label
A. Figure 3 shows an example document tree and path expression that will be
used as a running example to illustrate the incremental maintenance technique.

3.2 Update Model

A source update is a transformation of the source XML document. Any source
transformation can be expressed in terms of the two primitive operations of
addition and deletion of leaf nodes. Thus, for simplicity, in this section, we
focus on the maintenance operations needed to handle these two types of source
updates. Formally, we model a source update U as a pair 〈U .type,U .path〉 where
U .type is the type of the update: Add (add a leaf node) or Delete (delete a
leaf node). U .path is the path of all the ancestors of the added or deleted node

WReX: A Scalable Middleware Architecture to Enable XML Caching 131

R

B1

A1

B2

C1 C2

D2 D1

C6 C3 E1

C4

D3

A2

B3

E2

A3

B4

E3 C5

B5

D4

D5

E4

X1 X2

X3

Fig. 3. (a) An Example XML Tree and (b) a path-expression E

starting with the document root and ending with the added or deleted node
itself. The added or deleted node itself is referred to as U .node. For example,
U = 〈Add, (R, X1, A1, B1, Z)〉 represents the addition of node Z as a child node
of node B1 in the XML document shown in Figure 3(a).

3.3 Query Model

Path expressions are the basic building blocks of XML queries and therefore are
fundamental to implementing Web Services in our framework. The cache content
is the result of applying path expression-based queries to the source document.
A path expression E of size N is a sequence of N steps: (s1, s2, · · · sN). A step
si is a triple 〈si.axis, si.label, si.pred〉 where (i) si.axis is an axis test (child ’/’
or descendent ’//’); (ii) si.label is a label test; and (iii) si.pred is an optional
predicate test which can be any complex condition examining the labels and
the structure of the nodes in the subtree of the node being tested. Predi(n) is
said to be true if and only if (1) Node n belongs to the source tree, and (2)
si.pred evaluates to true at node n or step si does not have a predicate test. For
example, Pred3(C1) in the example is true because C1 satisfies the condition
s3.pred since C1 has no descendants labeled E.

Given an expression E , a document tree D, and a sequence of context nodes
C (the set of staring nodes from D), a query, Q = q(E , C,D) returns a sequence
of nodes R as a result. For example, consider the query Q = q(E , C,D) where:
D is the document tree shown in Figure 3(a), C = (X1, X2, X3) are the shaded
nodes the same figure, and E is the path expression specified in Figure 3(b).
Given this query,

132 J. Tatemura et al.

1. the first step s1 (/A) starts at every node in C and selects all the children
with label A; this results in the first intermediate result R1 = (A1, A2, A3).

2. s2 (//B[Count(//E) ≥ 1∨Count(/D) ≥ 1]) starts at every node in R1 and
selects all the descendants with label B that have at least one descendant
labeled E or at least one child labeled D; this results in the second inter-
mediate result R2 = (B2, B3, B4, B4, B5, B5). Note that B4 - and also B5 -
occurs twice in R2 because it can be derived in two ways from nodes of R1,
one from A2 and another one from A3.

3. starting at R2, step s3 (/C[Count(//E) = 0]) selects all the descendants la-
beled C that have no descendants labeled E; this results in R3 =
(C3, C4, C5, C5, C5).

4. finally, s4 (//D) starts at R3 and selects all the descendants labeled D.
Hence, the final result of Q is R = R4 = (D3, D3, D4, D4, D4).

We differentiate between the multiple occurrences of the same node in a result
by using a numeric superscript. For example, we denote the result R as R =
(D1

3, D
2
3 , D

1
4, D

2
4, D

3
4).

For a node n ∈ R, the sub-sequence of the ancestors of a node n that matched
the steps of E , and thus caused n to appear in R is referred to as the result
path of n and denoted as ResultPath(n). ResultPathi(n), where i ≥ 0, is the
ith element in ResultPath(n). In the example query above, ResultPath(D1

3) =
(X1, A1, B2, C3, D3) and ResultPath(D1

3)2 = (X1, A1, B2, C3, D3) is B2.

3.4 Incremental Maintenance of Path Expression Results

Asource updateU can affect the cached resultRby adding or deleting nodes to any
of the intermediate resultsRi.Theprimary reasonof suchadditions anddeletions is
changing the truth values of the expressionpredicates at the steps of the expression:

If an update changes a predicate Predi(n) from false(true) to true(false),
we say that the update directly adds (deletes) node n at step i.

A direct addition (deletion) at step i can induce other indirect additions (deletions)
in steps j > i. The final result R is affected if and only if the effect propagates all
the way to step N . For example, ifU = (Add, (R, X1, A1, B1, E5)), thenPred2(B1)
changes from false to true. The direct effect of this is to add B1 toR2. The resulting
indirect effects are the addition of C1 and C2 toR3 and then the addition of D1 and
D2 toR4. For each step, the incremental maintenance process first discovers all the
direct effects and then uses these effects to discover the indirect ones.

Discovering the Direct Effects of the Updates. We identify the direct effects
of the updates in two phases: Axis&Label test and the predicate test.

Phase I - Axis&label test: Let us define δ+
i and δ−i as the sequences of all nodes

that U directly adds/deletes at Ri respectively. Let also δi = δ+
i � δ−i . The job

of this phase is to identify a sequence Δi such that we can guarantee, without
any source queries, that δi � Δi.

In [13], we showed that every node n in δi must also belong to U .path. More-
over, for a node n to be directly added to be in δi, it must have an ancestor

WReX: A Scalable Middleware Architecture to Enable XML Caching 133

in every Rj , j < i. Since n itself belongs to U .path, then all its ancestors also
belong to U .path. This suggests that U .path has much of the information needed
to identify the nodes of δi. In fact, applying the axes and labels tests to U .path,
ignoring the predicate tests, provides a sequence Δi which is guaranteed to be
a supersequence of δi. This is because this process uses a relaxed selection con-
dition (it ignores the predicate tests, which evaluation requires querying the
source) over the branch U .path which is guaranteed to include all the nodes of
all the δi’s. Computing the Δi’s from U .path proceeds very similar to computing
the Ri’s from the source tree D. For example, consider an update U of adding
a node D6 as a child of D4. In this case, U .path is the tree branch that starts
with the root R and ends with D6. Computing the different Δi’s as described
above results in: Δ0 = (X2, X3), Δ1 = (A2, A3), Δ2 = (B3, B4, , B4, B5, B5),
Δ3 = (C5, C5, C5), Δ4 = (D4, D4, D4, D6, D6, D6). Note that the only nodes
that will be directly added are the three occurrences of D6 that appear in Δ4;
all the other nodes n in all the computed Δi’s will not be added or deleted
because U did not affect Predi(n). Note that, because D6 did not exist be-
fore U occurred, the value Predi(D6), ∀i is false before U . Similarly, if an
update deletes a node n from the source tree, the value Predi(n), ∀i is false
after U .

Phase II - Predicate test: This phase identifies the exact sequence δi by deter-
mining which nodes in Δi had their predicate values changed due to the update.

To detect such changes we need to compare, for every node in δi, the values
of Predi(n) before and after U occurred. Let us denote the value of the predicate
before the update occurred as Predbefore

i (n) and the value after the update as
Predafter

i (n). The value of Predafter
i (n) can be easily calculated by querying the

source. The value of Predbefore
i (n), on the other hand, cannot be computed by a

source query because the update U has already been incorporated at the source.
Once again, in [13], we showed that we can deduce the value of Predbefore

i (n)
using the information of the result paths. Specifically, we showed that if we define
RPi(n) to be true if and only if n is the ith element of the result path of some
node in R, then we can take Predbefore

i (n) = RPi(n). Therefore, we keep the
result paths’ information as auxiliary data with the cached result R. With that,
we compute Predbefore

i (n) without issuing any source queries. To compute the
size of this auxiliary data, recall that each result path is of length N + 1; if M
is the size of the cached result R, then the size of the auxiliary data is clearly
O(M ∗ N). Thus the auxiliary data size is bounded by the expression size and
the result size and it does not depend on the source data size.

Discovering the Indirect Effects of the Updates To discover the indirect
effects from the direct ones, we need to handle two cases:

1. Indirect additions due to direct additions: when a node n is directly added
to Ri then, in order to retrieve the indirect additions at R, the maintenance
algorithm issues a source query with context as n and with the steps sequence
(si+1, si+2, · · · , sN). This query is denoted as q((si+1, si+2, · · · , sN), (n),D).

134 J. Tatemura et al.

Incremental Maintenance (Expression E, Update U)

1- Δ0 = C ∩ U .path
R+ = R− =() //Empty sequences
i = 1 // loop variable

2- WHILE (i ≤ N AND Δi−1 is not empty)
2-1 j = i

WHILE (sj has no predicate test AND j < N) j++
2-2 Δj = q((si, si+1, · · · , sj).axis&label, Δi−1,U .path)
2-3 Let Tj = (n|n ∈ Δj ∧ Predafter

j (n) = true)
2-4 δ+

j = (n|n ∈ Tj ∧ RPj(n) = false)
2-5 R+ = R+ � q((sj+1, sj+2, · · · , jN), δ+

j ,D)
2-6 R− = R− � (n|n ∈ R ∧ ResultPathj (n) ∈ (Δj − Tj))
2-7 Δj = Tj − δ+

j

2-8 i = j + 1
3- R = R �R+

R = R − R−

Fig. 4. Incremental View Maintenance Algorithm for XML Path Expressions

2. Indirect deletions due to direct deletions: when a node n is directly deleted
from Ri, then all the nodes r ∈ R that came to R due to n belonging to
Ri must also be deleted from R. These are the nodes r ∈ R which have
ResultPathi(r) = n. Thus, using the auxiliary data described above, we can
discover the indirect deletions without issuing any source queries.

The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-
sented above. Step 1 initializes some algorithm variables. R+ and R− are the
sequences of nodes to be added and deleted, respectively, in R. The loop in step
2 computes the different Δ′s. Step 2-1 assigns the value of j such that the range
i : j spans all the expression steps starting at i that do not have predicate tests.
For this range, no predicate tests are needed because all the predicates are known
to be true, by definition, before and after U . Thus, there are no direct effects
in this range. Therefore, the algorithm combines all the axis&label tests of this
range in one step, namely, step 2-2. Step 2-3 identifies Tj as the sequence of the
nodes of Δj that have Predafter

j (n) = true. Step 2-4 then discovers the direct
additions at Rj . These direct additions are then used by step 2-5 to discover
the indirect effects on R. Step 2-6 discovers all the ultimate deletions at R, it
implicitly discovers the direct deletions and uses them to discover the indirect
ones. Step 2-7 excludes from Δj the nodes that will not have effects on later
iterations, this is formally proved in [13]. Step 2-8 increments the loop variable
to start after j in the next step. Finally, step 3 updates R using R+ and R−.

Note that the algorithm does not differentiate between source addition and
deletion updates, the only case that needs to make such distinction is when
U .node itself belong to ΔN , this case is implicitly taken care of in the computa-
tion of Predi(n) before and after U .

In addition to the result R, the auxiliary data also need to be maintained.
This is not shown here for simplicity.

In the following section, we show how this algorithm is implemented when the
source XML document is stored in an RDBMS and hence, queried by SQL queries.

WReX: A Scalable Middleware Architecture to Enable XML Caching 135

4 Implementation over RDBMS

Although there have been several efforts to build native XML database sys-
tems [10,11], a common consensus is to use RDBMS technology to leverage from
the proven and highly-optimized storage and query capabilities already provided
by existing relational database systems [15].

Therefore, in this section, we show how the incremental XPath maintenance
algorithm described in Section 3 can be implemented when RDBMS technology
is used for the storage of the XML source data, the auxiliary data, and the
cached results. This requires an update management middleware which bridges
the gap between the XML logical data model at one side, and the relational
database implementation at the other side.

First, we will describe the XML-to-RDBMS and XPath-to-SQL mapping
schemes the middleware uses (Section 4.1). Then we will describe how to employ
this relational framework for incremental view maintenance of XPath queries to
support efficient Web Service caching (Section 4.2).

4.1 Storing and Querying XML over RDBMS

XML Data to Relational Data Mapping. Given the mismatch between the
XML data model (which has a nested structure) and the relational data model
(which is flat), several techniques have been proposed for storing and querying
XML documents using relational database systems [6,9,16,15]. These approaches
typically work as follows. The first step is relational schema generation, where rela-
tional tables are created for the purpose of storing XML documents. The next step
is XML document shredding, where XML documents are stored by shredding them
into rows of the tables that were created in the first step. The final step is XML
query processing (XPath queries in our case), where XPath queries over the stored
XML documents are converted into SQL queries over the created tables.

One simple approach of shredding is to store each node in the XML tree as a
tuple in a relational table, which maintains all the necessary information, such as
the node label, and node type. Node identifiers are used to capture and represent
the structure of the XML source in the relational database. In order to efficiently
maintain path-expression views over XML documents, two essential properties
must be provided by node identifiers: First, element(s) updated in the source
XML document should be easily identified. Secondly, structural (parent, child,
descendent, sibling) relationships among the elements of the XML document
should be easily determined using the node identifiers. These are critical for
efficient query processing and also in facilitating effective view maintenance in
the presence of updates.

Several approaches are proposed to assign node identifiers to the nodes in
XML document. We apply one such approach called, the ORDPATH [12] scheme
(also used in the upcoming version of Microsoft SQL Server). ORDPATH iden-
tifiers can be assigned to the nodes of an XML tree without requiring a schema.
ORDPATHs are conceptually similar to the Dewey Order introduced in [17].
The resulting identifiers have the property that ancestor relationships between

136 J. Tatemura et al.

id label type value parent
1 Manuscripts element NULL 0
1.1 Category attribute Fiction 1
1.3 Book element NULL 1
1.3.1 ISBN attribute 1-555860-438-3 1.3
1.3.3 Title element NULL 1.3
1.3.3.1 NULL value A Story 1.3.3
1.3.5 Author element NULL 1.3
1.3.5.1 Country attribute USA 1.3.5
1.3.5.3 NULL value John Doe 1.3.5
1.5 Monograph element NULL 1
1.5.1 ISBN attribute 1-888570-843-5 1.5
1.5.3 Title element NULL 1.5
1.5.3.1 NULL value Another Story 1.5.3
1.5.5 Author element NULL 1.5
1.5.5.1 Country attribute Canada 1.5.5
1.5.5.3 NULL value Tom Alter 1.5.5

Fig. 5. SrcTBL: The XML Document Table

the nodes is captured by the prefix relationship between the corresponding node
identifiers: ancestor(ni, nj) ↔ prefix(ni.nid, nj.nid).

Consider the following sample XML document:

<Manuscripts Category="Fiction">
<Book ISBN="1-555860-438-3">

<Title>A Story</Title>
<Author Country="USA">John Doe</Author>

</Book>
<Monograph ISBN="1-888570-843-5">

<Title>Another Story</Title>
<Author Country="Canada">Tom Alter</Author>

</Monograph>
</Manuscripts>

Figure 5 shows the table SrcTBL in which an XML document is stored in an
RDBMS

– id: The ORDPATH identifier originally proposed is implemented as a bit
string, and an RDBMS is supposed to implement primitive functions for struc-
tural relationships and query plans optimized for ORDPATHs. In our proto-
type, we have implemented an ORDPATH id as a character string, as shown in
Figure 5, for experimental purpose without implementing primitive functions
in RDBMSs. The primitive ancestor(ni.id, nj .id) is implemented as a string
prefix matching: “ni.id LIKE nj .id || ’%’”. Note that the node id column cap-
tures the order of the XML document, thus this XML order semantics are not
lost when the document is stored in an unordered relational system.

– parent: To identify a parent-child relationship effectively in our experimental
prototype, we additionally store the parent node id in the table. The primi-
tive parent(ni.id, nj .id) is in fact implemented as “ni.id = nj.parent”.

– label, type, value: A node type is specified in type , which is either an
element, attribute, or value. An element node has its tag name in label.
An attribute node has its name and value in label and value respectively.
A value node has its value in value. Although our view maintenance algo-
rithm is presented on a simplified document model (i.e., 〈n.id, n.label〉), it
can be easily mapped in this node model.

WReX: A Scalable Middleware Architecture to Enable XML Caching 137

With this table schema in place, XPath queries can be processed by translating
them into SQL queries against a table of this schema, as illustrated next.

4.2 XML Document Update Management

For each cached XPath expression, the system stores the following data required
for incremental maintenance (Section 3): (1) CntxtTBL: a table of the nodes
that comprise the query context, (2) Query Statement: an SQL representation of
the original XPath expression, (3) Individual query step: an SQL representation
of each step in the incremental maintenance algorithm, and (4) AuxTBL: the
auxiliary data (i.e. the result paths), whose schema is AuxTBL(id0, id1, id2, · · ·,
idN) (where N is the number of steps in the cached expression, each row in this
table stores a result path of the result, and the nodes in the last column idN
comprise R).

In the maintenance process, the whole auxiliary data (i.e., AuxTBL) needs to
be maintained, not only the final result R which is stored in the last column of
that table. We have implemented that simply by projecting more columns in the
SELECT clauses of the following SQL statements. With that, the rows resulting
from these SQL statements represent partial path expressions. Therefore, we use
join operations to concatenate these partial result paths to form full result paths
to maintain AuxTBL. For simplicity, we do not show the concatenation queries
here.

In addition to these tables, we maintain an update table (UpdtTBL) that
stores the source update being processed. As mentioned before, each update U
is represented by U .path which is a branch of the source tree. Thus, we use the
same schema as for the SrcTBL.

The View Maintenance Process. We illustrate the view maintenance process
with the folowing expression as an example:

/site/person[LIKE(@id, ”person%”)]/name

To construct the SQL query representing this expression, the hierarchical rela-
tionships between the nodes can be represented by either nested SQL queries
or as self-join operations on the source table, SrcTBL, shown in Figure 5. We
adopted the second option in our solution because it allows the query optimizer
to generate more efficient query plans. Thus, the expression is transformed into
the following SQL query by the middleware:

SELECT A.id, B.id, C.id, E.id
FROM CntxTBL A, SrcTBL B, SrcTBL C, SrcTBL D, SrcTBL E
WHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.id
AND parent(E.id)=C.id
AND B.type = ’element’ AND A.label = ’site’
AND C.type = ’element’ AND B.label = ’person’
AND D.type = ’attribute’ AND D.label = ’id’ AND LIKE(D.value,’person%’)
AND E.type = ’element’ AND E.label = ’name’

138 J. Tatemura et al.

In this query, the final result is the set of nodes in the last projection E.id,
the other projections A.id, B.id and C.id represent the result path information
which is used as auxiliary data for the maintenance process.

The algorithm in Figure 4 starts by initializing Δ0 in step 1 by an intersection
operation:

CREATE TABLE Δ0(id0) AS
(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)

Then, in the first iteration of the loop, step 2-1 assigns to j the value 2
because s1 has no predicate test. Then, step 2-2 computes Δ2 by the following
SQL statement:

CREATE TABLE Δ2(id0, id1, id2) AS
SELECT A.id, B.id C.id FROM Δ0 A, UpdtTBL B, UpdtTBL C
WHERE parent(B.id)=A.id AND parent(C.id)=B.id
AND B.type = ’element’ AND B.label = ’site’
AND C.type = ’element’ AND C.label = ’person’

The projection of A.id and B.id here are to get partial result paths.
In step 2-3, T2 is computed by:

CREATE TABLE T2 AS SELECT A.id FROM Δ2 A, SrcTBL B
WHERE parent(B.id)=A.id
AND B.type = ’attribute’ AND C.label = ’id’
AND LIKE(B.value,’person%’)

Then step 2-4 computes the direct additions at R2 as follows:

CREATE TABLE δ+
2 AS

SELECT T.id FROM T2 T
WHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)

Step 2-5 then uses δ+
2 to discover the ultimate additions at R, the SQL query

used to discover these additions is:

SELECT A.id, B.id FROM δ+
2 A, SrcTBL B

WHERE parent(B.id)=A.id
AND B.type = ’element’ AND B.label = ’name’

(A.id, B.id) in this query result is a partial result path starting at R2 until R3.
Then step 2-6 computes the ultimate deletions at R as follows:

SELECT DISTINCT A.id3 FROM AuxTBL A
WHERE A.id2 IN
SELECT id2 FROM Δ2 DIFFERENCE SELECT id FROM T2

step 2-7 simply reduces Δ2 by a DIFFERENCE operator.

In the second (also, last) iteration of the loop, we have i = j = 3. In step
2-2, Δ3 is computed from the reduced Δ2. Since this iteration is processing
the last expression step, then if U .node belongs to Δ3 then the computation
of Pred3(U .node) takes into account U .type. This is computed as follows: If

WReX: A Scalable Middleware Architecture to Enable XML Caching 139

U .type = Add, then Predbefore
3 (U .node) = false because U .node did not exist

in the source before U .node. If U .type = Del, then Predafter
3 (U .node) = false

because U .node does not exist in the source after U .node. These two cases are
implicitly taken care of in the algorithm without testing U .type in the compu-
tation of Pred3(U .node) before and after U . Finally, all the ultimate additions
and deletions in AuxTBL are determined by joining the partial result paths
discovered by the SQL queries shown above.

5 Experimental Evaluation

In this section, we experimentally show that the proposed scheme provides a large
performance impact, while incurring a small storage and processing overhead.
For this purpose, we used the XMARK benchmark [14] to generate a data set
of 325,236 nodes. Experiments are done using an Oracle 9i database on a PC
with Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluated
the caching performance by using the following XPath queries:

– XP1: /site/people/person[like(@id,”person%”)]/name/text()
– XP2: /site/closed auctions/closed auction[price>40]/price/text()
– XP3: /site//item[contains(description,”gold”)/name/text()
– XP4: /site/closed auctions/closed auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/ketword/text()

Overhead of Auxiliary Data. Table 1 shows the overhead of auxiliary data
(i.e., AuxTBL) in terms of storage requirements and execution time. In addition
to cached XPath results (denoted as columns R-VAL and R-ID), the system
needs to store result paths as auxiliary data(AUX). As can be seen in the AUX
column, the storage overhead does not depend on the data size, but depends
on the number of steps in the XPath query and the cached data size. Then,
to observe the query processing in WReX, we compared the original full query
execution time with the execution time of the modified query that also retrieves
result paths to be used as auxiliary data. As shown in the Table 1, the overhead
is less than 10% in each case.

Table 1. Overhead in Auxiliary Data Maintenance: R-VAL: Result Set Value Stor-
age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: Storage
Overhead (=AUX/(R-VAL+R-ID)), FQ: Full Source Query Execution Time, FQA:
Full Source Query with Aux. Data Execution Time, EOV: Execution Time Overhead
(=FQA/FQ).

R-VAL R-ID AUX SOV FQ FQA EOV
(byte) (byte) (byte) (msec) (msec)

XP1 36538 30103 85199 1.28 532 551 1.04
XP2 2366 8312 24267 2.27 802 876 1.09
XP3 3080 2327 6096 1.13 3933 4019 1.02
XP4 964 752 5525 3.22 3520 3556 1.01

140 J. Tatemura et al.

Performance Impact of Cache-enabled Middleware. To observe the ben-
efit of WReX in reducing the execution time observed by the users, we have
compared the execution time requirements for incremental cache update and
full recomputation on the following cached queries:

– XP5: /site/people/person[like(@id,”person2%”)]/name/text()
– XP6: /site/people[person[like(@id,”person1%”)]]/

person[like(@id,”person2%”)]/name/text()

For each query, 100 source updates were randomly generated. The results of
the time comparison for all the updates are shown in Figures 6(a) and 6(b). In
short, full queries take 10 to 20 times longer to execute on average. The figures
clearly establish the advantage of the proposed incremental view maintenance
middleware.

Finally, consider Figure 7, which shows the caching impact analysis for query
XP4, which has 13 steps, but no predicate. Since there are no predicates in XP4,

Process Cycle Time Comparison
(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(a) XP5

Process Cycle Time Comparison
(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentro

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(b) XP6

Fig. 6. Incremental View Maintenance versus Full Re-Computation (Queries XP5,
XP6)

WReX: A Scalable Middleware Architecture to Enable XML Caching 141

Process Cycle Time Comparison
(13 steps, no predicate, 325236 nodes source document, 25 nodes in answer document)

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Source Updates

C
yc

le
 T

im
e

(m
s

View Update Through Incremental Maintenance Full Source Query

Fig. 7. Incremental View Maintenance versus Full Re-Computation (Query XP4)

no queries to the source need to be issued for predicate checking. Therefore,
the time needed for incremental maintenance is rather constant, whereas the
need for accessing sources for predicate tests had introduced a higher variability
to the incremental maintenance time for queries XP5 and XP6 in Figures 6(a)
and 6(b). Nevertheless, since predicate evaluation is only a part of the overall
processing needed for reevaluation of queries XP5 and XP6, incremental main-
tenance was consistently cheaper even when sources are accessed for predicate
checking.

6 Conclusion

In this paper, we have proposed WReX, a Web Service middleware architec-
ture that enables cache management by bridging the gap between Web Service
message caching and updates in the source data. Our solution consists of two
components: (1) Web Service Content Description (WSCD) that fills the gap
between Web Service messages and XML views of the source data; and (2) XML-
specific view maintenance that fills the gap between XML views and updates in
the source data. Cache-enabled Web Services are easily described and deployed
on a common platform with proven RDBMS technology. Through experimental
evaluation, we have demonstrated the performance benefits of our incremental
view maintenance. Future work includes more effective maintenance of multiple
XPath views and multiple updates, extension of our approach to other XML-to-
RDBMS mapping schemes (such as schema-aware mappings), and more detailed
studies on the entire middleware performance.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In SIGMOD Conference, pages 527–
538, 2003.

142 J. Tatemura et al.

2. K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation for
dynamic content caching in multitiered architectures. In The 28th Very Large Data
Bases Conference, 2002.

3. J. Challenger, P. Dantzig, and A. Iyengar. A scalable system for consistently
caching dynamic web data. In In Proceedings of IEEE INFOCOM’99, 1999.

4. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-
generated web contents. In APWeb 2004, 2004.

5. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.
Proxy-based acceleration of dynamically generated content on the world wide web:
An approach and implementation. ACM Trans. Database Syst, 29(2):403–443,
2004.

6. A. Deutsch, M. Fernandez, and D. Suciu. Storing Semi-structured Data with
STORED. In Proceedings of the 1999 ACM International Conference on Man-
agement of Data (SIGMOD’1999), 1999.

7. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst, 28(4):467–516, 2003.

8. D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML programming lan-
guage for web service specification and composition. In WWW2002, International
World Wide Web Conference, 2002.

9. D. florescu and D. Kossman. Storing and Querying XML Data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

10. Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In Proceedings of
the ACM International Workshop on the Web and Databases (WebDB’99), 1999.

11. J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,
R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy andJ. Shanmugasun-
daram, F. Tian, K. Tufte, S. Viglas, C. Zhang, B. Jacksonand A. Gupta, and
R. Chen. The Niagara Internet Query System. IEEE Data Engineering Bulletin,
24(2), 2001.

12. Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMOD
Conference, pages 903–908, 2004.

13. Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant Agrawal, and K. Selçuk
Candan. Incremental Maintenance of Path-Expression Views. In SIGMOD Con-
ference, 2005.

14. Albrecht Schmidt, Florian Waas, Martin L. Kersten, MichaelJ. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for xml data management.
In VLDB, pages 974–985, 2002.

15. Jayavel Shanmugasundaram, Rajashekhar Krishnamurthy, Igor Tatarinov, Eugene
Shekita, Efstratios Viglas, Jerry Kinman, and Jefferey Naughton. A General Tech-
nique for Querying XML Documents using a Relational Database System. In
Proceedings of the 2001 ACM International Conference on Management of Data
(SIGMOD’2001), 2001.

16. Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing
relational data as xml documents. In Proceedings of 26th International Conference
on Very Large Data Bases (VLDB’2000), September 10-14, 2000, Cairo, Egypt,
pages 65–76, 2000.

WReX: A Scalable Middleware Architecture to Enable XML Caching 143

17. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using a
relational database system. In Proceedings of the 20002 ACM International Con-
ference on Management of Data (SIGMOD’2002), pages 204–215, 2002.

18. D. B. Terry and V. Ramasubramanian. Caching xml web services for mobility.
ACM Queue, 1(3):70–78, 2003.

19. K. Yagoub, D. Florescu, V. Issarny, and Patrick Valduriez. Caching strategies for
data-intensive web sites. In The VLDB Journal, pages 188–199, 2000.

Inflatable XML Processing

Rohit Fernandes1 and Mukund Raghavachari2

1 Department of Computer Science, Cornell University
rohitf@cs.cornell.edu

2 IBM T.J. Watson Research Center
raghavac@us.ibm.com

Abstract. The past few years have seen the widespread adoption of
XML as a data representation format in various middleware: databases,
Web Services, messaging systems, etc. One drawback of XML has been
the high cost of XML processing. We present in this paper InflateX, a sys-
tem that supports efficient XML processing. InflateX advances the state
of the art in two ways. First, it uses a novel representation of XML,
called inflatable trees, that supports lazy construction of an XML docu-
ment in-memory in response to client requests, as well as, more efficient
serialization of results. Second, it incorporates a novel algorithm, based
on the idea of projection [8], for efficiently constructing an inflatable tree
given a set of XPath expressions. The projection algorithm presented in
this paper, unlike previous work, can handle all axes in XPath, includ-
ing complex axes such as ancestor. While we describe the algorithm in
terms of our inflatable tree representation, it is portable to other repre-
sentations of XML. We provide experiments that validate the utility of
our inflatable tree representation and our projection algorithm.

Keywords: XML, XPath, Performance, Projection.

1 Introduction

The past few years have seen the widespread adoption of XML as a data in-
terchange format in various middleware: databases, Web Services, messaging
systems, etc. The popularity of XML has been accompanied by its main draw-
back — the high cost of XML processing. One of the factors affecting XML
processing is the memory footprint of XML documents — when documents are
large or many documents are processed simultaneously, XML processors may
operate inefficiently or not execute at all.

Consider the following (common) situation — a web service receives an XML
document over the network. In processing the document, the web service accesses
certain portions of the document (possibly by executing queries in a language
such as XQuery [14] or XPath [12] on the document). Based on the result of
processing, the web service constructs a new XML document and publishes it
over the network. In such a situation, the cost of loading an instance of the
XML document into main memory and serializing the constructed output can
dwarf the cost of query evaluation during the execution of the web service.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 144–163, 2005.
c© IFIP International Federation for Information Processing 2005

Inflatable XML Processing 145

Parsing

Construction

Query
Evaluation
Serialization

Fig. 1. Breakdown of query processing time in terms of parsing time, construction
time, query evaluation time, and result serialization time

Figure 1 presents a breakdown of the cost of executing a query on a DOM [13]
representation of an XML document.1

In this paper, we describe a system, InflateX, that addresses the high cost of
XML processing. At the heart of the InflateX system is a novel representation
of XML, called inflatable tree, that builds portions of an XML document lazily
in memory in response to traversals of the document initiated by clients. The
remaining portion of the XML document is stored in binary form, which can be
up to five times more concise than the DOM representation of XML [8]. To a
client, InflateX provides a DOM view of the XML document — the client may
manipulate this view as one would any DOM representation. We will show that
the inflatable tree representation is more efficient (in general) than full DOM ma-
terialization of a document in all aspects of XML processing : construction of an
instance of a document in memory, query evaluation, and serialization of output.

To optimize the lazy construction of inflatable trees, InflateX allows clients to
specify a set of XPath expressions with respect to which the document should
be projected [8]. In one pass over the document, the InflateX system materializes
those portions of the document that are relevant to the provided set of XPath
expressions and retains the remaining portions in binary form. Traversals of the
inflatable tree that are contained in the set of XPath expressions can be processed
efficiently (since those nodes are already materialized in memory). Traversals
that access portions that are not materialized will cause the InflateX system
to materialize those portions on-demand. We will provide a novel projection
algorithm that can handle all XPath axes — previous work could handle only
XPath expressions with child and descendant axes.

1.1 Contributions

The contributions of the paper are the following:

– A novel representation of XML, called inflatable tree, that supports lazy
construction of an XML document in memory. The representation allows for
more efficient construction, query evaluation and serialization of XML data.

1 The figure reports the execution of the Java equivalent of the XQuery
for $i in /site/regions/namerica/item return $i on a 10MB XMark [11]
document.

146 R. Fernandes and M. Raghavachari

– A novel projection algorithm that can handle all XPath axes. We will show
that the definition of projection of Marian and Siméon is not sufficient when
axes other than child and descendant are used, and provide a general
definition of projection that is valid for all XPath axes.

– Experiments that demonstrate that the inflatable tree representation sub-
stantially reduces the construction and serialization time in XML processing.
Furthermore, the inflatable tree representation allows an XML processor to
handle larger documents than it might otherwise (approximately, 2-5 times
the corresponding DOM representation).

1.2 Related Work

Bohannon et al. [4] describe a virtual DOM interface that delivers navigable
XML views of relational data. Like inflatable trees, their interface supports
lazy materialization of an XML document. Their system, however, relies on
the existence of an underlying database that acts as a persistent store for the
XML data. The system also relies on the database for query execution. In
many situations, for example, for some web services, such a store may not
be available. Our inflatable tree representation provides a mechanism for effi-
cient XML processing in memory, without any requirements of an underlying
database.

Marian and Siméon have introduced the idea of projection which constructs a
DOM representation of a document based on a set of XPath expressions [8]. One
drawback to projection as defined by Marian and Siméon is that it assumes that
all queries that will be executed on the document are known in advance. The
inflatable tree representation is robust in that it can be used even when the full
set of XPath expressions that will be evaluated on the document is not known
in advance. Second, their projection algorithm cannot handle XPath expressions
involving axes such as parent and ancestor. Finally, their approach does not
reduce the cost of serialization of results which, as observed in Figure 1, can be
high.

Compressed XML [5] is a concise representation of an XML document. The
tree skeleton of an XML document — the portion of an XML document ob-
tained by ignoring all string information — is compressed. String information is
not stored directly, but if the queries are known in advance, compressed XML
encodes information about the strings that may be required to evaluate the
queries on the document. Unlike compressed XML, our representation retains
all information relevant to an XML document.

Streaming algorithms [3,6,7] reduce the memory overhead of XML processing
by not constructing the document in memory, but processing it as it is parsed.
They can be applied in constrained circumstances where all queries evaluated
in the document are known in advance and are independent of each other. As
with projection, streaming algorithms support only limited subsets of query
languages; for complex queries involving joins or nested queries, it is necessary
to manifest portions of the document in memory [8].

Inflatable XML Processing 147

1.3 Structure of Paper

The paper is structured as follows. In Section 2, we describe our system archi-
tecture and the inflatable tree representation. In Section 3, we present a new
definition of projection that is valid when all XPath axes are allowed. In Sec-
tion 4 we present our algorithm for document projection. In Section 5, we give an
overview of our implementation. In Section 6, we provide experimental results.
Finally, in Section 7, we conclude and describe future work.

2 System Architecture

The architecture of our system is depicted in Figure 2. A client passes a ref-
erence to a data stream, and optionally, a set of XPath expressions called the
projection set to the InflateX system. The projection set is an approximation
of the traversals that will be executed over the XML document; it is used as
a hint to optimize the construction of the inflatable tree representation of the
document. The projection set need not be complete — the client may execute
XPath expressions over the document that are not covered by the projection
set. The InflateX system uses the projection set and the XML data stream to
construct an initial inflatable tree representation of the XML document. The
client may determine the initial projection set using various mechanisms, for ex-
ample, static analysis of the client application, profiling information of the most
common XPath expressions or traversals used, etc. In this paper, we will focus
on mechanisms for building the inflatable tree efficiently given a projection set.

We now describe our inflatable tree representation and how a client interacts
with it in greater detail. For simplicity, we will focus on elements, though our
implementation can handle the other XML nodes, such as attribute nodes.

2.1 Inflatable Trees

Our representation of XML documents, inflatable tree, is based on the observa-
tion that the binary representation of an XML document (as a sequence of bytes)

Projector

Catalog
Publisher

Book
Title

Compilers

Publisher
Book

Title
Algorithms

ROOT

XPath

Engine

Projection

Set

Inflatable Tree

Data Streams

DOM

Traversals

Fig. 2. System architecture

148 R. Fernandes and M. Raghavachari

can be 4-5 times more concise than constructing a DOM model instance of the
document. Given a reference to an XML document, we store the sequence of
bytes corresponding to the XML document in an array of bytes in memory. Our
representation of the XML document in memory consists of two sorts of nodes:
materialized nodes and inflatable nodes. A materialized node corresponds to an
element in the document and contains all information relevant to the element,
such as its tag. An inflatable node represents an unexpanded portion of the XML
document; it contains a pair of offsets into the byte array representation of the
document corresponding to the start and end of the unexpanded portion. For
example, Figure 3a depicts the inflatable tree representation of an XML docu-
ment tree. The materialized nodes are shown with a label, and the nodes that
have a dashed border are inflatable nodes. They contain offsets into the binary
array of bytes.

Catalog

Publisher

Book

Title

Compilers

Publisher

Book

Title

Algorithms

ROOT

Byte Array

Pubs

(a) (b)

Fig. 3. (a) Inflatable tree epresentation of an XML document. Boxes with solid borders
represent materialized nodes. Boxes with dashed borders represent inflatable nodes. (b)
Representation of a constructed XML document.

2.2 Operations on Inflatable Trees

We now describe how a client may operate on an inflatable tree.

Inflatable Tree Refinement. Once an inflatable tree is constructed, a client
may operate on the tree as with any other DOM representation of an XML
document, for example, by executing an XPath expression with respect to a
node of the inflatable tree. If the client accesses a portion of the tree that has
not yet been materialized, the runtime system inflates that portion of the tree
automatically in response to the client’s request. If desired, the client may pass
a new projection set to the InflateX system, which will be used by the system to
inflate portions of the tree corresponding to the new provided set of XPaths.

Construction of XML. A client may construct new nodes and trees, which
are always constructed in materialized form. When construction refers to sub-

Inflatable XML Processing 149

trees from existing documents, InflateX constructs an inflatable node with the
appropriate offsets. For example, Figure 3b shows the result of constructing a
tree based on the input XML document of Figure 3a. The children on the Pubs
element in Figure 3b are the two Publisher subtrees in Figure 3a.

Serialization of Results. Since the byte array representation of the input XML
documents is retained in memory, portions of the results that are derived from
the input document can be serialized directly from the byte array. As we will
show in Section 6, this direct serialization can be substantially more efficient than
explicit traversal of a tree to perform serialization. For example, in Figure 3b,
the inflatable nodes corresponding to the Publisher elements can be serialized
directly from the input document byte array.

3 Preliminaries

We define the abstractions of XML documents and XPath expressions that will
be used in this paper. We will then provide a definition of projection that is valid
when all XPath axes are supported.

3.1 Tree Model of XML Documents

An XML document can be represented as a tree whose nodes represent the
structural components of the document — elements, text, attributes, etc. Parent-
child edges in the tree represent the inclusion of the child component in its parent
element, where the scope of an element is bounded by its start and end tags. The
tree corresponding to an XML document is rooted at a virtual element, root,

which contains the document element. We will discuss XML documents in terms
of their tree representation; D represents an XML document, and ND and ED

denote its nodes and edges respectively.
For simplicity of exposition, we focus on elements in this paper, and ignore

attributes, text nodes, etc. The tree, therefore, consists of the virtual root and
the elements of the document. We refer to the nodes of the document tree as
elements to avoid confusion with vertices of the tree representation of an XPath
which we will discuss shortly. We assume that the following functions are defined
on the elements of an XML document:

– idD : ND → Integer: Returns a unique identifier for each element in a
document. We will assume that idD is a total order on the elements in D,
such that the assignment of identifiers to elements corresponds to a depth-
first preorder traversal of the tree (that is, document order in XML).

– tagD : ND → String: Returns the tag name of the element.

We also assume functions, childD, descD, selfD, fsD, and followingD,
each with the signature ND × ND → {true, false}. The semantics of these
functions is straightforward, childD(v1, v2) returns true if v2 is a child of v1 in D,
and fsD(v1, v2) returns true if v1 and v2 share a common parent, and moreover,
idD(v2) > idD(v1). followingD(v1, v2) returns true if idD(v2) > idD(v1) and
v2 is not a descendant of v1. Finally, selfD(v1, v2) returns true if v1 = v2.

150 R. Fernandes and M. Raghavachari

3.2 XPath Subset

The grammar of XPath expressions accepted by our projection algorithm is
provided below. In the grammar, the non-terminal Axis includes all axes defined
in the XPath specification [12]. For simplicity, we will only consider elements
and not consider the namespace and attribute axes.

AbsLocPath := ′/′ RelLocPath
RelLocPath := Step ′/′ RelLocPath | Step
Step := Axis :: NodeTest |Step ′[′ PredExpr ′]′

PredExpr := RelLocPath and PredExpr |AbsLocPath and PredExpr |
RelLocPath | AbsLocPath

NodeTest := String|∗

An absolute path expression corresponds to one that satisfies AbsLocPath
and is evaluated with respect to the root node of the tree. A relative XPath
expression corresponds to RelLocPath and is evaluated with respect to a provided
set of elements in the tree.

3.3 XPath Expression Trees

An XPath expression can be represented as a rooted tree T = (VT , ET) with
labeled vertices and edges. The root of the tree is labeled root. For every
NodeTest in the expression, there is a vertex labeled with the NodeTest. Each
vertex other than root has a unique incoming edge labeled with the Axis spec-
ified before the NodeTest. The vertex corresponding to the rightmost Node-
Test which is not contained in a PredExpr is designated to be the output
vertex. There are functions, labelT : VT → String, and axisT : ET →
Axis that return the labels associated with the vertices and edges respectively.
Figure 4 provides an example of the tree representation of the XPath expression
//book[title and author]/ancestor::publisher.2

ROOT

Book

Author Publisher

ancestor

Title

descendant

child
child

Fig. 4. Tree representation of the XPath expression //Book[Title and

Author]/ancestor::Publisher. The output vertex has a thick border.

The semantics of an absolute XPath expression is defined in terms of embed-
dings [9].

2 We will use the abbreviated XPath syntax in the paper for conciseness.

Inflatable XML Processing 151

Definition 1. A pair of elements (n1, n2) in a document, D, n1, n2 ∈ ND sat-
isfies an edge constraint (v1, v2) in the tree representation T of an XPath expres-
sion if the relation between n1 and n2 in the document matches axisT (v1, v2). For
example, n1, n2 satisfies (v1, v2) if axisT (v1, v2) =child and childD(n1, n2) =
true, or, if axisT (v1, v2) =ancestor and descD(n2, n1) = true.

Definition 2. An embedding of an absolute XPath expression T into a docu-
ment D is a function E : VT → ND such that:

1. E maps the root vertex of the XPath expression to the root element of the
document.

2. Labels are matched, that is, for each v ∈ VT , labelT (v) = ∗ or labelT (v) =
tagD(E(v)).

3. Edges are satisfied, that is, if (v1, v2) ∈ ET , then (E(v1), E(v2)) satisfies
(v1, v2).

Let o be the output vertex of the tree representation of an absolute XPath
expression. The output of an XPath expression is defined as all n ∈ ND such
that there exists an embedding where E(o) = n. The definition can be extended
easily to relative XPaths by replacing the embedding of the root element with
the context node.

For example, an embedding of the XPath expression tree of Figure 4 into the
XML document from Figure 5 is the following : E(ROOT) = {1}, E(Book) = {5},
E(Author) = {6} , E(T itle) = {8} and E(Publisher) = {3}.

3.4 Projection

A projected document is defined by Marian and Siméon in terms of an input
document D and a set of XPath expressions P , where some of the expressions
may be marked with the special output flag # [8]. Each XPath expression in
P is an absolute XPath expression (that is, it is evaluated with respect to the
root of the document). Only uses of the child and descendant axes are allowed
(predicates and backward axes are not allowed). Given P and D, the projected
document D′ is defined as follows: The projected document contains all elements
that are in the result set of an XPath expression in P , as well as, their ances-
tors. All subtrees rooted at some result of an XPath expression marked # are
materialized as well. The definition guarantees that the projected document D′

satisfies the key property that the evaluation of any XPath expression in P on
D′ returns the same result as the evaluation of that XPath expression on D. As
a result, one can substitute D′ for D without changing the behavior of query
evaluation with respect to P .

For example, consider the XPath expression, //Title, and assume that it is
marked with a #. Figure 5 depicts the elements that would be constructed in
the projection of the document with respect to this XPath expression.

When XPath expressions with axes other than child and descendant are
allowed in P , projection as defined in [8] can no longer be applied; the evaluation
of an XPath expression on the projected document D′ may differ from that on

152 R. Fernandes and M. Raghavachari

Catalog

Publisher

Addison-
Wesley Book

Title

Compilers

Author

Publisher

McGraw-Hill Book

Title

Algorithms

ROOT

AHU

Author

CLR

1

2

3

4 5

6

7

12

8

9

10

11

15

14

13

16

Fig. 5. Tree representation of an XML document. Highlighted nodes depict nodes
selected by the algorithm of Marian and Siméon.

D. Consider the XPath expression, //Author/ancestor::Publisher//Title
executed on the document in Figure 5. Only the elements highlighted in Figure 5
belong to the projected document D′. The result of the XPath expression on D′

will be the empty set since it does not contain any Author elements.
The embeddings of XPath expressions into a document D can be used as the

basis for a general definition of projection when complex axes such as ancestor
are allowed. The definition we provide subsumes that of [8] and serves as the
basis for the algorithm presented in Section 4.

Definition 3. Let D be a document and P be a set of absolute XPath expres-
sions, where some XPath expressions in P are marked with a special flag #. The
projected document D′ is composed of the set of all elements n in D that satisfy
at least one of the following conditions:

– For some XPath expression p in P , there is an embedding E of p into D such
that E(v) = n, where v is some vertex in p, or

– For some XPath expression p in P , there is an embedding E of p into D such
that E(v) = n′, where v is some vertex in p, and n is an ancestor of n′ in
D, or

– For some XPath expression p in P marked with the symbol #, n is the
descendant of an element in the result set of the evaluation of p on D.

In other words, the projected document consists of all elements that partic-
ipate in an embedding and their ancestors. Moreover, for each element in the
result set of the evaluation of a specially marked XPath expression, that element
and all its descendants belong to the projected document.

4 Inflatable Tree Construction

In this section, we present an algorithm for constructing an inflatable tree from
a given set of XPath expressions while parsing the document. The challenge is
in being able to handle complex XPath axes such as ancestor efficiently in a

Inflatable XML Processing 153

single pass over the input document. Our algorithm may be imprecise in that
it may materialize some elements that do not satisfy any of the conditions of
Definition 3. The algorithm is, however, careful in limiting the construction of
these inessential nodes.

Our algorithm works in two stages. First, the set of input XPath expressions
P is normalized into a canonical form. In the second stage, a document (or a
subtree of the document) is traversed to build the inflatable tree. Our algorithm
will not distinguish XPath expressions marked “#” from those that are not. Since
the bytes corresponding to the document are readily available, there is no need
to inflate the subtrees under output nodes, unless portions of these subtrees
may participate in an embedding (that is, satisfy the first two conditions of
Definition 3).

4.1 Normalizing XPath Expressions

The XPath axes following, preceding, following-sibling and preceding-
sibling are order-based axes (the result set for these axes depends on the order
between sibling tree nodes). The first step in our normalization is to rewrite in-
stances of these axes in XPath expressions into order-blind axes (such as parent
and ancestor). The rules for rewriting XPath expression trees are shown in
Figure 6. In the figure, v1 and v2 are vertices in a given XPath expression tree,
connected by an edge labeled with one of the order-based axes. The rewriting
rules may introduce new vertices. The rules are ordered so that the rules of Fig-
ure 6a and Figure 6b are applied until there are no instances of following and
preceding in the XPath expression tree. The rules of Figure 6c and Figure 6d
are then applied to the XPath expression tree.

For example, for the following-sibling axes, we replace instances of the
pattern v1/following-sibling::v2 with instances of v1/parent::∗/v2. The
rewritten XPath expression is an approximation of the original one — it chooses
v2 elements that both precede and follow v1 elements. The rewritings guaran-
tee that for any document, if an element n participates in an embedding of
the original XPath expression tree into the document, n also participates in an
embedding of the rewritten tree into the document.

4.2 Constructing an Inflatable Tree

The inflatable tree construction algorithm can be invoked by the client in one
of two states. In the first case, the document is being processed for the first
time and must be read from an external source. In the second case, an inflatable
tree already exists for the document in question, and the inflatable tree must be
modified to account for the new projection set of XPath expressions. In either
of the two cases, the algorithm traverses the document in a depth-first manner
and generates events similar to SAX [10]. A start element event is generated
when the traversal first visits an element, and an end element event once the
traversal of the subtree rooted at that element is finished. We will assume that
an event contains all information about the relevant element, such as its tag and
unique identifier (we will use the offset in the byte array for this purpose). At

154 R. Fernandes and M. Raghavachari

descendant-or-self

following-sibling

ancestor-or-selffollowing

*

*

v1

v2

v1

v2

(a)

descendant-or-self

preceding-sibling

ancestor-or-selfpreceding

*

*

v1

v2

v1

v2

(b)

child

parentfollowing-sibling

*

v1

v2

v1

v2

(c)

child

parentpreceding-sibling

*

v1

v2

v1

v2

(d)

Fig. 6. (a) Rule for rewriting following edges. (b) Rule for rewriting preceding

edges. (c) Rule for rewriting following-sibling edges. (d) Rule for rewriting
preceding-sibling edges.

each of these events, an event handler is invoked to perform actions related to
the construction of the tree.

In the case where a document is read for the first time from an external
source, the traversal records the bytes corresponding to the XML document
into an array. It simultaneously parses the document and generates appropriate
events. In the other case, where an inflatable tree already exists, the document
traverser walks over the inflatable tree and generates events. When it reaches
an inflatable node, it parses the portion of the byte array corresponding to that
node and generates appropriate events.

Definitions and Data Structures. The description of our algorithm will use
the following definitions.

Definition 4. The backward vertex set, B(v), of a vertex v ∈ VT in an XPath
expression tree is defined as {v′|(v, v′) ∈ ET ,axis(v, v′) ∈{parent, ancestor,
ancestor-or-self, self } ∪{v′′|(v′′, v) ∈ ET ,axis(v′′, v) ∈{ self, child,
descendant, descendant-or-self }. A backward constraint is an edge between
v and a vertex in its backward vertex set.

In other words, the backward vertex set with respect to a vertex v consists of
those vertices to which an outgoing edge from v is labeled with a backward axis
and those from which an incoming vertex into v is labeled with a forward axis.
We have a dual definition for a forward vertex set with respect to a vertex v.

Inflatable XML Processing 155

Definition 5. The forward vertex set, F(v), of a vertex v ∈ VT in an XPath
expression tree is defined as {v′|(v, v′) ∈ ET ,axis(v, v′) ∈{child, descendant,
descendant-or-self, self } ∪{v′′|(v′′, v) ∈ ET ,axis(v′′, v) ∈ { self, parent,
ancestor, ancestor-or-self }. A forward constraint is an edge between v and
a vertex in its forward vertex set.

Our algorithm maintains an active stack, which contains, at any time, the
list of elements for which a start event has been received, but no end event has
been received yet. For each element e in the stack we maintain and update the
following information as we traverse the document:

– tag(e) which corresponds to the tag of the element.
– Sets of vertices from the XPath expression tree: self(e), ancestors(e),

parent(e), children(e), and descendants(e). A vertex v is in self(e)
if e may embed into v. v is in parent(e) if the parent element of e may
embed into v. v ∈ children(e) implies that some child of e may embed into
v; v ∈ descendants(e), if some descendant of e may embed into v, and
finally, v ∈ ancestors(e) implies that some ancestor of e in the tree may
embed into v.

– An ordered set subtrees(e) of inflatable trees. This set corresponds to the
inflatable trees constructed for the children of e.

For each vertex v in the XPath expression, the algorithm maintains count(v),
which represents how many elements e in the active stack contain v in self(e).

Algorithm Overview. We first describe our algorithm with respect to a pro-
jection set that contains a single XPath expression, and then, discuss how to
extend the algorithm for multiple XPath expressions. The essence of the algo-
rithm is simple — materialize an element if it could participate in an embedding.
As a tree is traversed and events are generated, for each vertex in the tree repre-
sentation of the input XPath expression, the algorithm keeps track of the forward
and backward constraints that have been satisfied. The following two conditions
are used to determine whether a given element may participate in an embedding:

– Satisfaction of Backward Constraints: Let an element e belong to an embed-
ding E of T into D such that for some vertex v, E(v) = e. For each vertex
v′ in B(v), there must be some ancestor of e, e′ such that E(v′) = e′, and
the relation between e and e′ satisfies the edge constraint between v and v′.
This is a straightforward consequence of the definition of embeddings. At a
start element event for an element, we verify that if the label of e matches
some vertex v, then for each vertex v′ ∈ B(v), one can find such a candi-
date e′. The vertex sets self(e), parent(e) and ancestors(e) are used
for this purpose. For example, if axis(v, v′) = ancestor, we require that
ancestors(e) contains v′. Otherwise, e cannot participate in an embedding
for v. For ancestor-or-self constraints, we require that v′ be present in
the ancestors(e) or self(e) vertex sets.

– Satisfaction of Forward Constraints : A similar statement can be made for
forward vertex sets. Let an element e belong to an embedding E of T into D

156 R. Fernandes and M. Raghavachari

such that for some vertex v, E(v) = e. For each vertex v′ in F(v), there must
be some descendant of e, e′ such that E(v′) = e′, and the relation between
e and e′ satisfies the edge constraint between v and v′. At the end element
event, the algorithm can verify that if the label of e matches some vertex
v, then such a candidate e′ exists for all vertices v′ ∈ F(v). The vertex sets
self(e), children(e) and descendants(e) are used for this purpose in a
similar manner to the use of the self(e), parent(e) and ancestors(e) sets
for backward constraints.

At an end element event, the algorithm determines (given the current infor-
mation) whether the current element e or some node in its subtree is a possible
candidate for an embedding. If so, the algorithm materializes the element; oth-
erwise, it creates an inflatable node for the element. The count data structure
is used to prune information, as will be described shortly.

The handling of multiple XPath expressions is a straightforward extension
to the handling of a single XPath expression — the algorithm evaluates each of
them in parallel. An element is materialized if it is required by any of the XPath
expressions.

Algorithm Details. The inflatable tree construction algorithm processes a
given XPath expression T = (VT , ET) and a document D = (ND, ED) to con-
struct the inflatable tree in a bottom-up manner — at each end element event
for an element, the algorithm decides whether to build a materialized node or
an inflatable node for that element based on decisions taken for its children.

– Initially, set the active stack to be empty.
– At a start element event for an element e, push e on to the active stack.

1. Set ancestors(e), children(e), descendants(e) to be empty.
2. If e is the root of the document, set parent(e) to be empty, otherwise

set parent(e) to equal self(e′), where e′ is the parent of e in the tree.
3. Set self(e) to be all vertices v in the XPath expression tree such that

tag(e) matches label(v). For each vertex v in self(e) try to satisfy all
the constraints in B(v) using self(e), parent(e) and ancestors(e) as
described previously. If all constraints for v cannot be satisfied, remove
v from self(e). Continue this process until no further vertices can be
removed from self(e). For each vertex v remaining in self(e), increment
count(v).

– At an end element event for an element e:
1. If self(e) is non-empty, for each vertex v in self(e), check for the

satisfaction of forward constraints using the self(e), children(e) and
descendants(e) vertex sets. If the forward constraints cannot be satis-
fied for v, remove v from self(e) and decrement count(v). If count(v)
becomes 0, we can prune descendants(e). If descendants(e) does not
contain v, and count(v) is 0, then all vertices v′ that are descendants of
v in the XPath expression tree can be removed from descendants(e).
Consider a v′ that is in descendants(e) such that v′ is a descendant
of v in the XPath expression. For an element e′ in the subtree rooted at

Inflatable XML Processing 157

e to be mapped to v′ in some embedding, there must be an element e′′

that is mapped to v in that embedding. Since v′ is a descendant of v in
the XPath expression tree, e′′ must be an ancestor of e′. If count(v) is
0 and descendants(e) does not contain v, then observe that there can
be no such e′′ in the tree.

2. Repeat Step 1 for vertices in self(e) until no more vertices can be re-
moved from self(e).

3. If self(e) and descendants(e) are both empty, construct an inflatable
node for e (and the subtree rooted under it), and discard the contents
of subtrees(e).

4. If self(e) is not empty and descendants(e) is empty, construct a ma-
terialized node for e. If subtrees(e) is not empty, construct a single
inflatable node that represents all the children of e and insert this inflat-
able node as a child of the materialized node corresponding to e.

5. Otherwise, construct a materialized node for e and insert subtrees(e)
as the children of this materialized node.

6. Let e’ be the parent of e in D. Update children(e′) to children(e′)
⋃

self(e). Set descendants(e′) to descendants(e′)
⋃

descendants(e)⋃
self(e). For each vertex v remaining in self(e), decrement count(v).

In all cases, once the node for e is constructed, e is popped off the active stack
and the node corresponding to e is appended to subtrees(e′), where e′ is
the current head of the stack (corresponds to e’s parent in the document). If
the node corresponding to e and the tail of subtrees(e′) are both inflatable
nodes, the two nodes are merged.

5 Implementation

We use a custom parser to generate the start and end element events corre-
sponding to the depth-first traversal of the document. A key characteristic of
the parser is the ability to support controlled parsing over a byte array — we
can specify the start and end offsets of the byte array that the parser should use
as the basis for parsing. This property is essential for the parsing of subtrees cor-
responding to inflatable nodes. Another feature of the parser is that at element
event handlers, it provides offset information rather than materializing data as
SAX does. For example, rather than constructing a string representation of the
element tag’s name, it returns an offset into the array and a length.

One challenge in the implementation of a projection algorithm is efficiency
when complex axes are used. For example, Marian and Siméon report that
document instance construction can degrade when XPath expressions involv-
ing descendant axes are used [8]. As we will demonstrate in Section 6, our
algorithm scales well even in the presence of complex axes. The main reason for
the efficiency of our implementation is a careful design of the data structures
used to implement the algorithm of Section 4. We use bitmaps to represent much
of the information that is necessary — set containment and union operations are
encoded using efficient bitmask operations. As an optimization, our algorithm

158 R. Fernandes and M. Raghavachari

skips processing a subtree if it can detect that the subtree below the element
cannot participate in any embedding. This happens if all the paths in the XPath
set contain prefixes without any ancestor or descendant axes. For example, if
the set of XPath prefixes is {/a/b/c, /a/d}, then if we encounter a start tag of
a followed by an f , we can skip processing the subtree rooted at f .

Our system is implemented in Java. We use the Xerces [2] DOM repre-
sentation as the underlying representation for the inflatable tree. Materialized
nodes are represented as normal DOM nodes. Inflatable nodes have a special
tag “ INFLATABLE ” and they contain two attributes indicating the start
and end offsets in the byte representation of the document. The ability to use
DOM as our underlying representation is a key advantage — we are able to run
DOM-based XPath processors without modification on our inflatable trees; the
semantics of projection guarantees that the inflatable nodes do not affect the
result of evaluation of any XPath in the projection set!

6 Experiments

We used the queries of the XMark [11] benchmark set to evaluate the perfor-
mance of our algorithm. In our experiment, the same benchmark code was used
for both DOM and InflateX; the only difference being that for InflateX, the docu-
ment was first projected with respect to a set of XPath expressions derived from
the queries using the rules in [8]. In both cases, we used Xalan [1] as our XPath
engine. We used a custom parser to generate appropriate events to construct
both the inflatable tree, and in the DOM version, the full DOM data model
instance. We used a custom parser rather than a standard XML parser such
as Xerces [2] because our parser generates appropriate byte offset information
in the events. We compared the performance of our parser for the construction
of a full DOM instance with that of Xerces and found them comparable.3 All
experiments were run on a 1GHz IBM ThinkPad with 256MB of memory — the
Java heap size was set at 128MB.

We will explore the efficiency of InflateX versus DOM in several dimensions:
document construction time, query evaluation time, memory requirements, se-
rialization, and dynamic projection. For both InflateX and DOM, the document
is read from a file in the file system, the query is evaluated, and the results
are serialized to a file. We will use the 20 original queries of the XMark bench-
mark. Since the XMark query set does not include queries that use axes such as
parent and following-sibling, we have added two additional queries consist-
ing of XPath expressions that use these axes. The projection sets corresponding
to these two queries, which we refer to as Q21 and Q22 are provided in Table 1.
All experiments were run on a 10 MB XMark file.

Construction Time. Figure 7 compares the time taken to construct the in-
memory projection using InflateX with that for constructing a DOM instance.

3 The cost of constructing a DOM instance from a 10MB XMark file using our parser
was 1312ms compared to 1612ms for Xerces.

Inflatable XML Processing 159

Table 1. Projection sets involving uses of axes other than child and descendant

Q21 {//item[ancestor::africa]/name[following-sibling::payment]//mailbox//from}
Q22 {/site/closed auctions/closed auction/itemref[preceding-sibling::buyer],

/site/person/name[ancestor::people],
/site/regions//item[parent::europe]/name}

0
200
400
600
800

1000
1200
1400
1600
1800

D
O

M Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

XMark Query

Ti
m

e
in

 m
s

Fig. 7. Comparison of document construction time on a 10MB XMark file. The first
column shows the cost of constructing a DOM in-memory instance. The remaining
columns provide times for projection construction on the various queries.

As can be seen from the figure, our scheme is 2-3 times more efficient than DOM
depending on the size of the projection. In Marian and Siméon, the document
construction performance degrades with the presence of the descendant axis [8].
Our scheme is robust for descendant axes and performs well even when axes such
as ancestor or preceding-sibling are used (as can be seen from the results
for Q21 and Q22). The reason for the robustness is in the implementation of
our algorithm. Our algorithm does not maintain much state apart from the
projection tree that is being constructed; we encode much of the state using
compact bitmaps.

Query Evaluation. As in Marian and Siméon, our projection scheme improves
query evaluation because the queries are evaluated over a smaller document.
Figure 8 compares the execution of the XMark queries with that of a similar
evaluation over a full DOM instance. Most of the XMark queries contain only
child axes. The performance of these queries improves marginally as such XPaths
can be efficiently evaluated without having to search subtrees. In the presence
of descendant axes (Q7, Q19), we obtain factors of improvement of 13 and 2.5.
This is because the XPath processor searches entire subtrees to match descendant
nodes.

Memory Requirements. In terms of the absolute memory sizes that can be
handled, for DOM, the largest document that could be constructed in memory
was 25 MB on our system (irrespective of the query). The amount of data that
InflateX was able to handle depends on the projected set. For the projection path
Q21 in Table 1, and for most other XMark queries, our projection scheme was

160 R. Fernandes and M. Raghavachari

0

50

100

150

200

250

300

350

400

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Queries

T
im

e
 (

m
s

)

DOM

Inflatable Tree

Fig. 8. Comparison of query evaluation time on a 10 MB XMark file

able to handle documents of size upto 100 MB. For other queries, the largest
document we could process was somewhere between 50 and 100MB. The size
of the projection is small relative to the overhead of storing the byte array in
memory.

Figure 9 measures the number of nodes in the inflatable trees for each of
the XMark queries. On average, we materialize about 10% of the nodes. The
number of inflatable nodes that we construct is of the order of the projection,
and therefore, does not add much overhead.

Serialization. Many queries return large result sets that need to be serialized
out as a sequence of bytes to a client. The definition of projection by Marian
and Siméon would construct all nodes that might have to be serialized. These
nodes would be traversed to generate the bytes corresponding to the result. Our
inflatable trees allow for efficient serialization directly from the byte array when

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Queries

%
 N

o
d

e
s

 C
o

n
s

tr
u

c
te

d

Inflatable Nodes

Materialized Nodes

Fig. 9. Comparison of memory overhead on a 10MB XMark file. The total height of
a column is the percentage of nodes in the original tree that are constructed (the tree
contains 510946 nodes). Each column shows the breakdown in terms of materialized
nodes and inflatable nodes constructed.

Inflatable XML Processing 161

Table 2. Comparison of inflatable tree query execution time to the scheme that con-
structs the subtrees of all output nodes

Inflatable Tree Output Projection
Construction 470ms 680ms
Serialization 70ms 380ms
Number of Nodes 5119 78923

possible. Furthermore, we avoid the cost of having to construct all elements that
are materialized solely because they are required for the output.

Table 2 compares the cost of query execution of the XPath expression /site/
regions/namerica/itemusing different projections. The first uses our algorithm
to build a projection based on inflatable trees. The second, Output Projection,
constructs the subtrees of all output nodes in the document (as in Marian and
Siméon).

The presence of the byte array corresponding to the document allows for a
drastic reduction in the size of the projection, which in turn, reduces construction
time. Furthermore, the cost of serialization reduces by a factor of four. The
serialization of XML from a data model instance can be slow since the serializer
must traverse the entire data model instance and output the appropriate XML
constructs. The byte array allows our serialization mechanism to avoid this cost.

Dynamic Projection. One advantage of the inflatable tree representation over
projection as defined by Marian and Siméon is that it allows clients to ex-
pand portions of the tree dynamically. For example, a client may choose to
expand with respect to one set if an if branch is taken and another if the
corresponding else branch is taken. Figure 10 explores the performance of dy-
namic projection in the common situation where a client first issues a query and
then refines the query based on the results. In the experiment, the document is
first projected with respect to the XPath expression /site/regions/namerica,
and subsequently, the client refines the query with respect to XPath expression
/site/regions/namerica/item. We compare the cost of dynamic projection
over the inflatable tree to the cost of constructing a new projection (as would be
done in Marian and Siméon). As can be seen, there can be a significant advantage
to dynamic projection.

7 Conclusions

In this paper, we have proposed the inflatable tree data structure as a viable
in-memory representation of XML. Our representation also supports dynamic
projection of XML documents and efficient serialization of results to clients.

We have also developed a projection algorithm that can handle complex axes
such as ancestor and following-sibling. Our experiments demonstrate that
our algorithm constructs inflatable trees that are small compared to the full
data instance, even when these complex axes are used. In addition to reducing

162 R. Fernandes and M. Raghavachari

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

Size of File (MB)

Ti
m

e
(m

s)

Dynamic Projection

Full Projection

Fig. 10. Comparison of dynamically projecting a subtree of the document rather than
projection over the entire document

the memory overhead of the in-memory representation of XML, our algorithm
is efficient and can reduce the cost of constructing the instance significantly.

In the future, we plan to explore the use of schema information to drive the
derivation of projections. Schema information in conjunction with the projection
set of XPath expressions can be used to prune projections more precisely. An-
other area of interest is the exploration of automatically deflating trees, that is,
determining from an XQuery expression, when a subtree in the XML document
is no longer required.

References

1. Apache Software Foundation. Xalan-Java. http://xml.apache.org/xalan-j.
2. Apache Software Foundation. Xerces2 Java Parser. http://xml.apache.org/

xerces2-j.
3. C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski.

Streaming XPath processing with forward and backward axes. In Proceedings of the
19th IEEE International Conference on Data Engineering (ICDE), pages 455–466,
March 2003.

4. P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and P. Shenoy. Optimizing
view queries in ROLEX to support navigable result trees. In Proceedings of the
29th International Conference on Very Large Databases (VLDB), pages 119–130,
2002.

5. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In
Proceedings of the 29th International Conference on Very Large Databases (VLDB),
pages 141–152, 2003.

6. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. The VLDB Journal, 11(4):354–379, 2002.

7. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Transactions on
Database Systems, 28(4):467–516, 2003.

8. A. Marian and J. Siméon. Projecting XML documents. In Proceedings of the 29th
International Conference on Very Large Databases (VLDB), pages 213–224, 2003.

Inflatable XML Processing 163

9. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
Journal of the ACM, 51(1):2–45, 2004.

10. Simple API for XML. http://www.saxproject.org.
11. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. Xmark:

A benchmark for XML data management. In Proceedings of the 28th International
Conference on Very Large Databases (VLDB), pages 974–985, 2002.

12. World Wide Web Consortium. XML Path Language (XPath) Version 1.0, Novem-
ber 1999.

13. World Wide Web Consortium. Document Object Model Level 2 Core, November
2000.

14. World Wide Web Consortium. XQuery 1.0: An XML Query Language, August
2003. W3C Working draft.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 164 – 183, 2005.
© IFIP International Federation for Information Processing 2005

INDISS: Interoperable Discovery System
for Networked Services

Yérom-David Bromberg and Valérie Issarny

INRIA-Rocquencourt,
Domaine de Voluceau, 78153 Le Chesnay, France

{David.Bromberg, Valerie.Issarny}@inria.fr

Abstract. The emergence of handheld devices associated with wireless tech-
nologies has introduced new challenges for middleware. First, mobility is be-
coming a key characteristic; mobile devices may move around different areas
and have to interact with different types of networks and services, and may be
exposed to new communication paradigms. Second, the increasing number and
diversity of devices, as in particular witnessed in the home environment, lead to
the advertisement of supported services according to different service discovery
protocols as they come from various manufacturers. Thus, if networked services
are advertised with protocols different than those supported by client devices,
the latter are unable to discover their environment and are consequently iso-
lated. This paper presents a system based on event-based parsing techniques to
provide full service discovery interoperability to any existing middleware. Our
system is transparent to applications, which are not aware of the existence of
our interoperable system that adapts itself to both its environment across time
and its host to offer interoperability anytime anywhere. A prototype implemen-
tation of our system is further presented, enabling us to demonstrate that our
approach is both lightweight in terms of resource usage and efficient in terms of
response time.

1 Introduction

The home environment now embeds networked devices, possibly wireless, from vari-
ous application domains, i.e., home automation, consumer electronics, mobile and
personal computing domains. The networked home shall then enable an open sponta-
neous network in which authorized devices are discovered and connected, as in par-
ticular investigated in the Amigo IST project [1].

Service discovery protocols enable finding and using networked services without
any previous knowledge of their specific location. Several Service Discovery Proto-
cols (SDP), like Jini [2], SLP [3], UPnP [4] and Salutation [5], are now available.
With the advent of both mobility and wireless networking, SDPs are taking on a ma-
jor role in networked environments, and are the source of a major heterogeneity issue
across middleware. Furthermore, once services are discovered, applications need to
use the same interaction protocol to allow unanticipated connections and interactions
with them. Consequently, a second heterogeneity issue appears among middleware.
Summarizing, middleware for the networked home environment must overcome two

 INDISS: Interoperable Discovery System for Networked Services 165

heterogeneity issues to provide interoperability, i.e.: (i) heterogeneity of service dis-
covery protocols, and (ii) heterogeneity of interaction protocols between services. In-
teroperability is also difficult between devices made by different manufacturers, as
they can implement differently a standardized protocol.

Distributed systems for the networked home must provide efficient mechanisms to
detect and interpret protocols used by the networked devices, which are not known in
advance. Furthermore, detection and interpretation must be achieved without increas-
ing consumption of resources that are limited on a number of devices (e.g., handheld).
New techniques must be used to both: (i) offer lightweight systems so that they can be
supported by resource-constrained devices, and (ii) support system adaptation accord-
ing to the dynamics of the open networked environment. Middleware solutions,
designed to cope with the above issues, have been introduced, as surveyed in [6].
From this pool of existing middleware, more or less adapted to the constraints of the
networked home, reflective middleware seem to be flexible enough to provide inter-
operability among networked services. However, solutions to interoperability based
on reflective techniques, like ReMMoC [7,8], do not bring simultaneously interopera-
bility and high performance, as discussed in [9]. SDP interoperability needs to be
revisited to improve efficiency of SDP detection, interpretation and evolution. More-
over, to provide interoperability, we need a fine-grained control over protocols. Our
approach is to decouple components from protocols with the use of concepts inherited
from software architecture enhanced with event-based parsing techniques [10,11].

The originality of our approach comes from the trade offs achieved among
efficiency, interoperability and flexibility. Our interoperability system, called INDISS
(INteroperable DIscovery System for networked Services), may further be integrated
with any existing middleware platform. Hosting INDISS enables the networked home
system to discover and interpret all the services available in the home environment, in-
dependent of underlying middleware technologies. One key feature of INDISS is to
provide efficient interoperability without altering the existing applications and services.

Based on conceptual similarities among SDPs, we are able to provide a generic
mechanism supporting discovery protocol interoperability, as presented in Section 2.
According to user activities, the networked home can become a highly dynamic net-
work formed by the random arrival of devices based on different middleware.
 Whatever the networked home configuration/composition, interoperability must be
maintained transparently without requiring to change the applications and/or services.
In this context, INDISS must adapt itself to the evolution of the home environment
across time. Section 3 discusses both the self-adaptation and context-awareness capa-
bilities of INDISS. To validate the INDISS design, in particular in terms of efficiency,
we have developed a first prototype, which is flexible enough to consider several use
cases. Section 4 provides performance results, which demonstrate the efficiency of
INDISS. Finally, Section 5 summarizes our contribution and discusses our future
work on achieving middleware interoperability.

2 Service Discovery Protocol Interoperability

According to the architectural style of service-oriented computing systems, a majority
of SDPs support the concepts of client and service. In order to find needed services,
clients may perform two types of request: unicast or multicast. The former implies the

166 Y.-D. Bromberg and V. Issarny

use of a repository, equivalent to a centralized lookup service, which aggregates
services information from service advertisements. The latter is used when either the
repository's location is not known or there does not exist any repository in the
environment. Similarly, services may announce themselves with either unicast or
multicast advertisement, depending on whether a repository is present or not. From
the aforementioned approaches, two SDP models are identified, irrespectively of the
repository's existence: (i) the passive discovery model, and (ii) the active discovery
model. When a repository exists in the network environment, the main challenge for
clients and services is to discover the location of the repository, which acts as a man-
datory intermediary between clients and services [3]. In this context, using the passive
discovery model, clients and services are passively listening on a multicast group
address specific to the SDP used and are waiting for multicast advertisements from a
repository. On the contrary, with an active discovery model, clients and services send
multicast requests to discover a repository that sends back a unicast response to the
requester to indicate its presence. In a “repository-less” context, a passive discovery
model means that the client is listening on a multicast group address, which is specific
to the SDP that is used to discover services. Obviously, the latter periodically send out
multicast announcement of their existence to the same multicast group address. In
contrast, with a repository-less active discovery model, the roles are exchanged.
Thereby, clients perform periodically multicast requests to discover needed services
and the latter are listening to these requests. Furthermore, services send unicast
responses directly to the requester only if they match the requested service. Summa-
rizing, most SDPs support both passive and active discovery with either optional
or mandatory centralization points. The following details our solution to SDPs
interoperability, which is compatible with both the passive and active discovery
models.

The following sections introduce the architectural principles of INDISS that builds
on [9] and decomposes into mechanisms for: (i) SDP detection (§2.1) and (ii) SDP in-
teroperability (§2.2). Specifically, SDP interoperability is achieved through transla-
tion of SDP functions in terms of events coordination (§2.3). This translation process
is then outlined through a concrete example (§2.4).

2.1 SDP Detection

All SDPs use a multicast group address and a UDP/TCP port that must have been as-
signed by the Internet Assigned Numbers Authority (IANA). Thus, assigned ports and
multicast group addresses are reserved, without any ambiguity, to only one type of
use. Typically, SDPs are detected through the use of their assigned address and port.
These two properties form a unique pair and may be interpreted as a permanent SDP
identification tag. Furthermore, it is important to note that an entity may subscribe to
several multicast groups simultaneously. These only two characteristics are sufficient
to provide simple but efficient environmental SDP detection. We discover passively
the environment by listening to the well-known SDP multicast groups. In fact, we
learn the SDPs that are currently used from both services’ multicast announcements
and clients’ multicast service requests. To achieve this feature, a component, called
monitor component, embeds two major behaviours:

 INDISS: Interoperable Discovery System for Networked Services 167

− The ability to subscribe to several SDP multicast groups, and
− The ability to listen to all their respective ports.

Figure 1 depicts the mechanism used to detect active and passive SDPs in a reposi-
tory-less context. The monitor component, which may be deployed on the client side
and/or service side, joins both the SDP1 and SDP2 multicast groups and listens to the
corresponding registered UDP/TCP ports. We assume that SDP1 is based on an active
discovery model. Hence, SDP1 clients perform multicast requests to the SDP1 multicast
group to discover services in their vicinity. The monitor component, as a member of the
SDP1 multicast group, receives client requests and thus is able to detect the existence of
SDP1 in the environment as data arrival on the SDP1-dedicated UDP/TCP port identi-
fies the discovery protocol. Assuming SDP2 is based on a passive discovery model,
SDP2 services advertise themselves to the SDP2 multicast group to announce their exis-
tence to their vicinity. Similarly to SDP1, as soon as data arrive at the SDP2-dedicated
UDP/TCP port, the monitor component detects the SDP2 protocol. The monitor compo-
nent is able to determine the current SDP(s) that is(are) used in the environment upon
the arrival of the data at the monitored ports without doing any computation, data inter-
pretation or data transformation. It does not matter what SDP model is used (i.e., active
or passive) as the detection is not based on the data content but on the data existence at
the specified UDP/TCP ports inside the corresponding groups.

Fig. 1. Detection of active and passive SDPs through the monitor component

The monitor component is easy to implement, as both subscription and listening
are solely IP features. Hence, any middleware based on IP support the monitor
component, which simply maintains a static correspondence table between the IANA-
registered permanent ports and their associated SDP. Hence, SDP detection only
depends on which port raw data arrived. Therefore, the cost of SDP detection is
reduced to a minimum.

2.2 SDP Interoperability

SDP detection is just a first step towards SDP interoperability. The main issue is still
unresolved: the incoming raw data flow, which comes to the monitor component,
needs to be correctly interpreted to deliver the service descriptions to the application
components. To effectively support SDP interoperability, we reuse event-based pars-
ing concepts.

UDP/TCP ports

Monitored Environment
Passively scanned

Monitor
Component

Multicast group

Multicast group

Service
Multicast Advertisements

Client
Multicast Requests

SDP1

SDP2

• SDP 1 detected
• SDP 2 detected

The monitor component passively scans
the environment on the SDP-IANA-
registered UDP/TCP ports.

168 Y.-D. Bromberg and V. Issarny

Fig. 2. SDP detection & interoperability mechanisms

Event streams are totally hidden to components outside INDISS, as they are as-
sembled into SDP-specific messages through composers. Consequently, interoperabil-
ity is guaranteed to existing applications tied to a specific SDP without requiring any
change to applications. Similarly, future applications do not need to be developed
with a specific middleware API to benefit from SDP interoperability. In general, ap-
plication components continue to use their own native service discovery protocol; in-
teroperability is achieved through a transparent integration of INDISS. It is further
important to note that the system may be deployed on either the service provider or
client application side. It may even be distributed among both parties or deployed on
some intermediate (e.g., gateway) networked node (see §4.2).

Parsers and composers are dedicated to specific SDP protocols. Then, to support
more than one SDP, several parsers and composers must be embedded into the sys-
tem. Embedded parsers and composers are dynamically instantiated.

SDP interoperability comes from the composition of parsers and composers dedi-
cated to different SDPs. As depicted in Figure 3, an incoming SDP1 message is suc-
cessfully translated into an SDP2 message that is then forwarded to an SDP2-related
application. According to several SDP specifications, an incoming message is often

SDP2
Application

SDP2
Composer

SDP detection
1900

1848
Monitored
Environment

239.255.255.250:1900 : UPnP
239.255.255.253:1848 : SLP

SDP1
message

Return path Native SDP2
answer

SDP1
Parser

INDISS

Upon the arrival of raw data at monitored ports, the monitor component detects the
SDP that is used (Figure 2, Step), and forwards the input data to the appropriate
parser (Step), to successfully transform the raw data flow into a series of events.
The parser extracts semantic concepts as events from syntactic details of the SDP de-
tected. Then, the generated events are delivered to composers that are locally de-
ployed (Step). Finally, the composer delivers a SDP message understood by the tar-
get application (Step). The communication between the parser and the composer
does not depend on any syntactic detail of any protocol. They communicate at a se-
mantic level through the use of events. Indeed, a fixed set of common events has been
identified for all SDPs (see §2.3). And, a larger, specific set of events is defined for
each SDP. For example, a subset of events generated by a UPnP parser are success-
fully understood by a SLP composer, whereas specific UPnP events, due to UPnP
functionalities that SLP does not provide, are simply discarded from the SLP com-
poser, as they are unknown.

 INDISS: Interoperable Discovery System for Networked Services 169

followed by a reply message. In this context, two cases may be considered: (i) the re-
ply is directly sent by the native SDP (Figure 2, Step), which requires the receiver to
translate the message into a message of the hosted SDP, (ii) the reply is translated into
a message of the destination’s SDP (Figure 3). The former solution leads to the shar-
ing of the interoperability tasks among all participating nodes. However, this requires
all the nodes to embed INDISS. As a result, nodes that do not integrate the necessary
interoperability mechanisms are likely to be isolated. Therefore, this specific configu-
ration must be considered as a special case but cannot be assumed nor enforced in
general. Instead, we consider that a node embedding INDISS is able to take care of
the complete interoperability process, i.e., both receiving and sending messages
from/to non-native SDPs. Thus, interoperability among nodes is achieved without re-
quiring all the participant nodes to embed INDISS. SDP interoperability is achieved if
the proposed interoperability system is embedded in at least one of the following
nodes: client, server or even gateway.

Fig. 3. Coupling of parser and composer

From the above, it follows that within INDISS, a parser is coupled with a composer
that does the reverse translation process, in a way similar to the marshal-
ling/unmarshalling functions of middleware stubs. Furthermore, depending on the
SDP specification, the parser and composer may have to share one bi-directional ses-
sion. Such a coupling occurs when, e.g., once the parser has received a request mes-
sage, the composer has to send some acknowledgement or control message to simply
maintain or validate a communication session with the requester. In general, SDP
functions like service request, service registration or service advertisements, are com-
plex distributed processes that require coordination between the actors of the specific
service discovery function. It follows that the translation of SDP functions that is real-
ised by INDISS is actually achieved in terms of translation of processes and not sim-
ply of exchanged messages, further requiring coordination between the parser and
composer. This is realized by embedding the parser and composer within a unit that
runs coordination processes associated with the functions of the supported SDP. The
unit is further self-configurable in that it manages the evolution of its configuration,
as needed by the SDP specifics and the evolution of the environment. The behaviour
of the unit may easily be specified using finite state machines, as detailed in the next
section.

SDP1
Request

 Semantic
Events

SDP1
Parser

Control
Events

SDP1
Composer Semantic

Events
SDP1
Reply

SDP2
Parser

SDP2
Composer

SDP2
Application

SDP2
Request

SDP2
Reply

INDISS

170 Y.-D. Bromberg and V. Issarny

2.3 Event-Based Interoperability

A unit implements event-based interoperability for a specific SDP by: (i) translating
to and from semantic events associated with service discovery, messages of the spe-
cific SDP, and (ii) implementing coordination processes over the events according to
the behaviour of the SDP functions.

The overall coordination process implemented by the SDP unit is specified using a
Finite State Machine (FSM). A SDP state machine is a graph of states connected by
transitions. A SDP state machine is a Deterministic Finite Automaton (DFA) and is,
as usual, defined as a 5-tuple (Q, , C,T, q0,F), where Q is a finite set of states, is
the alphabet defining the set of input events (or triggers) the automaton operates on, C
is a finite set of conditions, T: Q x x C → Q is the transition function, q0 ∈ Q is the
starting state and F ⊂ Q is a set of accepting states. States keep track of the progress
of the SDP coordination process. Transitions are labelled with events, conditions and
actions.

Table 1. Mandatory events

Event set Event type
SDP Control Events SDP_C_START

SDP_C_STOP
SDP_C_PARSER_SWITCH
SDP_C_SOCKET_SWITCH

SDP Network Events SDP_NET_UNICAST
SDP_NET_MULTICAST
SDP_NET_SOURCE_ADDR
SDP_NET_DEST_ADDR
SDP_NET_TYPE

Service Events SDP_SERVICE_REQUEST
SDP_SERVICE_RESPONSE
SDP_SERVICE_ALIVE
SDP_SERVICE_BYEBYE
SDP_SERVICE_TYPE
SDP_SERVICE_ATTR

SDP Request Events SDP_REQ_LANG
SDP Response Events SDP_RES_OK

SDP_RES_ERR
SDP_RES_TTL,
SDP_RES_SERV_URL

The occurrence of an event may cause a transition if the event matches both the

event and the condition of the transition. When a transition is engaged, several actions
may be executed, relating to translation of events to/from message data, coordination,
and configuration management (see Section 3). A SDP DFA is dedicated to one pro-
tocol to account for the protocol’s specifics and consequently realize some optimisa-
tion. Events are basic elements and consist of two parts: event type and data. What-
ever their types, events are always considered as triggers for the unit components to
react and eventually activate some coordination rule. We define the mini-
mal/mandatory set of events that is common to all SDPs and sets of specialized events
that are specific to SDPs. The set of mandatory events is defined as the union of a
number of subsets (see Table 1):

 INDISS: Interoperable Discovery System for Networked Services 171

m= “SDP Control Events” ∪ “SDP Network Events” ∪ “SDP Service Events” ∪
“SDP Request Events” ∪ “SDP Response Events”.

The set “SDP Control Events” contains events that may be generated by compo-

nents embedded in INDISS (See section 3) to notify their listeners of their internal
states. For instance, it enables either the unit to control the coordination of its regis-
tered components (i.e., parsers, composers) or any other components, registered as a
listener, eventually from an upper layer like the application layer, to trace, in real
time, SDP internal mechanisms. This is a useful feature, not only for debugging pur-
poses, but also for a dynamic representation of the run-time interoperability architec-
ture. The set “SDP Network Events” is related to network properties and, for instance,
defines events to determine if the SDP messages are either unicast or multicast, to in-
dicate the SDP used and to specify the source or target address. Then, “SDP Service
Events” enriches the above set with necessary events to describe the functions that are
common to the different SDPs: service search request, service search response, ser-
vice advertisements and the type of the service searched. Then, “SDP Request
Events” and “SDP Response Events” contain events respectively dedicated to the de-
scription of SDP requests with richer descriptions, and to specific events to express
possible common SDP answers (e.g., positive or negative acknowledgement, URL of
the searched service etc).

All SDP parsers must at least generate the mandatory events. Conversely, all SDP
composers must also understand them. The mandatory events result from the greatest
common denominator of the different SDP functionalities. Nevertheless, a given SDP
parser may generate additional events related to its advanced functionalities. Simi-
larly, a SDP composer may manage these additional events. However, SDP compos-
ers are free to handle or ignore them. For instance, SLP does not manage UPnP ad-
vanced functionalities. Consequently, the SLP composer ignores UPnP-specific
events generated by the UPnP parser. On the other hand, a JINI-related composer may
support some of the UPnP-specific events. In fact, events added to the mandatory
ones enable the richest SDPs to interact using their advanced features without being
misunderstood by the poorest. The behaviour of the latter is unchanged as they dis-
card unknown events and consider only the mandatory events. Moreover, INDISS is
extensible and integration of future SDPs is rather direct. In particular, the possible in-
troduction of new events to increase the quality of the translation process will not
trigger a whole cascade of changes of SDP components. This is a direct consequence
of building INDISS upon the event-based architectural style. We introduce three
open, extension sets for the definition of additional events: “Registration Events”,
“Discovery Events” and “Advertisement Events”. For instance, specific SDP mes-
sages involved in the registration of services are translated to events belonging to the
“Registering Events” set, which enriches both “SDP Requests Events” and “SDP Re-
sponses Events”. The same applies for the “Discovery Events” set. On the other hand,
“Advertisement Events” enriches only “SDP Responses Events” since an advertise-
ment is a one-way message to spread service location.

States of the DFA (or coordination process) of a unit are activated according to
triggers that define the event types that can cause transitions between states. Transi-
tions imply that the unit executes some actions or coordination rules among its com-
ponents (i.e., composer, parser). According to the unit’s current state, incoming events

172 Y.-D. Bromberg and V. Issarny

are filtered and may be dispatched to different listeners (i.e., composer, parser or other
units) until new incoming triggers cause a transition to a new state and so on. Reply
messages generated through the composer may rely on data associated with events
generated previously by its associated parser. Thus, events data from previous states
are recorded using state variables. Conditions are written as Boolean expressions over
incoming and/or recorded data and may test their properties, whereas actions are a se-
quence of operations that a unit can perform to: dispatch events to components, record
events, or reconfigure the composition of its embedded components (e.g., changing
dynamically the current parser or composer). Actions that may be performed by a unit
are specific to the SDP that it manages. However, all units have to support mandatory
actions.

2.4 Example

We illustrate our solution using a scenario where a SLP client is searching, e.q., a
clock service. The clock service is based on UPnP and interoperability is enabled
through the transparent use of INDISS (See Figure 3 with SDP1=SLP and
SDP2=UPnP). Our aim, in this scenario, is to outline the different steps involved in
the interoperability process and more particularly, to describe how messages are suc-
cessfully transformed to events and vice-versa, during a search session initiated by a
SLP client, to discover a service based on UPnP. However, for brevity, we describe
only the most meaningful events that occur during this scenario.

First, the client broadcasts a SLP search request to discover its environment in or-
der to find a clock service. As presented in Sections 2.1 and 2.2, INDISS catches the
request as a raw data stream and forwards it to the parser of the SLP unit that gener-
ates a stream of events, which is dispatched to the composer of the UPnP unit as de-
picted in Figure 4, step . The event stream always starts with a SDP_C_START event and
ends with a SDP_C_STOP event to specify the events belonging to a same message. On
the other hand, the SDP_NET_MULTICAST, SDP_SERVICE_REQUEST, SDP_SERVICE_TYPE

events are used to generate a corresponding UPnP search request. SDP_REQ_VERSION,

SDP_REQ_SCOPE, SDP_REQ_PREDICATE and SDP_REQ_ID are events specific to SLP and
are thus discarded by the UPnP unit’s composer. The SDP_NET_SOURCE_ADDR is di-
rectly forwarded to the SLP composer embedded into the SLP unit to prepare the re-
ply. The routing of events and related actions are specified by the DFA of the units as
presented in §2.3.

Once the UPnP service has received the UPnP search request from INDISS, it re-
sponds to it with a corresponding UPNP search answer (Figure 4, step), which is
then parsed by the UPnP unit. An event stream is generated and dispatched to the SLP
unit’s composer. However, thanks to its DFA, the UPnP unit detects that it does not
get enough events from the UPnP service. The SDP_RES_SERV_URL event, which indi-
cates the URL of the searched service, has never been generated. Therefore, the UPnP
unit needs to recursively generate additional requests to the remote service until it re-
ceives the expected event. To achieve this task, the UPnP-specific events generated
by the UPnP unit are consumed internally by the composer to generate other UPnP
requests. For instance, the SDP_DEVICE_URL_DESC event gives the URL of the descrip-
tion of the remote service that contains the URL of the remote service endpoint.
Therefore, once the composer of the UPnP unit receives this event, it generates a

 INDISS: Interoperable Discovery System for Networked Services 173

corresponding request to get the description. As previously, the next answer from the
service is parsed (Figure 4, step) but the reply contains a XML body that the current
UPnP parser, which is dedicated to the SSDP protocol, does not understand. There-
fore, the current parser generates a SDP_C_PARSER_SWITCH event to ask its unit to
switch to a XML parser to continue the parsing to get finally the expected
SDP_RES_SERV_URL event. The XML description is converted to several SDP_RES_ ATTR
events. As soon as the composer of the SLP unit has received all of them (as indicated
by SDP_C_STOP), a SLP answer is generated (the SDP_RES_ ATTR are translated to tradi-
tional SLP attributes) and received by the SLP client.

Step Request Generated Events Composed request

SLP

Search

SDP_C_START ….
SDP_NET_MULTICAST
SDP_NET_SOURCE_ADDR
SDP_SERVICE_REQUEST
SDP_REQ_VERSION
SDP_REQ_SCOPE
SDP_REQ_PREDICATE
SDP_REQ_ID
SDP_ SERVICE_TYPE:
SDP_C_STOP

From the previous events, the UPnP unit multi-
casts a UPnP search request to discover UPnP
services in its vicinity:

M-SEARCH * HTTP/1.1
SERVER: 239.255.255.250:1900
ST: urn:schemas-upnp org:device:clock
MAN: ssdp:discover
MX: 0

Step Reply Parsing Generated Events Composed re-
quest

HTTP/1.1 200 OK
CONTENT-TYPE: text/html;
SERVER: UPnP/1.0 CyberLink/1.3.2
CONTENT-LENGTH: 0

………………
ST: upnp:clock
USN: uuid: ClockDevice::upnp:clock
LOCATION:
http://128.93.8.112:4004/description.xml

SDP_C_START
SDP_NET_TYPE
SDP_SERVICE_TYPE
SDP_DEVICE_URL_DESC

……

As the UPnP unit
did not get the lo-
cation of the re-
mote service it
must generate
additional UPnP
requests:

GET
/description.xml
HTTP/1.1

Step Reply Generated Events Composed reply

Service
answer to
the GET
request:

HTPP
Reply

Events generated from the
HTPP reply:

SDP_C_PARSER_SWITCH
SDP_RES_ATTR
SDP_RES_ATTR …..
SDP_RES_SERV_URL
SDP_C_STOP

SrvRply: sevice:clock:soap://128.93.8.112:4005/
service/timer/control
;major:"1";minor:"0";friendlyName:"CyberGarage
Clock Device"; modelDescription:"CyberGarage";
manufacturerURL:"http://www.cybergarage.org";
modelDescription:"CyberUPnP Clock Device";
modeName:"Clock";modelNumber:"1.0";
modelURL:"http://www.cybergarage.org";

Fig. 4. SLP-UPnP interoperability in action

174 Y.-D. Bromberg and V. Issarny

3 Context-Aware, Self-adaptive Interoperability

INDISS is based on a specialization of the event-based architectural style. Advantages
of using an event-based architecture are: increasing the degree of decoupling
among components and of interoperability, and providing a dynamic and extensible
architecture. Since interactions among components are based on events, components
operate without being aware of the existence of other components and consequently
parsers, composers and units may change dynamically at runtime without altering the
system (see Figure 5). INDISS is consequently defined as a set of event-based
components. We distinguish between these components that are inside the system,
and other components that are outside INDISS and are therefore considered as
application components.

Event
Streams

Message
Streams

Dynamic
Composition

System SDP = {
Component Monitor ={
 ScanPort = { 1900; 1846; 4160 ; 427 }
}
Component Unit SLP(port=1846,427) ;
Component Unit UPnP(port=1900);
Component Unit JINI(port=4160); }

System specification at design time Instantiation
at run-time

a)

b)

d)

Jini
UnitSLP

Unit

UPnP
Unit

Monitor
INDISS

Jini
UnitUPnP

Unit

SLP
UnitMonitor

INDISS

Jini
Unit

SLP
Unit

UPnP
Unit

INDISS

Monitor

SLP
Unit

UPnP
Unit

Jini
Unit

c)

INDISS
Monitor

Fig. 5. Evolution of INDISS configuration

The INDISS internal architecture has to evolve across time due to two main
reasons. First, as devices joining the network, whether mobile or stationary, evolve
over time, the current SDP that is used and/or the SDPs with which interoperability is
required may change accordingly. Second, some SDPs are actually based on a combi-
nation of protocols. For instance, UPnP uses alternatively SSDP, HTTP, and SOAP.
To support these two types of changes, we need to define rigorous composition rules
to describe the specific architecture of a given instance of INDISS. Configuration of a
INDISS instance is initially defined in terms of supported SDPs and the correspond-
ing units that need be instantiated. As illustrated in Figure 5.a, specification of the
system configuration does not describe when and how to compose units. Indeed, unit

 INDISS: Interoperable Discovery System for Networked Services 175

composition is achieved dynamically according to both the context and the hosted
application components. The context is discovered with the help of the monitor com-
ponent, as presented in Section 2.1. At run-time, embedded units of different types are
instantiated and dynamically composed depending on the environment
and the applications used. Thus, several configurations may occur (e.g., see
Figure 5.b, c, d).

At the system level, SDP interoperability is achieved through the correct composi-
tion of some units. As depicted in Figure 5.c, the translation from SLP to UPnP dis-
covery corresponds to the composition of a SLP unit with a UPnP unit. At this level, a
unit is only considered as a computational element that transforms messages to events
and vice versa. The unit’s internal mechanisms are totally hidden. Referring to event-
based architectures, components can be either event listeners or event generators or
both. The same applies for units; they are both event generator and listener. Units are
composed and communicate together through events, whereas they use messages to
interact with components that are outside INDISS. Therefore, the use of events is in-
ternal to INDISS.

At the unit level, coordination and composition rules among embedded SDP com-
ponents are specialized with respect to a given SDP, according to the unit’s state-
machine. The unit is then in charge of dispatching event notifications to its registered
listeners. However, there are some variations applied to the traditional event-based
style. First, the unit does not systematically forward incoming events to all subscrib-
ers. The unit filters events, and may additionally react to them through actions to
modify its current configuration. Events delivery and executed actions are dependent
upon the unit’s state machine described earlier. A notable feature of our solution is
that SDP interoperability components that are developed are not necessarily specific
to a SDP. Customization of a unit with respect to a SDP results from the specific con-
figuration and in particular the embedded FSM.

As a result, interoperability components may be reused in various units, even if not
related to the same SDP. For instance, at the implementation level, HTTP or XML
parsers developed for one SDP may be reused for another. Definition of a unit then
relies upon specifying embedded components, as exemplified below for a UPnP unit:

Component Unit UPnP = {
setFSM(fsm, UPNP);
AddParser(component, SSDP);
AddComposer(component, SSDP);
…}

The state machine’s description is itself considered as a part of the system specifi-
cation. Hence, a new operator is introduced to define state machines:

Component UPnP-FSM ={

AddTuple(CurrentState,triggers,condition-guards,NewState,actions)
 …}

In the above tuple, CurrentState and NewState are labels to name different states,
triggers are taken from the set of previously defined events, condition-guards are
Boolean expression on events and actions are those provided by the unit’s interface.

176 Y.-D. Bromberg and V. Issarny

4 Prototype Implementation and Performance

We have implemented a first prototype of INDISS. Currently, it includes a UPnP unit
and a SLP unit. Although our prototype is not yet optimised, it is robust enough to as-
sess the performance of our approach in different use cases. The following discusses
key elements of the prototype. We first outline its small size requirements compared
to existing solutions (§4.1). We then discuss how it improves interoperability within
the networked home according to the nodes on which it is deployed and the usage
context (§4.2). Finally, we evaluate INDISS performance by comparing response
times with native service discovery (§4.3).

4.1 Prototype Implementation

The prototype is implemented in Java to take advantage of cross platform portability.
We are, in particular, able to deploy our solution on any mobile device that embeds
J2ME [12], which provides a Java virtual machine customized for devices with lim-
ited resources. However, INDISS is not constrained to be written in Java, and may be
developed as well in C or in any other programming language closer to the embedded
operating system, to get a smaller code-size foot print and better execution speeds.
Nevertheless, in Java, we get already very encouraging results. We compare the size
required by INDISS with common open-source library like OpenSlp1 and Cyberlink
for Java2.

As depicted in Table 2, currently, the overall INDISS system consists of 39 Java
classes, and 2910 lines of Non Commented Source Statements Classes (NCSS). The
overall system size is 218 Kbytes. This includes 125Kbytes for the UPnP Unit and
49Kbytes for the SLP one. To be interoperable, nodes running UPnP (resp. SLP)
applications need to host native UPnP (resp. SLP) library plus INDISS. This is to
be contrasted with a device that is not equipped with our interoperable system,
which needs: (i) to host both the full UPnP stack and the SLP library and, (ii) some
engineering effort to develop and host an additional SLP (resp. UPNP) client that is
equivalent in terms of functionalities to the UPnP (resp. SLP) client.

Still in Table 2, without INDISS, the size requirements of a middleware that needs
to be interoperable for hosting one simple service is 514Kbytes. Conversely, the size
requirement for a middleware dedicated to UPnP (resp. SLP) equipped with INDISS
is 598Kbytes (resp. 352Kbytes). Moreover, the size requirements increase proportion-
ally with the number of hosted services. Therefore, according to the number of hosted
services, the size requirements of an interoperable middleware without INDISS in-
creases faster than the one equipped with INDISS simply because, for the former,
each time we add a service we are multiplying its size by two (e.g., SLP service size +
UPnP service size).

Thus, the small size overhead introduced by INDISS with UPnP applications dis-
appears with the number of hosted services. Last but not least, a middleware
that needs to host different services, in terms of both functionalities and SDP used,

1 http://www.openslp.org/
2 http://www.cybergarage.org/net/upnp/java/

 INDISS: Interoperable Discovery System for Networked Services 177

Table 2. Size requirements in KBytes for known libraries and INDISS

INDISS size requirements
 Size (KB) Classes NCSS Overhead

Core framework 44 15 789 -
UPnP Unit 125 18 1515 -
SLP Unit 49 6 606 -
Total 218 39 2910 -

SDP library size requirements
OpenSlp Library 126 21 1361 -
Cyberlink UPnP 372 107 5887 -
Total 498 128 7248 -

Size requirements to provide interoperability with and without INDISS
SLP &UPNP Library +
SLP & UPnP clients

514 - - -

UPnP client & Library + INDISS 598 - - 14%
SLP client & Library + INDISS 352 - - -31.5%

must have all the corresponding native libraries irrespectively of the use of INDISS.
How ever, in this case, the latter still provides efficient interoperability: it reduces
drastically both the number of hosted services and, in the long term, the overall mid-
dleware size since you do not have to develop and deploy services for each existing
SDP.

4.2 Interoperability Scenarios

One of our objectives is to provide service discovery interoperability to applications
without altering them. Hence, applications are not aware of interoperability mecha-
nisms and actually have the illusion that the remote applications that they discover
(and/or discover them) use the same SDP. In this context, several use cases may be
considered, according to both the nature of the SDPs that are used and the location of
INDISS, which can be localized on the client, server, both or gateway.

Another of our other objectives is to save resources on resource-constrained de-
vices and the bandwidth that is shared among devices in the network. It is thus impor-
tant to examine the impact of INDISS on resource consumption. This may in particu-
lar vary according to the system’s location (i.e., where it is deployed) and usage
context. The usage context of the system depends on the SDP model used by the cli-
ents and services. Referring to Section 2, there exist two SDP models: passive and ac-
tive. We need thus to distinguish cases where the client (resp. service provider) acts as
listener and as a requester. Moreover, we obviously assume that either the client or
service node hosts INDISS. As a result, for each possible scenario, two uses cases are
possible, according to the location of INDISS.

Consider first that both clients and services are based on the passive discovery
model (see Figure 6). In this context, clients are listeners and services are requesters.
The most optimised location for INDISS is to be hosted on the client side. Thereby,
clients are able to intercept all messages generated by the remote service whatever its

178 Y.-D. Bromberg and V. Issarny

specific multicast group or message format (see left-top of Figure 6). In contrast, if as,
INDISS is localized on the service side, it will never intercept messages from clients
INDISS is localized on the service side, it will never intercept messages from clients
by definition of the passive discovery model, clients are listeners and never generate
messages. We get a blocked situation as depicted in the right top of Figure 6.

Fig. 6. SDP interoperability and passive service discovery

Consequently, we must define a network traffic threshold below which INDISS,
hosted on the service host, must become active so as to intercept messages generated
from the local services in order to translate them to any known SDPs according to the
embedded units (see bottom of Figure 6). Although this specific use case illustrates
the high flexibility of INDISS to adapt itself to the context, it has non-negligible im-
pact on resource consumption. Indeed, dynamic reconfiguration of the system has a
processing cost and service advertisements following the enactment of the active
model increases bandwidth usage. However, interoperability is enforced without
really saturating the bandwidth, as INDISS is switched to the active model only when
the network traffic is low.

Consider now the case where both clients and services are based on the active
discovery model, i.e., clients are requesters and services are listeners. In order to
optimise the bandwidth usage and computational resources, the most suitable location
for INDISS is to be on the service side. Otherwise, in a way similar to the previous
scenario, ineffective SDP interoperability may arise when INDISS is located on the
requester side. In general, when the clients and services are based on the same discov-
ery model, the most convenient location for INDISS is on the listener side.

It may be the case that the clients and services are based on different discovery
models. If the clients are based on the active model and services are based on the
passive model, then both clients and services generate SDP messages. Interoperability
is guaranteed without additional resources cost. Nevertheless, some subtleties arise.
Hosting INDISS on the client side means that the client benefits from the advertise-
ments of remote services. But, the client’s requests will not reach remote services that
are based on different SDPs if they are not interoperable (i.e., they do not host our
interoperability system). On the contrary, if services embed INDISS and not the
clients, requests from the latter will be taken into consideration from services,
whereas clients will not be aware of services’ advertisements originating from SDPs

INDISS

Service

Client

Service
discovered

• INDISS belongs to the service’s multicast
group.

• Translated to any known SDPs and multi-
casted to the respective multicast groups.

Client

INDISS

Service

SDP detected, trans-
lated, and forwarded
to the client

 The client does not understand
anything

 INDISS: Interoperable Discovery System for Networked Services 179

different than the one hosted on the clients. Although, in this case, interoperability is
not as effective as expected, clients and services do interact. Furthermore, interopera-
bility effectiveness may be improved if the bandwidth is under-utilized, thanks to
INDISS reconfigurability

Conversely, when clients are based on the passive model and services are based on
the active model, both clients and services are listeners. Once again, we are faced with
the recurrent ineffective discovery interoperability. However, in this particular case,
dynamic reconfiguration of INDISS does not resolve the clients’ inability to discover
services, since there is no node initiating SDP-related communication. There is no
way to resolve this issue, considering our constraint to not alter the behaviour of
SDPs, clients and services. On the other hand, this specific case is unlikely to happen.
Nowadays, in practice, clients are always able to generate requests.

Summarizing, irrespective of the service discovery model used by clients and ser-
vices, we are able to guarantee a minimum level of interoperability. Depending on the
environment, the bandwidth usage may be increased to enable interoperability. The
basic idea is to provide a quasi-full interoperability as long as the bandwidth-usage
enables it. Then, interoperability degradation may occur according to the traffic. Fur-
thermore, by design, INDISS is independent of its host. Thus, it is not mandatory for
INDISS to be deployed on the client or service host. INDISS may be deployed on a
dedicated networked node, depending on the specific network environment. Such a
dedicated node may in particular translate messages generated in one environment
from any SDP to messages handled by any other SDP, according to the traffic condi-
tion. Obviously, this specific configuration generates additional traffic and is only
valid as long as there is enough bandwidth.

4.3 Experimental Results

We evaluate the performance of our interoperability mechanisms by investigating the
response time of INDISS when enabling a client dedicated to one SDP to discover a
service based on another SDP. Specifically, the experiments consider the case where a
SLP (resp. UPnP) client searches a SLP (resp. UPnP) service. We then compare the
native client waiting time to get an answer from a native service, with its waiting time
to get an answer from an INDISS-translated service. The impact of INDISS on per-
formance varies according to its location, on either the client or the service side. Thus
in the following, we consider the two cases. In addition, as interoperability is
achieved without generating additional traffic, we have not evaluated the network
bandwidth consumption. Indeed, the generated traffic is well known since we are nei-
ther providing a new service discovery protocol nor altering native protocols.

Although our solution is dedicated to various devices, including resources con-
strained ones, all tests are performed on workstations equipped with 256Mbytes RAM
on Intel PIV processor rated at 1.8GHz. In fact, currently, to the best of our knowl-
edge, there does not exist any UPnP profile for J2ME devices in the open source com-
munity. Thus, the operating system, the Java virtual machine and the performance
tools platform used are respectively Linux from Redhat Fedora Core 2, JDK1.4.2
from SUN and the Hyades platform from Eclipse Foundation. Moreover, the SLP
(resp. UPnP) client and SLP (resp. UPnP) service are hosted on different hosts con-
nected to a LAN at 10Mb/s. The SLP client and service are based on OpenSlp

180 Y.-D. Bromberg and V. Issarny

whereas UPnP client and service use Cyberlink for Java. The given measurements are
in ms and are the median of 30 successful tests to avoid a mean skewed by a single
high or low value.

 SLP -> SLP UPnP -> UPnP
Median value

(ms)
0.7 40

Fig. 7. Native clients & services

In Figure 7, we first give the response time of a search request generated by a na-

tive client to get a successful answer from a native service: for SLP, we get 0.7 ms,
whereas for UPnP, we get 40ms. It is clear that using SLP is much more efficient than
UPnP, which is a higher-level protocol than SLP. These results are considered as ref-
erences values to enable us to interpret the following results.

Consider now the case where INDISS is located on the service side to enable the
latter to be interoperable with any client independently of its SDP (Figure 8). In the
context where the client is SLP and the service is UPnP, the client gets an answer in
65 ms. The translation between SLP and UPnP is not direct. For instance, UPnP and
SLP search responses are semantically different: a SLP client expects a direct refer-
ence to interact with the service discovered whereas a UPnP client expects a reference
to a description file corresponding to the service found. Consequently, INDISS has
translated the SLP request into two local UPnP requests to get the information that is
necessary to generate on the network the corresponding SLP response. This means
that INDISS has waited and parsed successively two UPnP responses increasing thus
the SLP responsiveness latency. On the service side, it is clear that INDISS simulates
a UPnP client and therefore we cannot interfere on the native time taken to get UPnP
response from the service. In this context, the INDISS result is pretty good.

Still in Figure 8, when the client is UPnP and the service is SLP, the response time
to get an answer is 40ms. In fact, it corresponds exactly to a search request generated

 Slp->[Slp-UPnP]
Median value (ms) 65

 UPnP->[UPnP-Slp]
Median value (ms) 40

Fig. 8. Performance with INDISS located on the service side

SLP ServiceSLP Client
Slp Messages

UPnP Client UPnP Service
UPnP Messages

Network

SLP ServiceUPnP Client INDISS

Network Local

UPnP
Messages Slp

Service side

UPnP SeviceSlp Client INDISS

Slp
Messages UPnP

 INDISS: Interoperable Discovery System for Networked Services 181

 [Slp-UPnP]->UPnP

Median value
(ms)

80

 [UPnP-Slp]->Slp

Median value
(ms)

0.12

Fig. 9. Performance with INDISS located on the client side

on the network from a native UPnP client to a native UPnP service. On the service
side, the response time to a SLP request is negligible as the latter is generated locally.

When INDISS is located on the client side (Figure 9a), the latter becomes interop-
erable and can discover any service whatever its SDP. If the client is SLP and the ser-
vice is UPnP the SLP client gets the answer to its search request in 80ms. It corre-
sponds globally to two native UPnP responses from a native UPnP service. It is
obvious since, as previously, INDISS has translated the SLP request into two network
UPnP requests to get the necessary information to generate locally the corresponding
SLP response. Once again, INDISS result is encouraging. It is important to note that
compared to the case depicted in Figure 8, the response time is higher than previously
simply because the UPnP traffic goes across the network between INDISS and the
UPnP service, increasing by 15 ms the response time. In the same context, the lack of
speed inherent to the UPnP protocol is confirmed as a UPnP client gets a response
from a SLP service in only 0.12ms (Figure 9b). This is due to the fact that first the
UPnP traffic is local and then the only traffic that goes across the network is SLP,
which is particularly fast. In addition, the necessary information to generate a search
response for UPnP is tiny. We can consider this case as the best case.

From the above results, we have shown that INDISS is particularly efficient in pro-
viding interoperability in all possible context use.

5 Conclusion

INDISS overcomes the heterogeneity of service discovery in the networked home and
decomposes into two mechanisms: SDP detection and SDP interoperability, allowing
therefore any networked home system to discover and interpret all the services avail-
able in the home environment, independent of underlying middleware technologies.

Client side

Slp Service

INDISS

UPnP Client

Network

Slp
messages

Local

UPnP
Messages

a) SLP search request to a UPnP service

b) UPnP search request to a SLP service

Client side

UPnP Service

INDISS

SLP Client

Network

UpnP
messages

Local

Slp
Messages

182 Y.-D. Bromberg and V. Issarny

Our solution is specifically designed for highly dynamic home networks, which
requires both minimizing resource consumption, and introducing lightweight mecha-
nisms that may be adapted easily to any platform. INDISS is composed of a set of
event-based components and their composition/configuration is performed dynami-
cally at run-time according to both the context and the host on which INDISS is de-
ployed. As a result, service discovery interoperability is provided to applications
without altering them: applications are not aware of the existence of INDISS, which
adapts itself to the context. In particular, INDISS may be deployed on a client, a ser-
vice or a gateway. As demonstrated by the first INDISS prototype, experiment results
are encouraging. The response time of INDISS when enabling a client dedicated to
one SDP to discover a service based on another SDP is close to request/response
among related native clients/services.

Once services are discovered, applications further need to use the same interaction
protocol to allow unanticipated connections and interactions with them. In this con-
text, the ReMMoC reflective middleware introduces a quite efficient solution to inter-
action protocol interoperability. The plug-in architecture associated with reflection
features allows mobile devices to adapt dynamically their interaction protocols (i.e.,
publish/subscribe, RPC etc.). Furthermore, [13] proposes to use ReMMoC together
with WSDL [14] for providing an abstract definition of the remote component’s func-
tionalities. Client applications may then be developed against this abstract interface
without worrying about service implementation’s details. However, the solution dis-
cussed in [13] suffers from a major constraint: service and client must agree on a
unique WSDL description. But, once again, in a dynamic network, the client does not
know the execution context. Therefore, it is not guaranteed to find exactly the ex-
pected service. Client applications have to find the most appropriate service instance
that matches the abstract requested service. In addition, this leads to the dynamic
composition of services. This issue is addressed by the WSAMI middleware devel-
oped in the context of the Ozone project [15], which introduces enhanced WSDL
specification for mobile services and a dedicated middleware to allow a service in-
stance to be automatically selected and composed upon a user request, according to
the services that may be retrieved in the environment. However, if WSAMI provides
interoperability to Web services in the mobile environment, it is still a SOAP based
middleware, and hence does not deal with interoperability among components using
heterogeneous interaction protocols. We are currently investigating solutions to this
issue to complement our solution to SDP interoperability and thus support middle-
ware interoperability, as required by today’s network environments [1].

Acknowledgements

This work has received the support at the European Commission through the IST pro-
gram, as part of the AMIGO project (http://www.amigo-project.org). The authors
would like to thank Daniele Sacchetti for helping us make performance measure-
ments. The authors are further grateful to anonymous reviewers for useful comments.

 INDISS: Interoperable Discovery System for Networked Services 183

References

[1] Amigo Consortium. Specification of the Amigo abstract middleware architecture.
http://www.hitech-projects.com/euprojects/amigo/.

[2] Sun. Technical White Paper: Jini Architectural Overview. 1999.
[3] C. Bettstetter and C. Renner. A comparison of service discovery protocols and imple-

mentation of the service location protocol. In Proceedings of the 6th EUNICE Open
European Summer School: Innovative Internet Applications, 2000.

[4] Universal Plug and Play Forum. Universal Plug And Play Device Architecture. 2000.
[5] Salutation Consortium. White paper: Salutation Architecture. 1998.
[6] C. Mascolo, L. Capra, W. Emmerich. Middleware for mobile computing (A survey). In

Advanced Lectures in Networking. Editors E. Gregori, G. Anastasi, S. Basagni.
Springer. LNCS 2497. 2002.

[7] G. Coulson, G. Blair, M. Clarke and N. Parlavantzas. The design of a configurable and
reconfigurable middleware platform. In Distributed Computing. April 2002.

[8] P. Grace, G. Blair and S. Samuel. Middleware awareness in mobile computing. In Pro-
ceedings of the 1st international ICDCS Workshop on Mobile Computing Middleware,
May 2003.

[9] Y.-D. Bromberg, V. Issarny. Service Discovery Protocols Interoperability in the Mobile
Environment. In Proceedings of the International Workshop Software Engineering and
Middleware (SEM). September 2004.

[10] N. Ryan and A. Wolf. Using event-based parsing to support dynamic protocol evolution.
In Proceedings of the 26th International Conference on Software Engineering
(ICSE'04).2004

[11] D. Garlan. Formal modeling and analysis of software architecture: Components, connec-
tors, and events. In Third International School on Formal Methods for the Design of
Computer, Communication and Software Systems. September 2003.

[12] The Micro Edition of the Java 2 Platform, http://java.sun.com/j2me/
[13] P. Grace, G. Blair and S. Samuel. A marriage of Web services and reflective middle-

ware to solve the problem of mobile client interoperability. In Proceedings of Workshop
on Middleware Interoperability of Enterprise Applications. September 2003.

[14] W3C.”Web Services Description Language (WSDL)”, W3C Working Draft. 2003
[15] V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, and A. Taloma.

Developing ambient intelligence systems: A solution based on Web services. Journal of
Automated Software Engineering, 2005.

Dual-Quorum Replication for Edge Services

Lei Gao1, Mike Dahlin1, Jiandan Zheng1, Lorenzo Alvisi1, and Arun Iyengar2

1 University of Texas at Austin, Austin TX 78712, USA
{lgao, dahlin, zjiandan, lorenzo}@cs.utexas.edu

2 IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA
aruni@us.ibm.com

Abstract. This paper introduces dual-quorum replication, a novel data
replication algorithm designed to support Internet edge services. Dual-
quorum replication combines volume leases and quorum based techniques
in order to achieve excellent availability, response time, and consistency
the references to each object (a) tend not to exhibit high concurrency
across multiple nodes and (b) tend to exhibit bursts of read-dominated
or write-dominated behavior. Through both analytical and experimen-
tal evaluation of a prototype, we show that the dual-quorum protocol
can (for the workloads of interest) approach the excellent performance
and availability of Read-One/Write-All-Async (ROWA-A) epidemic al-
gorithms without suffering the weak consistency guarantees and resulting
design complexity inherent in ROWA-Async systems.

1 Introduction

This paper introduces dual-quorum replication, a novel data replication algo-
rithm motivated by the desire to support data replication for edge services
[1,3,10,29]. As Figure 1 illustrates, the Internet edge service model attempts
to improve service availability and latency by allowing clients to access the clos-
est available edge servers rather than a centralized server (or a centralized server
cluster). But as Figure 1 also indicates, in order to provide a single service from
multiple locations, service logic (code) replicated on all edge servers must access
a collection of shared data. Thus, support for data replication is a key problem
in realizing the promise of Internet edge services.

By exploiting object-specific workload characteristics, we seek to design a
replication system for edge services that offers optimized trade-offs among avail-
ability, consistency, and response time. Although it is impossible to simultane-
ously provide optimal consistency, availability, and performance for general-case
wide-area-network replication [5,17], we can, perhaps, provide nearly optimal
behavior for specific objects by taking advantage of a given application’s work-
load characteristics. For example, our previous studies show how to provide
nearly optimal replication for information dissemination applications such as
news [22] and e-commerce applications such as TPC-W [10]. In particular, we
developed customized consistency protocols for three categories of objects: (1)

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 184–204, 2005.
c© IFIP International Federation for Information Processing 2005

Dual-Quorum Replication for Edge Services 185

…WAN

Central
Server

StorageStorage

StorageStorage

Shared Data

StorageStorage

Service
Logic

Edge Server

Service
Logic

Service
Logic

Client

Client

Client

Client

Fig. 1. Internet edge service architecture

single-writer, multi-reader objects like product descriptions and prices; (2) multi-
writer, single-reader objects like customer orders; and (3) commutative-write,
approximate-read objects like the inventory count of each product.

However, a key limitation of our previous efforts to support edge services
was our decision to use weak consistency—and thereby introduce undesirable
complexity—for a fourth category of objects: multi-writer, multi-reader objects
such as TPC-W’s per-customer profile information (e.g., name, account num-
ber, recent orders, credit card number, and address.) We, like several other sys-
tems [24,26,33], made use of a Read-One, Write-All-Asynchronously (ROWA-
Async) protocol based on local reads and asynchronous epidemic propagation of
writes. ROWA-Async protocols provide excellent read performance and availabil-
ity; and although ROWA-Async protocols allow applications to observe incon-
sistencies between reads and writes, such inconsistencies should be rare because
multi-reader, multi-writer shared objects often have workloads with low concur-
rency to any given object. For example, in our edge-server TPC-W application,
reads and writes to a given customer’s profile typically come from just one edge
server for some interval of time, until the customer is redirected to a differ-
ent server. Unfortunately, although inconsistencies are rare for the workloads of
interest, these rare cases introduce considerable complexity into the system de-
sign, because all cases must be handled no matter how rare they are and because
reasoning about corner cases in consistency protocols is complex. Furthermore,
because reads can always complete locally, these protocols provide no worst-case
bound on staleness (i.e., it is possible for a read to return stale data arbitrarily
long after a write) which can be unacceptable for some applications.

By introducing dual-quorum replication, this paper provides the key missing
piece to achieve highly-available, low-latency, and consistent data replication
for a range of edge services. In particular, dual-quorum replication optimizes
these properties for data elements that can be both read and written from many
locations, but whose reads and writes exhibit locality in two dimensions: (1) at
any given time access to a given element tends to come from a single node and
(2) reads tend to be followed by other reads and writes tend to be followed by
other writes. For other workloads, our algorithm continues to provide regular
consistency semantics [16], but its performance and availability may degrade.

Our dual-quorum replication protocol combines ideas from volume leases [30]
and quorums [11,12]. The protocol employs two quorum systems, an input

186 L. Gao et al.

quorum system (IQS) and an output quorum system (OQS). Clients send their
writes to the IQS and they read from the OQS. The two quorum systems syn-
chronize the state of replicated objects among them when necessary. By using
two quorum systems, we are able to optimize construction of the OQS ’s read
quorums to provide low latency and high availability for reads while optimizing
construction of the IQS ’s write quorums to provide modest overhead and high
availability for writes. In particular, OQS nodes cache data from the IQS servers
using a quorum-based generalization of Yin et al.’s volume lease protocol [30],
which invalidates individual cached objects as they are updated. The protocol
uses short-duration volume leases to allow writes to complete despite network
partitions and aggregates these leases across large numbers of objects in a volume
to amortize the cost of renewing short leases. Using our dual-quorum protocol,
workloads with large numbers of repeated reads (or writes) perform well because
reads (or writes) can often be supplied by a read-optimized OQS read quorum
(or write-optimized IQS write quorum) without requiring communication with
the IQS (or OQS).

Through both analytical and experimental evaluations, we compare the avail-
ability, response time, communication overhead, and consistency guarantees of
the dual-quorum protocol against other popular replication protocols: the syn-
chronous and asynchronous Read-One/Write-All (ROWA) protocol family,1 ma-
jority quorums, and grid quorums [7]. For the important special configuration
of single-node OQS read quorums, average read response time can approach
a node’s local read time, making the read performance of this approach com-
petitive with ROWA-Async epidemic algorithms such as Bayou [26]. But, the
dual quorum approach avoids suffering the weak consistency guarantees and re-
sulting complexity inherent in ROWA-Async designs. Additionally, the overall
availability of the dual-quorum protocol is competitive with the optimal majority
quorum protocol for the targeted workloads. Finally, for the targeted workloads,
the communication overheads of this approach are comparable with existing ap-
proaches. However, in the worst-case scenario in which the workload consists
of only interleaved reads and writes, the dual-quorum protocol requires signifi-
cantly more message exchanges than traditional quorum protocols to coordinate
internal nodes.

The main contribution of this paper is to introduce the dual-quorum algo-
rithm, a novel data replication algorithm targeted at a key workload for Internet
edge service environments. Note that although our work is motivated by a spe-
cific replication scenario, we speculate that it will be more generally useful. In
particular, we believe that it may not be uncommon for systems that can, in prin-
ciple, have any node read or write any item of data to, in practice, experience
sufficient locality to benefit from our approach.

Our paper is organized as follows. Section 2 presents our system model and
a set of assumptions on which our system is built. In Section 3, we present our
system’s design. We compare our system with existing ones in Section 4 with

1 Note that ROWA protocols are, in fact, a special case of quorum protocols, but they
are often treated separately in the literature.

Dual-Quorum Replication for Edge Services 187

both analytical and experimental evaluations. In Section 5, we discuss related
work. Concluding remarks are presented in Section 6.

2 System Model and Definitions

Our edge service environment consists of a collection of edge server nodes that
each play one or more of the following three roles: (a) front end nodes that
handle application client requests from across the Internet, execute application-
specific processing, and act as service clients to the dual-quorum storage system;
(b) Output Quorum System (OQS) nodes that process read requests; and (c)
Input Quorum System (IQS) nodes that process write requests. We assume a
request redirection architecture that directs application clients to a good (e.g.,
nearby, lightly loaded, or available) front end edge server; a number of suitable
redirection systems are discussed in the literature [15,31]. Note that application
clients are unaware of the underlying data storage system and never contact the
OQS or IQS interfaces directly.

In an edge service environment, servers typically process sensitive or valuable
information, so they must run on trusted machines such as dedicated servers in
a hosting center. We therefore assume a fail-stop model in which servers may
crash but cannot issue incorrect requests or replies. The network may delay,
duplicate, or reorder messages. We assume secure communication among nodes
and that if the network corrupts a message, this corruption is detected by low-
level checksums and the message is silently discarded. Each node can read a
local real-time clock and there exists a maximum drift rate maxDrift between
any pair of clocks.

For performance, our system assumes that concurrent reads and writes to a
given object by different nodes are rare. But, for correctness, we must define the
system’s consistency semantics in the presence of concurrent reads and writes
to the same object. The dual quorum design provides regular semantics [16]: a
read r that is not concurrent with any write returns the value of the latest write
that completed before r began and a read r that is concurrent with one or more
writes returns one of (a) the value of the last write that completed before r
began, or (b) the value of one of the writes concurrent with r.

For convenience of exposition, we describe interactions with a quorum sys-
tem in terms of a QRPC (quorum-based remote procedure call) operation [18].
replies = QRPC(system, READ/WRITE, request) sends request to a collec-
tion of nodes in the specified quorum system (e.g., the IQS or OQS). The
QRPC call then blocks until a set of replies constituting the specified quorum
(READ or WRITE) on the specified system have been gathered. The call then
returns the set of replies that it received. The QRPC operator abstracts away
details of selecting a quorum, retransmissions, and timeouts, but our protocol
does not depend on any specific QRPC implementation. In particular, different
implementations may choose different ways to select which nodes from system
to send requests to, and they may select different retransmission strategies: our
simple prototype implementation always transmits requests to the local node if

188 L. Gao et al.

the local node is a member of system; it then randomly selects a sufficient num-
ber of additional nodes to form a READ or WRITE quorum and transmits the
request to them; retransmissions are each to a new randomly selected quorum
using an exponentially-increasing retransmission interval. A more aggressive im-
plementation might send to all nodes in system and return when the fastest
quorum has responded or might track which nodes have responded quickly in
the past and first try sending to them.

3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum replication system and the
key ideas for achieving our design goals. The basic idea is to separate the read
and write quorum into two quorum systems so that they can be optimized indi-
vidually to improve response time and availability for read-dominated or write-
dominated workloads. The read and write quorums of the OQS and IQS can
be separately configured in any way desired, but we would expect one common
configuration to be to optimize read performance by having the OQS span all
nodes in the system with a read quorum size of 1 and to get good write availabil-
ity by having the IQS span a modest number of nodes with any majority of the
IQS nodes forming a write quorum. As Figure 2 illustrates, in the dual quorum
system service clients retrieve objects from a read quorum in OQS and send ob-
ject updates to a write quorum in IQS. The two quorum systems conditionally
synchronize with each other to maintain the consistency of data replicated on
them when processing both reads and writes.

Quorum
Inval

WQ

RQ

OQS IQS

WQ

RQ

Client Reads

Client Writes

RQ

RQ

Client Reads

Client Reads WQ

Client Writes

WQ

server

Fig. 2. Dual quorum architecture overview. Note that client reads and writes are issued
by the service clients, not the application clients.

To simplify the discussion, we present the protocol in two steps. First, we
will discuss the basic dual-quorum protocol, a simplified asynchronous protocol,
in Section 3.1. This protocol allows separate optimizations of read and write
quorums, but because it assumes an asynchronous system model, a write can
block for an arbitrarily long period of time. Then, in Section 3.2 we describe
how we introduce volume leases to improve write availability while retaining
good read performance.

Dual-Quorum Replication for Edge Services 189

3.1 Dual Quorum Protocol

High level overview. The basic idea of the dual quorum protocol is to process
reads and writes in two different quorum systems, IQS and OQS , and use
a cache invalidation strategy to synchronize the state of objects replicated in
IQS nodes and cached in OQS nodes.

Clients perform similar tasks for reading and writing data as in the conven-
tional quorum based protocols. When a client read arrives in OQS , two possible
scenarios can happen, as illustrated in Figure 3 (a) and (b). In a read hit case,
the OQS read quorum contains a valid cache copy of the requested object, which
is immediately sent back to the client. When there is a read miss, i.e. the cache
copy on the OQS read quorum is invalid, the OQS read quorum validates the
cache copy by querying an IQS read quorum for the latest update. Once the
cache copy of the OQS read quorum is validated, the OQS read quorum sends
the updated value to the client. There are also two scenarios when processing
client writes, as illustrated in Figure 3 (c) and (d). In a write suppress case, the
cache copy in an OQS write quorum is already invalid. The IQS write quorum
can just apply the write to the local object and send the completion acknowl-
edgment to the client. In the case of a write through, an OQS write quorum
may hold a valid cache copy. Therefore, the IQS write quorum that receives the
client write has to invalidate the cache copy on one OQS write quorum before
the write can complete.

For workloads consisting of read bursts, the first read forces all OQS nodes
of the read quorum to validate their cached copies. Therefore, all subsequent
reads via that quorum are read hits. If we configure the OQS read quorum to
contain only one node, reads becomes local, and the protocol can yield near
optimal read response time and availability for read-dominated workloads. For
workloads consisting of write bursts of the same data, the first write invalidates
cached copies in an OQS write quorum, making all subsequent writes write
suppresses. Naturally, we can configure IQS as a majority quorum system to
provide near optimal write availability for such workloads.

Protocol details. The following paragraphs provide the details of the basic
dual-quorum protocol by describing the actions taken at individual nodes.

IQS

WQWQ

Client Client
ReadsReads

Read Read
RepliesReplies

WQWQ

OQS IQS

orqorq

IQS

WQWQ

Client Client
ReadsReads

Read Read
RepliesReplies

WQWQ

OQS IQS

Cache Cache
RenewRenew

Renew Renew
RepliesReplies

irqirq

orqorq

WQWQ

Client Client
WritesWrites

Write Write
AckAck..WQWQ

OQS IQS
iwqiwq

WQWQ

Client Client
WritesWrites

Write Write
AckAck..WQWQ

OQS IQS

InvalidationsInvalidations

InvalInval. .
AckAck..

iwqiwq
owqowq

(a) Read hit (b) Read miss (c) Write suppress (d) Write through

Fig. 3. Request processing scenarios

190 L. Gao et al.

Data structures. Each IQS node maintains the following state for each object o:
lastWriteLCo stores the logical clock of the last write to o, lastReadLCo stores
the value of lastWriteLCo from the time of the last read of o, lastAckLCo,j

stores the logical clock contained in the highest invalidation reply from OQS
node j for o, and valueo stores the value of o. Each node in IQS maintains a
logical clock logicalClock whose value is always at least as large as the node’s
largest lastWriteLCo for any object o. Each node in OQS maintains the fol-
lowing per-object o per-IQS-node i state: logicalClocko,i indicates the highest
version number (logical clock) of o for which an invalidation or update has been
received from i, and valido,i is true if logicalClocko,i corresponds to an update
(false if it corresponds to an invalidate). Finally valueo stores the update body
for the highest logical clock received in any update message for o from any node.

Object validity. The system maintains the following key invariant: If node j in
OQS has from node i in IQS a valid object o (j.valido,i) then node i in IQS knows
node j in OQS has a valid object callback (i.lastReadLCo > i.lastAckLCo,j).

Client read. From the client’s point of view, a dual-quorum read is the same
as a standard quorum read [11,12]. client sends a read request to the OQS via
QRPC. After receiving replies from a read quorum in OQS, client selects the
value with the highest logical clock.

A node j in OQS that receives a client read request first checks whether the
object o is valid. This check is done by first finding the IQS nodes i that sends
the highest logicalClocko,i to j. Object o is valid if valido,i = TRUE, invalid
otherwise. If o is valid, j returns the object’s locally-stored logical clock and
value. If not, j renews the object by sending object renewal messages to IQS
using QRPC. After receiving replies R from a read quorum in IQS, j updates its
local state (∀i, s.t. i ∈ R: if R.ro,i.lc ≥ logicalClocko,i, then logicalClocko,i :=
R.ro,i.lc and valido,i := true). Then, j updates valueo with the value in the reply
with the highest logical clock and returns both the value valueo and the highest
logical clock to the client. Each IQS server that receives an object renewal
message returns to the OQS server valueo and lastWriteLCo and then updates
lastReadLCo = max(lastReadLCo, lastWriteLCo).

Client write. Just like the standard quorum write protocol [11,12], client first
queries IQS using QRPC to retrieve the highest logical clock from a read quo-
rum in IQS. Next, client advances the logical clock and embeds it in the write
request that is then sent to the IQS via QRPC. The write completes after client
receives acknowledgments from a write quorum in IQS.

An IQS server i that receives a client request for the highest logical clock
of the last completed write responds with its logical clock logicalClock. When
i receives a client write whose logical clock is larger than that associated with
the last completed write of o on i (lastWriteLCo), i updates lastWriteLCo and
valueo with those in the write. Then, to ensure that a write quorum in OQS is
unable to read the old version of the data, i performs one of the following tasks:
(a) if no OQS server has renewed since the completion of the last write, (e.g.
∀j, s.t. j ∈ OQS, lastReadLCo < lastAckLCo,j), i suppresses invalidations to

Dual-Quorum Replication for Edge Services 191

OQS; (b) otherwise, i sends invalidations with the logical clock of the write to
OQS using QRPC. The write completes after receiving invalidation replies from
a write quorum in OQS, at which point i updates lastAckLCo,j for all j in the
QRPC reply and returns to the client.

An OQS server j that receives from node i in IQS an invalidation with
a logical clock lco,i compares lco,i with logicalClocko,i. If the invalidation has
the higher logical clock, j updates the local state (logicalClocko,i = lco,i and
valido,i = false). Finally, j sends an invalidation acknowledgment back to i.

3.2 Dual Quorum with Volume Leases (DQVL)

The basic protocol just described allows one to vary read and write quorum
sizes independently. However, our application would benefit from using a read
quorum size of 1 so that reads can be serviced locally; any larger read quorum
size introduces a network delay to every read and provides qualitatively worse
read response time. However, a read quorum size of 1 could lead to unacceptable
write availability because it could require a write to contact all nodes in the OQS
to invalidate cached data. We therefore adapt Yin et al.’s volume lease proto-
col [30] to support very small read quorums in OQS while retaining acceptable
availability on writes.

High level overview. We group objects into collections called volumes. To
process a read, a read quorum in OQS must hold both a valid volume lease and
a valid object lease for some read quorum in IQS. A lease represents permission to
access some object that expires at some specified time [13]. Similar to the basic
dual quorum protocol described in the previous section, when an OQS read
quorum holds both valid leases, all client reads processed by this read quorum
are read hit. A read miss implies that either or both leases are invalid - they can
be renewed by querying from an IQS read quorum. Similarly, a write suppress
occurs when either or both leases are invalid in at least one OQS write quorum.
To process a write in the write through scenario, the IQS write quorum can (a)
invalidate the object lease in an OQS write quorum or (b) wait for the lease to
expire on the volume containing the requested object in an OQS write quorum.

The key challenge in introducing volume leases is to manage the callback state
when invalidations are suppressed at IQS when the volume lease expires in an
OQS write quorum. When an IQS write quorum processes a write to o while
the lease expires for the volume v containing o in an OQS write quorum, i.e. a
write suppress scenario, the IQS write quorum has to enqueue the invalidation
of o as a delayed invalidation [30]. All delayed invalidations of objects under v
must be processed by the OQS write quorum before v’s lease can be renewed so
that all required callbacks to IQS are installed on OQS . Those callbacks ensure
that OQS queries IQS to retrieve possible updates suppressed at IQS.

A final implementation detail we take from Yin et al. [30] is to bound the
size of the list of delayed invalidations for OQS using epochs. Volume lease re-
newals are marked with an epoch number, and when this epoch number changes,
OQS conservatively assumes all object callbacks have been revoked by IQS.

192 L. Gao et al.

In this case, OQS suspects that all objects under this volume are updated at
IQS and OQS needs to query an IQS read quorum to validate the cache copy
before sending any object to a client.

The key benefit of volume leases is that they can be of short duration while
object leases are of long duration.2 This combination yields good read response
time; nodes in OQS can cache objects locally for a long time, and although
they must frequently renew volume leases, this cost is amortized across many
objects in a volume. This combination also yields good write responsiveness and
availability: a write can complete by invalidating nodes caching data or waiting
for a (short) volume lease to expire.

Protocol details. The protocol details at the node level are similar to the basic
dual quorum protocol except that each IQS node tracks the volume lease and
callback state on all OQS nodes. The pseudo-code describing actions at an IQS
and an OQS node is shown in Figures 4 and 5.

Data structures. Each node in IQS maintains a real time clock currentT ime
(with bounded drift with respect to the other clocks as described in Section 2)
and a logical clock logicalClock. Each IQS node also maintains the following
per-volume v, per-OQS-node j state: expiresv,j which indicates when v expires
at j, delayedv,j which contains a list of delayed invalidations that must be de-
livered to j before v is renewed, and epochv,j which indicates j’s current epoch
number for v. Finally, each IQS node maintains the following per-object o state:
lastWriteLCo stores the logical clock of the last write to o, lastReadLCo stores
the value of lastWriteLCo from the time of the last read of o, lastAckLCo,j

stores the logical clock contained in the highest invalidation reply from node j
for o, and valueo stores the value of o.

Each node in OQS maintains a bounded-drift real time clock currentT ime. In
addition, it maintains the following per-volume v per-IQS-node i state: epochv,i is
the highest epoch number for which a valid volume lease from i was held on v and
expiresv,i is the time when the lease on v from i will expire. And, it maintains the
following per-object o per-IQS-node i state: epocho,i indicates the last epoch for
which a valid object lease on o from i was held, logicalClocko,i indicates the highest
version number (logical clock) of o for which an invalidation or update has been
received from i, and valido,i is true if logicalClocko,i corresponds to an update
(false if it corresponds to an invalidate). Finally valueo stores the update body for
the highest logical clock received in any update message for o from any node.

Volume and object validity. The system maintains the following key invariant: If
node j in OQS has from node i in IQS both a valid volume v (expiresv,i >
currentT ime) and a valid object o (epochv,i = epocho,i && valido,i) then
node i in IQS knows node j in OQS has a valid volume lease (expiresv,j >
currentT ime) and valid object callback (lastReadLCo > lastAckLCo,j).
2 For simplicity, we will assume infinite-length object leases or callbacks [14]. Gener-

alizing to finite-length object leases is straightforward and can help optimize space
and network costs [9].

Dual-Quorum Replication for Edge Services 193

1 processLCReadRequest () {
2 sendMsg (CLIENT LC READ REPLY , logicalClock) ;
3 }
4
5 processWriteRequest (Object o , Value v ,
6 Logi ca lClock lc){
7 i f (lc > lastW riteLCo){
8 valueo := v ;
9 lastW riteLCo := lc ;

10 // ensure an i nva l i d OQS wr i te quorum
11 whi le (! isOWQInvalid (o , lc)){
12 invalidateOWQ(o , lc) ;
13 // se e t ext f o r d e s c r i p t i o n s
14 }
15 }
16 sendMsg (CLIENT WRITE ACK, o , lc) ;
17 }
18
19 proces sInva lAck (Object o , Sender j ,
20 Logica lC lo ck lc){
21 //update the l a s t inva l ack in
22 // the r ecord f o r the sender
23 lastAckLCo,j := MAX(lastAckLCo,j , lc) ;

24 }

24 processVLRenewal (Volume v , Sender j ,
25 RequestorTime tv,0){
26 expiresv,j := L + currentT ime ;

27 sendMsg (VOLUME RENEW REPLY, delayedv,j ,

28 L , epochv,j , tv,0) ;

29 }
30
31 processVLRenewalAck (Volume v , Sender j ,
32 LogicalC lc){
33 //remove delayed i n va l s a lr eady
34 // app l i ed at the sender
35 ∀k, s.t. invalk,j ∈ delayedv,j {

36 i f (lc ≥ invalk,j .lc){

37 de l e t e invalk,j ;

38 }
39 }
40 }
41
42 processObjRenewal (Object o){
43 //update la s t−read l o g i c a l c l o ck
44 lastReadLCo := lastW riteLCo ;
45 sendMsg (OBJECT RENEW REPLY, valueo ,
46 lastW riteLCo) ;
47 }

Fig. 4. IQS server operations (pseudocode) – Dual quorum with volume leases

Client read. As detailed by processReadRequest in the pseudo-code, a node j
in OQS processes a client read of object o by ensuring Condition C: there exists
a read quorum irq in IQS such that j holds both a valid volume lease and valid
object lease from irq. If C is already true, then j can immediately return the
value valueo and the associated logical clock MAX∀i, s.t. i∈IQS(logicalClocko,i).

If C is not true, then j performs a variation on QRPC. QRPC as defined
in Section 2 sends and resends a request to different nodes until it receives
a quorum of replies. This variation sends different requests to different nodes
and processes replies until condition C becomes true. In particular, for each
target node i selected, j sends one of three things: (a) if the volume from i has
expired and the object from i is invalid, it sends a combined volume renewal
and object read; (b) if just the volume has expired, it sends a volume renewal;
or (c) if just the object is invalid, it sends an object read. As detailed in the
pseudo-code processVLRenewReply, j processes replies to volume renewal
requests from IQS node i by applying the delayed invalidations included in the
reply (in the same way as applying normal invalidations as described below)
and updating expiresv,i as well as epochv,i. To account for worst-case clock
drift, j conservatively sets expiresv,i = to + L ∗ (1 − maxDrift) where to is the
time that j sent the volume lease renewal request, L is the volume lease length
granted in the reply, and maxDrift is as defined in Section 2. Finally, j sends
i a volume lease renewal acknowledgment (which i uses to clear its delayed
invalidation queue.) As detailed in the pseudo-code processRenewReply, j
processes object renewal replies from i by updating epocho,i, logicalClocko,i, and
valido,i; furthermore, if valido,i is true and logicalClocko,i exceeds the logical
clock of any other valid logical clock for this object, j updates valueo. The
repeated sends and the processing of replies in this QRPC variation ensure that
C eventually becomes true, at which point j returns valueo and the associated
logical clock (logicalClocko,imax) as the result of the read.

On the IQS side, node i in IQS processes volume renewal messages for vol-
ume v from node j as described in the pseudo-code processVLRenewal: i

194 L. Gao et al.

1 processVLRenewReply (Volume v , Sender i ,
2 Lease L , Epoch e , DI di ,
3 RequestorTime tv,0){
4 expiresv,i := MAX(expiresv,i, tv,0 + L ∗ (1 − maxDrift))

5 ;
6 epochv,i := MAX(epochv,i, e) ;

7 // apply delayed i nva l s in the r ep ly
8 ∀k, s.t. invalk,i ∈ di {

9 i f (invalk,i.lc > logicalClockk,i){

10 logicalClockk,i := invalk,i.lc ;

11 validk,i := false ;

12 }
13 }
14 sendMsg (VOLUME RENEW REPLY ACK,
15 v , MAX(di.lc)) ;
16 }
17
18 proc e s s I nva l (Object o , Sender i ,
19 Logi ca lClock lc){
20 //update the l o c a l l o g i c c l ock
21 //and obj e c t s ta tu s
22 i f (logicalClocko,i < lc){

23 logicalClocko,i := lc ;

24 valido,i := false

25 }
26 sendMsg (INVAL ACK, l c) ;
27 }

27 processReadRequest (Object o){
28 // ensure va l id l o c a l ob je c t and volume
29 whi le (! i s Loca lVa l id (o)){
30 // renew in va l i d volume and ob j ec t
31 va l i da t eLoca l (o) ;
32 }
33 // send rep ly to c i l e n t
34 lc := MAX∀i, s.t. valueo,i=true(logicalClocko,i) ;

35 sendMsg (CLIENT READ REPLY, valueo , lc) ;
36 }
37
38 processRenewReply (Object o , Sender i ,
39 Epoch epoch , Log i ca lClock lc ,
40 ObjectValue value){
41 epocho,i := MAX(epocho,i, epoch) ;

42 i f (logicalClocko,i ≤ lc){

43 logicalClocko,i := lc ;

44 valido,i := true ;

45 }
46 i f (valido,i = true &&

logicClocko,i ≥ MAX∀k,k∈IQS(logicalClocko,k)

47){
48 valueo := value ;
49 }
50 }

Fig. 5. OQS server operations (pseudocode) – Dual quorum with volume leases

sends the delayed invalidations delayedv,j and the volume renewal, containing
the epoch number epochv,n and lease length L. i then records the volume ex-
piration time (expiresv,j = L + currentT ime). When i receives a volume lease
renewal acknowledgment for volume v and logical clock lc from j, as detailed
in the pseudo-code processVLRenewalAck, i clears all delayed invalidations
with logical clocks up to lc from delayedv,j. As processObjRenewal indicates,
when i in IQS processes a read of object o from OQS node j, it replies with
valueo and lastWriteLCo and updates lastReadLCo = lastWriteLCo. Note
that lastReadLCo, lastAckLCo,j, and lastWriteLCo allow i in IQS to track
which nodes j in OQS may hold valid object callbacks. Finally, if an IQS server
i wishes to garbage collect delayed invalidation state for j, i advances epochv,j

and deletes the delayed invalidations delayedv,j. Note that if j receives from i
a volume lease with a new epoch, then epochv,i �= epocho,i for all o. So all pre-
viously valid object leases from i immediately become invalid. Thus, if j misses
some object invalidations from i when its volume lease from i has expired, a
volume lease renewal from i can resynchronize j’s state by either (a) updat-
ing valido,i with the missing delayed invalidations or (b) advancing epochv,i by
sending a volume renewal with a new epoch number.

Client write. A client first determines the highest logical clock of any com-
pleted write by calling IQS’s processLCReadRequest. A node i in IQS re-
sponds to such a call for object o by returning the node’s global logical clock
logicalClock. A client then issues the actual write of object o. As detailed in
processWriteRequest in the pseudo-code, if the write’s logical clock exceeds
that of the highest write seen so far (lastWriteLCo), node i stores the write’s
logical clock and value. i then ensures that a write quorum in OQS is unable
to read the old version of the data by performing a variation on QRPC that
“sends” differently to different nodes depending on whether their volume and
object leases are valid. There are three cases for i to consider for node j, object o,

Dual-Quorum Replication for Edge Services 195

and volume v: (a) if i knows o is invalid at j (e.g., lastReadLCo < lastAckLCo,j)
then i need take no action for j; (b) otherwise if o is valid at j but v is invalid at
j (e.g., expiresv,j < currentT ime) then i enqueues an invalidation in delayedv,j

which will be processed at j when it renews its volume; or (c) both the ob-
ject and volume are valid (e.g., lastReadLCo > lastInvalLCo,j) then j sends
an object invalidation containing the write’s logical clock (lastWriteLCo) to j.
In this last case, if j receives an invalidation from i for object o with logical
clock lc, then as the pseudo-code in processInval describes, j applies the in-
validation: if the invalidation is the newest information about o from i (e.g.,
lc > logicalClocko,i) then j updates the logical clock and validity information
({logicalClocko,i = lc; validi = false}). Finally, if i receives an invalidation-
acknowledgment from j for logical clock lc, then as the pseudo-code in process-
ClientInvalAck describes, i updates lastAckLCo,j = max(lastAckLCo,j, lc).

3.3 DQVL Correctness

Because of space constraints, we omit the proof 3 that the system has regular
semantics [16]. In particular, the proof shows (1) a read of o that is not con-
current with any writes of o can return only the value and logical clock from
the completed write of o with the highest logical clock and (2) a read of o that
is concurrent with one or more writes of o can return only (a) the value and
logical clock from the completed write of o with the highest logical clock or (b)
the value and logical clock from some concurrent write of o.

To give intuition for why DQVL provides regular semantics, consider the
invariant: If node j in OQS has from node i in IQS both a valid volume v
(expiresv,i > currentT ime) and a valid object o (epochv,i = epocho,i &&
valido,i) then node i in IQS knows node j in OQS has a valid volume lease
(expiresv,j > currentT ime) and valid object callback (lastReadLCo >
lastAckLCo,j).

For a read that is not concurrent with any writes: This invariant is established
by having j renew its volume v and (or) object o from i. Therefore, j contains
the last completed write valueo on node i when j has both a valid volume v
and a valid object o from node i. Furthermore, j will contain the last completed
write valueo on a write quorum in IQS (iwq) when j has both a valid volume
v and a valid object o from a read quorum in IQS (irq) (because an OQS read
quorum (orq) and an OQS write quorum (owq) intersect by at lease one node).
Because a client write is performed on an iwq, valueo held on j is actually the last
completed client write in the system. Because j can not process any client read
unless it holds both a valid volume v and a valid object o from a read quorum
irq, j guarantees to always return the value valueo of the last completed write
in the system.

For a read that is concurrent with some writes: Assume that the last com-
pleted write has logical clock lc0 and a read r that is concurrent with some
writes with logical clock lc1...lcn (lct > lc0) is sent to an orq. If the invariant is
3 The details are presented in Chapter 4 of Lei Gao’s dissertation available at

www.cs.utexas.edu/users/lgao/papers/dissertation.pdf.

196 L. Gao et al.

established in the orq, r returns the value associated with lc0. Otherwise, the orq
will try to establish the invariant by querying an irq. Because some writes are
being processed in IQS, the irq may return to the orq the value associated with
any of the logical clock o.lc0...o.lcn. Meanwhile, some iwq may send invalidations
with logical clock inval.lc0...inval.lcn to the orq as the result of the concurrent
writes. When the maximum logical clock received in the renew replies is less than
that of any invalidations on any server j of the orq, this server keeps renewing
from some irq. As long as those concurrent writes terminate, j will eventually
receive o.lcn (the highest logical clock among all concurrent writes) from some
irq. Therefore, r may return the value associated with any of the logical clock
lc0...lcn.

4 Evaluation

Through both analytical and experimental evaluations, we compare the availabil-
ity, performance, and communication overhead of DQVL against other popular
replication protocols. We show that DQVL yields a read performance competi-
tive with ROWA epidemic algorithms and overall availability competitive with
the majority quorum protocol.

4.1 Response Time

A prototype has been implemented by using DQVL and other popular repli-
cation protocols, such as primary/backup, majority quorum, ROWA-Async and
ROWA, to compare their response times. The prototype is similar to a
read/write register in that it allows clients to read and write the value of a
single object. But our prototype supports reads and writes on multiple objects
and ensures a consistent view of all objects on every server.

All the prototypes are built in Java. In our prototype experiment, we set the
“LAN” delay between an application client and its closest edge server to 8 ms.
The “WAN” delay between the application client and other edge servers is 86 ms.
And the network delay among edge servers is 80 ms. Because the experiments
focus on how various protocols can minimize WAN delays by taking advantage
of having an edge server near every application client, we assume a constant
processing delay on every edge server for both reads and writes. An application
client sends requests to the system with a specified write ratio. The application
client sends the next request only after it receives the response of the current
request. We run up to nine edge servers and three application clients in the
experiment.

This section compares the response time of five protocols under our target
workloads. We show that DQVL yields better response time than protocols pro-
viding strong consistency guarantees and competitive response time to protocols
with relaxed consistency guarantees.

Dual-Quorum Replication for Edge Services 197

 0

 12.5

 25

 37.5

 50

 62.5

 75

 87.5

 100

 112.5

 125

 137.5

 150

MajorityP/BROWAROWA-AsyncDQVL

R
ea

d
R

es
po

ns
e

T
im

e(
m

s)

 16
 11 13

 92

 108

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Write Ratio

Majority

Dual-Quorum

ROWA ROWA-Async

Primary/backup

(a) 5% write rate (b) varying write rate

Fig. 6. Response time vs. write rate

Write ratio. We first evaluate the response time by fixing the write rate to 5%,
which is the update rate for TPC-W4 profile object, i.e. a workload with a low
update rate and strong access locality. Accesses to the profile object consist of
95% reads on a customer’s purchase history, credit information, and addresses
and 5% writes on a customer’s shipping address when processing an online pur-
chase. When the profile is replicated on edge servers, a customer is routed to the
closest edge server to access its profile information.

As illustrated in Figure 6 (a), DQVL provides at least a six times read re-
sponse time improvement over primary/backup and majority quorum protocols
that are used to provide strong consistency guarantees. DQVL yields compara-
ble read response time to ROWA and ROWA-Async protocols because it allows
most client reads to be processed locally at the client’s closest edge server while
maintaining the same level of consistency guarantees as both primary/backup
and majority quorum protocols by running the dual-quorum protocol between
the closest replica and the rest of the replicas in the system.

Figure 6 (b) is the sensitivity graph illustrating the response time as we
vary the write rate. As writes dominate the workload, DQVL’s response time
approximates that of the majority quorum protocol and becomes higher than
those of primary/backup and ROWA. The main reason is that DQVL clients,
following the same procedure as the majority quorum protocol, need to obtain
the latest timestamp from a read quorum before sending the write to a write
quorum in IQS. Two round trips are required for both the majority quorum
protocol and DQVL while only one round trip is needed for primary/backup
and ROWA protocols. For this reason, the average response times of both DQVL
and the majority quorum protocol are worse than that of ROWA although both
protocols do not require every write to be processed by all nodes.

Access locality. In this subsection, we evaluate response time when some por-
tion of client requests are routed to replicas other than the client’s closest one.
Under normal circumstances, requests are routed to the client’s closest server.
4 TPC-W is a transaction processing benchmark for the web [8].

198 L. Gao et al.

But the unavailability of the closest replica or the geographical movement of the
client can sometimes result in a request being routed to a distant replica.

Figure 7 (a) illustrates the protocols’ response times at our target 5% write
rate and at 90% access locality (i.e. 10% of client requests are sent to distant
replicas and 90% of client requests are sent to the client’s closest replica). The
90% access locality is a pessimistic measure for Internet edge servers given typical
network failure rates below 10% and infrequent mobility by most end users.
DQVL outperforms both primary/backup and majority quorum protocols for
the workload while preserving the same consistency level in cases where client
requests are directed to distant replicas. Note that that ROWA-Async protocol
yields the optimal response time at the cost of serving reads with potentially
inconsistent data when requests are directed to the distant replicas.

In the DQVL protocol, the response time of reads at distant replicas is
higher than the normal response time experienced when reading from the closest
one. As the access locality varies, the overall response time changes accordingly.
Figure 7 (b) indicates the relationship between the access locality and the over-
all response time of five protocols. DQVL suffers when access locality is low
because both reads and writes need to contact replicas in both input and output
quorum systems. But DQVL’s response time keeps improving as the access local-
ity becomes higher. The majority quorum and primary/backup protocols are not
affected by the access locality because neither protocol is designed to take advan-
tage of the access locality in the edge service environment. This graph suggests
that when the access locality is 70% or higher, DQVL should be preferred over
primary/backup or majority quorum protocols for replication systems requiring
low response time and strong consistency guarantees.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

MajorityP/BROWAROWA-AsyncDQVL

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

 57

 26 27

 97

 112

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Local Access Rate

Dual-Quorum

Majority

ROWA

ROWA-Async

Primary/backup

(a) 5% write rate & 90% access locality (b) 5% write rate & varying access locality

Fig. 7. Average response time vs. access locality

4.2 Availability
In this section, we provide analytical models to evaluate the availability of the
dual quorum protocol in comparison with other popular replication protocols.

We define the availability (av) as the number of client requests successfully
processed by the system over the total number of requests submitted to the

Dual-Quorum Replication for Edge Services 199

system during a given time period. A request is rejected by the system when
target consistency semantics can not be satisfied. In the context of this paper,
systems are required to provide regular semantics [16]. For example, if more than
half of the nodes are unavailable in the IQS of a dual quorum system or in a
majority quorum system, a client write will be rejected because the system can
no longer guarantee that a later read can always retrieve the value of this write.
Because the ROWA-Async protocol allows reads to return stale data from nodes
without the latest update, it does not provide regular semantics. Therefore, to
make the comparison fair [32], our analysis of the system implementing ROWA-
Async protocol assumes that the system rejects client reads that would return
stale data.

Figure 8 illustrates the unavailability ofDQVL in comparisonwith other proto-
cols in log scale. The unavailability is computed as 1−av. An unavailability of 10−i

corresponds to the availability of i 9’s. Our simple model assumes a per node un-
availability p = 0.01 and that node failures (including server crashes and network
failures) are independent. Read and write rates are defined as 1 − w and w.

For DQVL, the availability of both read hit and read miss are min(avorq,
avirq). The availability of both write through and write suppress are min(avirq,
aviwq). Therefore, the availability of DQVL is avDQV L = (1 − w) ∗ min(avorq,
avirq) + w ∗ min(aviwq, avirq).5

Figure 8 (a) illustrates the unavailability of our target protocols as we vary
the write ratio and fix the number of replicas to 15 (in both IQS and OQS).
The key result is that DQVL’s availability tracks that of the majority quorum.
Note that the DQVL’s availability measurement is pessimistic because a read can
proceed without contacting any read quorum in IQS if the read quorum in OQS
holds valid volume and object leases; this effect may mask some failures that
are shorter than the volume lease duration. Note that ROWA-Async protocol
provides excellent availability by allowing reads to return arbitrary stale data
to clients. But if we allow no stale reads by the ROWA-Async protocol, its
availability decreases to several orders of magnitude worse than other quorum
based protocols and our DQVL protocol.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 0.2 0.4 0.6 0.8 1

U
na

va
ila

bi
lit

y

Write Ratio

ROWA

ROWA-Async (0 staleness)

ROWA-Async (infinite staleness)

Grid

Majority, Dual Quorum (pessimistic)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 2 4 6 8 10 12 14

U
na

va
ila

bi
lit

y

Number of Replicas

ROWA

Grid

ROWA-Async (0 staleness)

Majority, Dual Quorum (pessimistic)

(a) Unavailability vs. write ratio (b) Unavailability vs. number of replicas

Fig. 8. System unavailability

200 L. Gao et al.

Figure 8 (b) illustrates unavailability as we vary the number of replicas and
fix the write ratio at 25%. The unavailability of DQVL is similar to that of the
majority quorum system. The availability of quorum based protocols, including
DQVL, improves as the total number of nodes increases. The availability of
ROWA and ROWA-Async with no stale reads is insensitive to the number of
nodes in the system.

4.3 Communication Overhead

This section analyzes DQVL’s communication overhead in terms of the number
of message exchanges required in processing a client request. To simplify the
model, the study assumes the weights of all message types are equal. Because of
space constraints, we omit a detailed discussion of the communication overhead
model.5 Figure 9 shows the average number of messages required to process a
client request in log scale. As illustrated in Figure 9 (a), in the worst case where
the write ratio is 50%, DQVL can have high communication overhead as reads
and writes interleave with each other. In this case, most reads are read misses and
most writes are write throughs which involve both IQS and OQS in processing
requests. However, DQVL’s overhead should be comparable to other approaches
in practice. First, workloads that DQVL is designed to face are dominated by
reads. Consecutive reads are likely to benefit from having objects cached on OQS
servers, i.e. the target workloads have a large number of read hits. Second, the
design of DQVL allows us to vary the OQS size to meet read performance goals
while varying the IQS size to balance overhead vs. availability goals. As shown
in Figure 9 (b), once we fix IQS at a moderate size while letting the OQS size
grow, the communication overhead yielded by DQVL is comparable to that of
the majority quorum protocol without requiring many read hits in the workload.

Note that although the dual quorum protocol is described in terms of two
quorum systems, IQS and OQS , an IQS server could physically be on the same
node as an OQS server, reducing the overall communication overhead.

1

10

100

1000

0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Write Ratio

Dual-Quorum-Worst

Majority
Dual-Quorum-Best

ROWA

Grid

1

10

100

1000

5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Number of Replicas

Dual-Quorum-Worst

Majority

Grid

Dual-Quorum-Best
ROWA

Dual-Quorum-Worst (|IQS|=5)

(a) varying write ratio (b) varying the number of replicas

Fig. 9. Communication overhead

Dual-Quorum Replication for Edge Services 201

5 Related Work

In read-one/write-all (ROWA) protocol the “read-one” property yields excellent
read availability and response time. But this protocol has limited write avail-
ability and response time because writes can not complete if any of the replicas
are unavailable. Protocols with the read-one/write-all-async property (ROWA-
Async) [21,24,25] yield better write availability and response time by allowing
writes to be propagated to other replicas asynchronously, but they are only suit-
able for weakly consistent replication because they can not guarantee that reads
will always return the data modified by the latest completed write. A variation
of ROWA [4] performs writes synchronously on the available replicas to provide
better consistency, but it requires membership protocols to maintain a consistent
view of active members.

The primary-backup (or primary-copy) model [2] tolerates network partitions
by only allowing the partition with the primary server to perform writes. How-
ever, the primary server becomes the bottleneck when it can not meet required
levels of availability and performance. Group-communication based techniques,
such as extended virtual synchrony [19,20], enable the election of a new pri-
mary by actively propagating updates to all group members and constantly
running membership protocols to maintain the correct memberships. The new
primary can be selected from active members and the change of the primary
is also broadcast to all active members as well. This class of techniques has
degraded performance in WANs because the membership protocol may always
need to run to constantly include/exclude certain replicas when they are mis-
takenly considered as crashed/recovered due to slow WAN links. In addition, all
primary-server based protocols are inflexibly in favor of reads’ availability and
performance.

Quorum based protocols [11,12,23,27] tolerate network partitions as long as
connected replicas can form a quorum to process requests. However, the reads’
response time and availability of most quorum systems are worse than those
of ROWAA or primary-backup based protocols because reads usually need to
query a larger set of servers. Quorum based protocols may not be desirable
to handle a read-dominated workload, e.g. a workload from interactive online
applications.

Some quorum based techniques use light-weight nodes, such as ghosts [28]
to help form quorums for processing requests. When propagating a write, a
replica only sends to these nodes the timestamp and object ID of the write.
Our dual-quorum invalidation protocol shares the idea of replacing writes with
invalidations when propagating to some replicas. But our use of invalidations
also allows us to reduce the future message propagation to other replicas.

The traditional cache invalidation protocols [13,30] are primarily used in
the client-server model where the server hosts the objects and clients keep
cached copies. Those protocols assume that an object has a home location that
can grant leases to cached copies, but this single centralized server may hurt
availability.

202 L. Gao et al.

6 Conclusion

This paper presents dual-quorum replication, a novel replication algorithm de-
signed to support Internet edge services. Through both analytical and experi-
mental evaluations, we demonstrate that the protocol offers nearly ideal trade-
offs among high availability, good performance, and strong consistency for some
workloads of interest.

Several important issues will be addressed in our future work. It will be
interesting to configure both IQS and OQS to optimize other metrics. For ex-
ample, we can configure the read quorum size in OQS to be larger than one to
avoid timeouts on invalidations. We can also configure IQS as a grid quorum
system [6] to reduce the overall system load. We are also interested in modifying
DQVL to provide different consistency semantics (e.g. atomic semantics [16])
and comparing the cost difference.

References

1. Inc. Akamai Technologies. AkamaiThe Business Internet A Predictable
Platform for Profitable EBusiness. http://www.akamai.com/BusinessInternet/
whitepaper business internet.pdf, 2004.

2. P. Alsberg and J. Day. A Principle for Resilient Sharing of Distributed Resources.
In the 2nd Intl. Conference on Software Engineering, 1976.

3. A. Awadallah and M. Rosenblum. The vMatrix: A Network of Virtual Machine
Monitors for Dynamic Content Distribution. In 7th International Workshop on
Web Content Caching and Distribution, August 2002.

4. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control adn Receivery
in Database Systems. Addison Wesley, 1987.

5. E. Brewer. Lessons from giant-scale services. In IEEE Internet Computing, Ju-
ly/August 2001.

6. S. Cheung, M. Ahamad, and M. Ammar. The grid protocol: a high performance
scheme for maintaining replicated data. In Proceedings of the Sixth International
Conference on Data Engineering, pages 438–445, 1990.

7. S. Cheung, M. Ahamad, and M. H. Ammar. Optimizing Vote and Quorum Assign-
ments for Reading and Writing Replicated Data. IEEE Transactions on Knowlegde
and Data Engineering, 1(3):387–397, September 1989.

8. Transaction Processing Performance Council. TPC BENCHMARK W.
http://www.tpc.org/tpcw/spec/-tpcw V1.8.pdf, 2002.

9. V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Lease: A Strong Consistency
Mechanism for the World Wide Web. In Proceedings of IEEE Infocom, March
2000.

10. L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Improving Availability
and Performance with Application-Specific Data Replication. IEEE Transactions
on Knowledge and Data Engineering, March 2005.

11. H. Garcia-Molina and D. Barbara. How to Assign Votes in a Distributed System.
In Journal of the ACM 32 (4), 1985.

12. D. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh
ACM Symposium on Operating Systems Principles, December 1979.

Dual-Quorum Replication for Edge Services 203

13. C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency. In Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, pages 202–210, 1989.

14. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,
and M. West. Scale and Performance in a Distributed File System. ACM Trans-
actions on Computer Systems, 6(1):51–81, February 1988.

15. D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Con-
sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Proceedings of the Twenty-ninth ACM
Symposium on Theory of Computing, 1997.

16. L. Lamport. On interprocess communications. Distributed Computing, pages 77–
101, 1986.

17. R. Lipton and J. Sandberg. PRAM: A Scalable Shared Memory. Technical Report
CS-TR-180-88, Princeton, 1988.

18. D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large
Distributed Systems. IEEE Transactions on Knowledge and Data Engineering,
pages 187–202, March 2000.

19. D. Malki, K. Birman, A. Schiper, and A. Ricciardi. Uniform Actions in Asyn-
chronous Distributed Systems. In ACM SIGOPS-SIGACT, August 1994.

20. D L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual syn-
chrony. In Proceedings of the Fourteenth International Conference on Distributed
Computing Systems, June 1994.

21. A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer
file system. In Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation, December 2002.

22. A. Nayate, M. Dahlin, and A. Iyengar. Transparent Information Dissemination. In
ACM/IFIP/USENIX 5th International Middleware Conference, October 2004.

23. J. Paris and D. Long. Efficient Dynamic Voting Algorithms. In Int’l Conference
on Data Engineering, 1988.

24. K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update
Propagation for Weakly Consistent Replication. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles, October 1997.

25. Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive
replication in the pangaea wide-area file system. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, December 2002.

26. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-
aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage System.
In Proceedings of the Fifteenth ACMSymposium on Operating Systems Principles,
pages 172–183, December 1995.

27. R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple
Copy Database. In ACM Transactions on Database Systems, pages 180–209, June
1979.

28. R. van Renesse and A. Tanenbaum. Voting with Ghosts. In Proceedings of the
Eighth International Conference on Distributed Computing Systems, pages 456–
462, 1988.

29. A. Whitaker, M. Shaw, and S. Gribble. Scale and Performance in the Denali
Isolation Kernel. In OSDI02, December 2002.

30. J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Support Consistency
in Large-Scale Systems. IEEE Transactions on Knowledge and Data Engineering,
February 1999.

204 L. Gao et al.

31. C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using
Smart Clients to Build Scalable Services. In Proceedings of the 1997 USENIX
Technical Conference, January 1997.

32. H. Yu and A. Vahdat. The Costs and Limits of Availability for Replicated Ser-
vices. In Proceedings of the Eightteenth ACM Symposium on Operating Systems
Principles, 2001.

33. H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous con-
sistency model for replicated services. ACM Transactions on Computer Systems,
pages 239–282, August 2002.

Frugal Event Dissemination in a Mobile Environment�

Sébastien Baehni, Chirdeep Singh Chhabra, and Rachid Guerraoui

School of Computer and Communication Sciences, EPFL

Abstract. This paper describes an event dissemination algorithm that imple-
ments a topic-based publish/subscribe interaction abstraction in mobile ad-hoc
networks (MANETs). Our algorithm is frugal in two senses. First, it reduces the
total number of duplicates and parasite events received by the subscribers. Sec-
ond, both the mobility of the publishers and the subscribers, as well as the validity
periods of the events, are exploited to achieve a high level of dissemination relia-
bility with a thrifty usage of the memory and bandwidth. Besides, our algorithm
is inherently portable and does not assume any underlying routing protocol. We
give simulation results of our algorithms in the two most popular mobility mod-
els: city section and random waypoint. We highlight interesting empirical lower
bounds on the minimal validity period of any given event to ensure its reliable
dissemination.

1 Introduction

The publish/subscribe (pub/sub) communication abstraction is a very appealing candi-
date for disseminating events in mobile ad-hoc networks (MANETs) [1]. In such net-
works, devices are mobile, they may not know each other and might not always be up
and running. With a pub/sub abstraction, remote devices can communicate by playing
two roles: the publishers produce events that are disseminated in the network and sub-
scribers receive events they are interested in. Publishers and subscribers are decoupled
in time, space and flow [2]. This makes the pub/sub abstraction appropriate for loosely
coupled MANET applications.

Whereas the writing of MANET applications is appealing with a pub/sub abstrac-
tion, the effective implementation of such abstraction is not an easy task. In particular,
ensuring a reasonable level of reliability of the dissemination is challenging without
flooding the entire network. Indeed, devices in a MANET can directly broadcast infor-
mation in their geographical neighborhood but need multiple indirections to reach far
away devices. In addition, the devices typically run with a limited amount of memory
and the dissemination algorithm cannot use a large portion of it just for buffering events.
Similarly, the battery power of a device is (dynamically) limited and cannot anyway en-
tirely be devoted to receiving and forwarding events, especially if those are duplicates
or of no interest (i.e., parasite events).

� The work presented in this paper was sponsored both by the European IST PALCOM project
(OFES No 03.0495-1), as well as by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 205–224, 2005.
c© IFIP International Federation for Information Processing 2005

206 S. Baehni, C.S. Chhabra, and R. Guerraoui

This paper presents an event dissemination algorithm that implements a topic-based
pub/sub abstraction in MANETs. Our algorithm is inherently portable and does not
assume any specific multicast routing protocol: we only rely on a standard Media Ac-
cess Control (MAC) layer (e.g., Bluetooth [3] or 802.11 [4]). Events are (1) assumed
to have a validity period that represents the time interval after which they are of no use
and (2) are arranged according to a topic-hierarchy. The originality of our algorithm
lies in its frugality, and this covers two aspects: first, despite the broadcast nature of
the communication medium, we ensure that the subscribers receive a minimal number
of duplicates and parasite events; second, both the mobility and validity periods of the
events are used to enforce the reliability of the dissemination with a thrifty usage of the
memory and bandwidth.

Our algorithm goes through three phases: (1) neighborhood detection based on ex-
changes of heartbeats in surrounding environments; (2) events dissemination after back-
off periods calculated as functions of the frequency of the heartbeats and the number
of events to send; and (3) garbage collection using the validity periods of the events as
well as the number of times they have been propagated (a logical notion of “age”).

We give simulations that highlight empirical lower bounds on the validity period
needed to achieve a certain level of reliability. Interestingly, the lower bounds depend
on the number of devices (publishers/subscribers), their speed, their interests (sub-
scriptions), and the considered mobility models (i.e., random waypoint [5] or city sec-
tion [6]). For instance, in the random waypoint model, an event with a validity period of
180 seconds is received by 95% of the 120 devices which move at 10 meters per second
in an area of 25[km2].

We compare our algorithm with three different flooding variants and show that, for
the same reliability, our algorithm outperforms the alternatives in terms of bandwidth,
duplicates and parasite events. For instance, for disseminating one event of 400 bytes in
the very same previously described environment, we save between 300% and 450% of
the bandwidth and each subscriber receives between 70 and 100 times less duplicates
and between 50 and 90 times less parasite events.

The rest of the paper is structured as follows: Section 2 describes the MANET envi-
ronment we consider. Section 3 gives an overview of the algorithm. Section 4 details the
main elements of our algorithm. Section 5 gives various simulation results. Section 6
discusses related work and concludes our paper.1

2 Model

In this section we present some basic elements of the underlying MANET we con-
sider. We discuss the communication medium, the network topology and the processes
involved in the pub/sub interaction.

Overview. What we call a process in this paper is the piece of software of a mobile
device that is responsible of disseminating/forwarding the events subscribed to by the

1 An implementation of our algorithm for a parking application is given in [7]. The cars leaving
the car parks act as publishers and propagate the information of free parking spots. When
receiving such information, other cars, acting as subscribers, are able to locate the free place
that is closest to their destination.

Frugal Event Dissemination in a Mobile Environment 207

application running on the device. We assume the processes to be mobile (they move
with their host device) and to communicate directly with their immediate neighborhood
(i.e., one-hop neighbors). A process can represent a publisher, a subscriber or both. All
processes run our algorithm directly on top of the MAC layer (e.g., Bluetooth [3] or
802.11 [4]), without relying on any routing algorithm.

Communication Medium. The range of a process is the geographical zone within which
it can directly reach other processes using a simple send communication primitive of
the underlying MAC layer (one-hop). The set of processes in the range of a process
pi is called the neighborhood of pi. A process cannot send a message to only one of
its neighboring processes nor directly send a message to processes multiple hops away
(i.e., no underlying unicast/multicast routing algorithm is assumed).

Network Topology. We assume that the network is completely ad-hoc and no fixed
infrastructure is present. We do not make any assumption on the size of the network
(number of processes), nor on the connection graph of the processes. In particular, the
graph does not need to be fully connected at any given point in time. The processes
are assumed to be mobile. When analyzing our algorithm, we will study the two most
popular mobility models: (1) random waypoint [5] and (2) city section [6], which we
recall below.

– In the random waypoint model, a process moves from its current location to a new
location by randomly choosing a direction and a speed. The speed and direction
are chosen from pre-defined ranges, [speedmin, speedmax] and [0, 2π] respectively.
This model includes pause times between changes in direction and/or speed.

– In the city section model, the mobility area is a street network that typically repre-
sents a section of a city. In this model, the processes follow predefined guidelines
like speed limits, one way lanes, and other traffic laws. Each process begins the
simulation at a predefined point on some street, and randomly chooses a destina-
tion. It is common to consider specific characteristics like pause times, acceleration
and deceleration in certain intersections.

Processes, Topics and Events. Each process pi has a unique identifier i. All processes
have to deal with limited bandwidth, energy and memory. A process can move in and
out of the range of other processes, or crash (or recover), at any time.

Each event eTk

j published by a process pi: (1) has a unique identifier j,2 (2) a validity

period, i.e., val(eTk

j) = t, after which the information carried by the event is of no use
in the system, and (3) is associated to a specific topic, e.g., Tk. Topics are arranged in
a hierarchy (e.g., .grenoble.conferences.middleware) and a subscriber that subscribes
to a specific topic (e.g., .grenoble.conferences) is expected to receive events of this
topic and all its subtopics (e.g., .grenoble.conferences.middleware). The root topic of
the topic tree is denoted by the dot (.) sign. An event of a topic, which a process has not
subscribed to, is called a parasite event for that process.

2 In the paper, we assume, without loss of generality, that the size of the event identifier is smaller
than the size of the data carried by the event.

208 S. Baehni, C.S. Chhabra, and R. Guerraoui

3 Algorithm Overview

We give here an overview of our algorithm before detailing it in subsequent sections.
Our algorithm goes through three phases: (1) neighborhood detection, (2) event dissem-
ination and (3) garbage collection. We first introduce these phases and then give a short
example to illustrate their execution.

Phase 1: Neighborhood detection. The processes periodically exchange heartbeat mes-
sages, each contains the following elements: (1) the identifier of the process, (2) a list
of its current subscriptions (i.e., a list of topics Ti, Tj , ..., Tn)3 and, (3) its current speed
(this information is only useful for optimization purpose and is not mandatory). Each
process pi uses the heartbeat messages it receives to construct a dynamic one-hop neigh-
borhood table, containing the identifiers of the processes in the neighborhood along with
their subscriptions and their current speed (if available). Only the processes whose sub-
scriptions match with the ones of pi, are kept in pi’s table. Other one-hop neighbors
are of no interest to pi. The neighborhood table is continuously garbage collected and
updated (depending on the periodicity of the heartbeats). If the speed information of
the processes is available (for example with the help of a tachometer), the process can
adjust the periodicity of the heartbeats to match to the dynamicity of its environment.
Otherwise, this periodicity is set to a static value (see Section 4.2).

When processes detect each other, they exchange a list of identifiers of the events
they have kept after receiving them and which are still valid. When receiving event
identifiers, each process checks if its neighbor is interested in an event it has not already
received (i.e., needs the event). In this case, the processes proceed to the dissemination
phase (see below). Sending the events identifiers instead of the events themselves pre-
serves network bandwidth and CPU processing power. Indeed, it might happen that a
process pi has already received the same events as process pj . Consequently, it makes
no sense for pj to send these events to pi again.

Phase 2: Dissemination. When a process detects that one of its neighbor needs an event
(when comparing the list of events identifiers it receives with its own list of events), it
broadcasts the required event to its neighborhood together with the list of its interested
neighbors, after a back-off period (see Section 4.2).

After receiving the event, the neighboring processes of the sender might decide to
propagate the event if they know other processes, in their neighborhood, that have not
yet received it and that are interested in it (see Section 4.3). If the processes that receive
the event have subscribed to the topic of this event and have not received it yet, they
deliver it to the application and store it, until it is garbage collected. A process that
receives an event it is not interested in (parasite event), simply drops it. This way, we
minimize the burden induced by parasite events and save valuable memory.

Phase 3: Garbage collection. Throughout the two previous phases of our algorithm,
we mainly use two main data structures (see Section 4.1) at every process.4 The first
one is used for storing the list of neighbors that shares the same subscriptions as the
process itself (neighborhood table). The second one is used for storing the events. The

3 This list can change at any point in time with respect to the interests of the process.
4 Other data structures are involved in the algorithm, but those cannot induce memory problems.

Frugal Event Dissemination in a Mobile Environment 209

neighborhood table is constantly updated (based on the periodicity of the heartbeats)
and its size is bounded.5

The data structure used to store the events can grow rapidly. This is because the
total number of events published in the system is unbounded and the processes have to
store them until their validity period expires. It can thus happen that a process receives
an event and cannot store it because its memory is full. Our garbage collection scheme
collects, every time a new event has to be stored and if the memory is full, the events
according to their validity period and the number of times they have been propagated
(sent/forwarded) by the processes.

Illustration. Figure 1 depicts a simple scenario illustrating the three phases of our al-
gorithm. We consider a hierarchy made of three topics: T0, T1 and T2; T1 is a subtopic
of T0 whereas T2 is a subtopic of T1. Three processes, p1, p2 and p3 are involved: p1
has subscribed to T1, p2 has subscribed to T2 and p3 has subscribed to T0. Three events
are published in the system: eT1

3 , eT2
4 and eT2

5 . We assume that p1 has already received
eT1
3 and p2 has already received eT2

4 and eT2
5 .

In part I of Figure 1, processes p1 and p2 become neighbors and hence know their
common subscriptions. They then exchange the identifiers of the events corresponding
to the topics they have commonly subscribed to. As a consequence, p2 sends to p1
events eT2

4 and eT2
5 (as T1 is a super-topic of T2).

In part II of Figure 1, all three processes become neighbors, and exchange their
event identifiers: p1 and p2 realize that p3 misses events, eT1

3 , eT2
4 and eT2

5 . As both p1
and p2 have events to send, they both send them after a back-off period. It is important
to notice that, because p1 has more events to send than p2, p1 has a smaller back-off
period than p2 (see Section 4.3).

In part III of Figure 1, p1 moves on, but p2 and p3 still remain in range. As p2 was
in the range of p1 when it sent the events list, p2 heard the events that p1 sent for p3.
Now, p2 and p3 know that they do not have to exchange events anymore.

idinterests
3T0.T1 3T0.T1

T0.T1.T2 4,5

interests id
4,5T0.T1.T2

interests id

T0

interests id

p3

p2

p1

p2

p3

3

id
T0

4,5

interests

T0.T1

T0.T1.T2

4,5T0.T1.T2

interests id

4,5T0.T1.T2

interests id

p1

p2

p2

p1 p1 p2

p3

p2

p3

I II III

Fig. 1. Illustration of our algorithm

5 The upper bound corresponds to the maximum number of neighbors a process can handle. This
bound depends on the structure of the network and on the amount of memory of the processes.

210 S. Baehni, C.S. Chhabra, and R. Guerraoui

4 Algorithm Description

In this section we first detail the data structures involved in the algorithm. Then we de-
scribe the neighborhood detection, the dissemination and finally the garbage collection.

4.1 Data Structures

As illustrated in Figure 4, we consider a list of subscriptions for every process pi

(pi.subscriptions), a neighborhood table (neighborhoodTable) and an event table
(eventsTable). These two tables are detailed below. There is also the list containing the
events to send (eventsToSend). The different parameters used, as listed in Figure 4, are:
the heartbeat delay (HBDelay), the neighborhood garbage collection delay (NGCDelay)
and the back-off delay (BODelay).

Subscriptions of a process. The different subscriptions of every process pi are stored in
the list pi.subscriptions. We assume, without loss of generality, that the size of this list
is bounded as the number of subscriptions of a process is usually limited in the topic-
based scheme. In this scheme, a process only has to subscribe to a topic to receive all
the events regarding this topic and all its subtopics. A process can change the list of its
subscriptions at any time.

Neighborhood Table. Figure 2 illustrates the neighborhood table of a process. The first
column of this table stores the identifiers of the neighbors of a process. The second
column stores the topics those processes have subscribed to. The third column stores
the identifiers of the events the neighbors have received, the fourth column contains the
speed of the neighbors (this column is not mandatory and the speed of the processes is
only used for optimization purpose) and the last column contains the time when the en-
try has been stored/updated into the table. This last entry is used for garbage collection
purpose. We discuss in more detail the use of the neighborhood table in Section 4.3 and
present its garbage collection algorithm in Section 4.4.

Event Table. Each process stores an event table as shown in Figure 3. This table con-
tains a list of topics the process has subscribed to, together with the list of events this
process has received and/or published. These events are stored according to the topic
hierarchy (from the partial topic tree information the process has). Each event has a
unique identifier (id), a validity period (validity), a counter (counter), a topic (topic)

Events
ID

20 [mps]

– [mps]

1 [mps]

Speed Store Time

07:45:23

07:43:20

07:44:45

Topics

1, 2T0

T0.T4 210

10T0.T1.T2

Neighbors

32

1

542

Fig. 2. Neighborhood table

Validity CounterTopics Events

5

1

2

12

100 [s]

60 [s]

20 [s]

120 [s]

eT2
10

eT2
5

eT3
3

eT3
143

T0.T1.T2

T0.T1.T3
T2

Topic Hierarchy

T4T1

T3

T0

Fig. 3. Event table

Frugal Event Dissemination in a Mobile Environment 211

and its internal data information (data: this information is not shown in Figure 3).
The validity period expresses the time interval after which the event can be removed
from the system. The counter represents the number of times an event has been for-
warded; it is used, together with the validity period, in the garbage collection phase (see
Section 4.4).

The events to send. This structure contains the events a process sends to its neighbors.
This structure can be, at most, as big as the event table (if a process has to send all its
events to its neighbors). The structure is reset each time the events are sent (i.e., after
each back-off).

4.2 Neighborhood Detection

Before detecting neighbors, the processes have to subscribe to topics they are inter-
ested in. The subscription/unsubscription sub-protocol is depicted in Figure 5. Basi-
cally, when a process wants to subscribe to a specific topic, it adds this topic to its list
of subscriptions and starts the heartbeat and neighborhoodGC6 tasks. A process that
wants to unsubscribe to a topic, removes this topic from its list of subscriptions. When
the list of subscriptions is empty, the heartbeat and neighborhoodGC tasks are stopped.

For each process pi

1: {The subscriptions of the process}
2: pi.subscriptions = ∅;
3: {The neighborhood table }
4: neighborhoodTable = ∅;
5: {The event table}
6: eventsTable = ∅;
7: {The structure containing the events to

send}
8: eventsToSend = ∅;
9: {The default heartbeat delay}
10: HBDelay = 15000;
11: {The default neighborhood garbage col-

lection delay}
12: NGCDelay = HBDelay*HB2NGC;
13: {The default back-off delay}
14: BODelay = HBDelay

HB2BO ;

Fig. 4. Data structures

For each process pi

1: {The subscription algorithm}
2: upon SUBSCRIBE(Tk) do
3: pi.subscriptions = pi .subscriptions ∪ Tk;
4: if (HEARTBEAT not started) then
5: start HEARTBEAT;
6: end if
7: if (NEIGHBORHOODGC not started) then
8: start NEIGHBORHOODGC;
9: end if
10: end upon

11: {The unsubscription algorithm}
12: upon UNSUBSCRIBE(Tk) do
13: pi .subscriptions = pi .subscriptions \ Tk;
14: if (pi .subscriptions == ∅) then
15: stop HEARTBEAT; stop NEIGHBORHOODGC;
16: end if
17: end upon

Fig. 5. Subscription, unsubscription

The heartbeats of a process carry the list of subscriptions of the process (e.g., “T0,
T1,..., Tn”) along with its process identifier and its current speed. As we pointed, the
information about the speed of the processes is not mandatory and is only used as an
optimization. For instance, this information can be used to tune the number of heartbeat
messages according to the speed of the process and the speed of its neighbors. In a

6 The neighborhoodGC task is used for garbage collecting the entries of the neighbors’ identities
from the neighborhood table; it is presented in Section 4.4.

212 S. Baehni, C.S. Chhabra, and R. Guerraoui

dynamic environment, the delay between two heartbeats could be set to a shorter period
than in a more static one.

After receiving the heartbeat messages, each process builds a view of its neighbor-
hood, together with a list of their subscriptions. If two neighboring processes do not
share any common topics, these topics are not stored in their respective neighborhood
table. The neighborhood information of a process is stored in a specific table (Figure 2)
and updated accordingly (using the UPDATENEIGHBORINFO() method7).

For each process pi

1: {The heartbeat task}
2: task HEARTBEAT

3: SEND(i,pi .subscriptions, [currentSpeed]);
4: end

5: {When receiving a heartbeat message}
6: upon RECEIVE(j,subscriptions,[speed]) do
7: if subscriptions ∈ pi .subscriptions then
8: RAISE new neighborEvent(j,subscriptions);
9: if (j /∈ neighborhoodTable) then
10: neighborhoodTable ∪

(j,subscriptions,[speed],currentTime);
11: else
12: UPDATENEIGHBORINFO(j,

subscriptions,[speed],currentTime);
13: end if
14: end if
15: COMPUTEHBDELAY(neighborhoodTable);
16: COMPUTENGCDELAY();
17: end upon

For each process pi

18: {A new neighbor has been detected}
19: upon new neighborEvent(j,subscriptions) do
20: if subscriptions ∈ pi.subscriptions then
21: SEND(i,GETEVENTSIDS(subscriptions,

eventsTable));
22: end if
23: end upon

24: {Reception of a list of events identifiers}
25: upon RECEIVE(j, eventsIDs) do
26: if j ∈ neighborhoodTable then
27: for all eventID ∈ eventsIDs do
28: UPDATENEIGHBOREVENTINFO(j, eventID,

currentTime);
29: end for
30: RETRIEVEEVENTSTOSEND();
31: end if
32: end upon

Fig. 6. Neighborhood detection

If the subscriptions of a process match the ones of its neighbor, they then exchange
the event identifiers they have subscribed to (the event identifiers are retrieved via
the GETEVENTSIDS() method8). Once those event identifiers are received, the pro-
cess updates its neighborhood table with those and checks if it has to send events to
its neighbors (via the RETRIEVEEVENTSTOSEND() method, described in Section 4.3).
The identifiers of the events are exchanged instead of the actual events to minimize the
duplicate messages. It may happen that a process and its neighbors have the same set of
events; in this case, there is no need for them to exchange the events.

The computation of the time intervals for (1) the heartbeat messages, (2) the neigh-
borhood garbage collection and (3) the back-off period are determined at the reception
of the heartbeat messages, using respectively the following methods: (1) COMPUTE-
HBDELAY(), (2) COMPUTENGCDELAY() and (3) COMPUTEBODELAY(). Figure 8
describes an implementation of these methods. Parameter x represents a variable the

7 This method is omitted for space limitations. It simply consists of updating the information
(i.e., subscriptions, speed and store time) corresponding to the right neighbor.

8 Again, this method is omitted for space limitations. It consists in retrieving, from the
eventsTable, the event identifiers of the received events corresponding to a certain topic.

Frugal Event Dissemination in a Mobile Environment 213

For each process pi

1: {Computation of the events to send}
2: function RETRIEVEEVENTSTOSEND()
3: eventsToSend = ∅;
4: for all neighbor ∈ neighborhoodTable do
5: if neighbor.subscriptions ∈ pi .subscriptions then

6: for all e
Tj
k ∈ eventsTable do

7: if Tj ∈ neighbor.subscriptions &&
k /∈ neighbor.eventsIDs &&

val(e
Tj
k) < currentTime then

8: eventsToSend ∪ e
Tj
k ;

9: end if
10: end for
11: end if
12: if eventsToSend �= ∅ then
13: COMPUTEBODELAY();
14: if backOff not started &&

BODelay != null then
15: start backOff with computed BODelay;
16: end if
17: end if
18: end for
19: end

Fig. 7. Event retrieval

For each process pi

1: {Computation of the hearbeat delay}
2: function COMPUTEHBDELAY(neighborhoodTable)
3: averageSpeed =

AVERAGESPEED(neighborhoodTable);
4: if averageSpeed �= null then
5: HBDelay = x

averageSpeed ;

6: end if
7: HBDelay = MIN(HBDelay, heartbeat upper bound);

8: HBDelay = MAX(HBDelay, heartbeat lower bound);
9: end

10: {Computation of the neighborhood
garbage collection delay}

11: function COMPUTENGCDELAY()
12: NGCDelay = HBDelay*HB2NGC;
13: end

14: {Computation of the back-off delay}
15: function COMPUTEBODELAY()
16: if BODelay == null then
17: BODelay =

HBDelay
HB2BO∗sizeof(eventsT oSend) ;

18: else
19: BODelay = MIN(BODelay,

HBDelay
HB2BO∗sizeof(eventsT oSend));

20: end if
21: end

Fig. 8. Computing delays

programmer can use to tune the heartbeat delay with respect to the average speed of the
processes (for instance, x can represent the propagation radius of the wireless device).
Parameters HB2BO, respectively HB2NGC, represent the factors by which the heartbeat
delay is divided, respectively multiplied, in order to set the periodicity of the back-off
delay, respectively the neighborhood garbage collection delay.

4.3 Dissemination

Our dissemination scheme algorithm is described in Figure 9. Basically the process
uses the PUBLISH() method to send the event to the neighboring processes if at least
one of those has subscribed to the topic of the event. In calling this method, the process
updates the neighbor information in its neighborhood table (via the UPDATENEIGH-
BOREVENTINFO() method9).

As soon as a process receives an event, it updates its neighborhood table (using
the UPDATENEIGHBOREVENTINFO() method) with the list of neighbor identifiers it
received with the events. The process then checks if it has subscribed to the topic of
that event and if so, it delivers it to the application and adds it to its event table (after
checking that the event table is not full, otherwise it calls the GARBAGECOLLECT()

9 For space limitation, this method is not shown in the algorithm; it basically consists in updating
the list of the presumed received events of a neighbor with the event identifier given as a
parameter.

214 S. Baehni, C.S. Chhabra, and R. Guerraoui

method). If the process has not subscribed to the topic of the event, it simply drops it.
Once it has delivered the event to the application, the process checks if it has to forward
its events to its neighbors (i.e., RETRIEVEEVENTSTOSEND() method, Figure 7).

If a process pi finds out that some of its neighbors have subscribed to the topic of the
still valid events pi owns, pi starts a back-off period (the back-off delay is determined by
the function COMPUTEBODELAY()10). Taking into account the events that have been
received by the processes reduces the number of useless retransmissions and hence
prevents duplicates and saves bandwidth.

Once the back-off delay expires, the events to send are recomputed (in case the
neighborhood of the process has changed between the beginning and the end of the
back-off or if the validity period of an event expires) and the new events are sent, to-
gether with a list of its neighbor identifiers. The sending process then updates its neigh-
borhood table and increments the counter of each event that has just been sent.

4.4 Garbage Collection

We present here how the different data structures are garbage collected in order to con-
serve the sparse memory optimally.

Subscription list of a process. As stated in Section 4.1, we can assume that the size of
this data structure is limited and the information it contains is constantly updated when
the process decides to subscribe or unsubscribe to specific topics.

Neighborhood table. Each time the neighborhood garbage collection delay expires, the
process identities whose store times have expired are collected from the neighborhood
table (see Figure 10). As this task is executed periodically and as we assume that the
total number of neighbors is limited, the size of the table is bounded.

Event table. Each time a new event has to be stored in the eventsTable, a check to test if
the memory is full is done. If the check succeeds, one event, whose validity period has
expired, is garbage collected. If all the events in the eventsTable are still valid, we run a
garbage collection algorithm based on the notion of validity period and on the number
of times an event was propagated. This algorithm ensures that events with high validity
periods that have been propagated several times are garbage collected before events
with short validity periods that have never been forwarded. Equation 1 captures the
way we collect the events, based on: (1) their validity period (i.e., val(eTj

k)) and (2) the

number of times an event has been forwarded (i.e., fwd(eTj

k)). The garbage collection

function for an event e
Tj

k is given as (∀val(eTj

k), fwd(eTj

k) ∈ N
∗):

gc(eTj

k) =
val(eTj

k)

(fwd(eTj

k) + val(eTj

k))
(1)

For instance, an event with a validity period of 2[min] that has been forwarded less
than 2 times, will be collected after an event with a validity period of 5[min] that has
been forwarded 5 times.
10 An implementation is given in Figure 8. In this implementation, the back-off delay depends on

the heartbeat delay and the total number of events to send.

Frugal Event Dissemination in a Mobile Environment 215

For each process pi

1: {Executed when the back-off expires}
2: upon backOff expiration do
3: BODelay = null;
4: if eventsToSend �= ∅ then
5: SEND(i, eventsToSend, neighborsIDs);
6: eventsIDs = GETEVENTSIDS(eventsToSend);
7: for all neighborID ∈ neighborhoodTable do
8: for all id ∈ eventsIDs do
9: UPDATENEIGHBOREVENTINFO(neighborID,

id);
10: end for
11: end for
12: INCREMENT(eventsToSend, eventsTable);
13: end if
14: end upon

15: {Reception of a list of events}
16: upon RECEIVE(j, events, neighborsIDs) do

17: for all e
Tj
k

∈ events do
18: for all neighborID ∈ neighborsIDs do
19: UPDATENEIGHBOREVENTINFO(neighborID,

k);
20: end for
21: if Tj ∈ pi.subscriptions &&

e
Tj
k /∈ eventsTable then

22: interested = true; STOP backOff timer;
23: if eventsTable is full then
24: garbageCollect(eventsTable);
25: end if
26: eventsTable ∪ e

Tj
k ;DELIVER(e

Tj
k);

27: end if
28: end for
29: if interested then
30: RETRIEVEEVENTSTOSEND();
31: end if
32: end upon

For each process pi

33: {Publication of a new event e
Tj

k }
34: function PUBLISH(i, e

Tj
k

, neighborsIDs)
35: for all neighbor ∈ neighborhoodTable do
36: if neighbor.subscriptions ∈

pi .subscriptions then
37: interested = true; break;
38: end if
39: end for
40: if interested then
41: SEND(i, e

Tj
k

, neighborsIDs);
42: for all neighborID ∈ neighborhoodTable do
43: UPDATENEIGHBOREVENTINFO(neighborID,

k);
44: end for
45: end if
46: if eventsTable is full then
47: garbageCollect(eventsTable);
48: end if
49: eventsTable ∪ e

Tj
k ; DELIVER(e

Tj
k);

50: if (NEIGHBORHOODGC not started) then
51: start NEIGHBORHOODGC;
52: end if
53: end

Fig. 9. Dissemination

For each process pi

1: {Garbage collection of the neighborhood
table}

2: task neighborhoodGC
3: for all neighbor ∈ neighborhoodTable do
4: if currentTime - NGCDelay > neighbor.storeTime

then
5: REMOVE(neighbor,neighborhoodTable);
6: end if
7: end for
8: end

For each process pi

9: {Garbage collection of the events table}
10: function garbageCollect(eventsTable)
11: gc = null;

12: for all e
Tj
k ∈ eventsTable do

13: if val(e
Tj
k) > currentime then

14: gc = e
Tj
k ; break;

15: end if

16: if
val(e

Tj
k

)

(fwd(e
Tj
k

)+val(e
Tj
k

))
≤

val(gc)
(fwd(gc)+val(gc)) then

17: gc = e
Tj
k ;

18: end if
19: end for
20: REMOVE(gc,eventsTable);
21: end

Fig. 10. Garbage collection

216 S. Baehni, C.S. Chhabra, and R. Guerraoui

The events to send. As discussed in Section 4.1, the data structure capturing the events
to be sent does not need to be garbage collected as it is reset every back-off period.
Moreover, its size depends on the size of the event table, but as this data structure is
efficiently garbage collected, the size of the events to send list cannot grow indefinitely.

5 Performance

We present here performance results obtained from simulating our algorithm, according
to the two popular mobility models. We first describe the simulation setting and then
give the actual performance measurements.

5.1 Environment

Our algorithm was simulated using Qualnet 3.7 [8], directly on the 802.11b MAC layer,
in the two different mobility models: (1) random waypoint [5] and (2) city section [6].

Configuration Parameters. The size of the events is set to 400 bytes, x to 40, HB2BO to
2 and HB2NGC to 2.5. The heartbeat upper bound period is set to 1[s] for the random
waypoint model and varies in the city section model. The mobility of the processes
and the validity periods of the events vary (see the following performance measurement
configuration). The choice of these values (i.e., x, HB2BO and HB2NGC) reflects a
trade off between the overall number of messages sent (heartbeats, events identifiers,
and actual events) and the reliability of the dissemination. For the random waypoint
model, the data were gathered after the first 600 seconds of the simulation time (due to
the high variability in the neighborhood percentage during these first seconds [9]).

Random Waypoint in Qualnet. In our experiments, the pause time is always set to 1[s].
The maximum and minimum speed vary during the entire set of experiments, see Sec-
tion 5.2. Moreover, in this model, we have conducted our experiments on a virtual area
of 25[km2], populated randomly with 150 processes. Regarding the overall settings
of the simulator, a “standard” 802.11b ad-hoc network was used. The transmission
power is 15[db] for all the rates 1,2,6 and 11[Mbps], whereas the reception sensitiv-
ity is -93[db], -89[db], -87[db] and -83[db] for 1,2,6 and 11[Mbps] respectively.11 The
channel frequency is 2.4[Ghz] and uses a statistical propagation model, with a limit of -
111[dbm] and a two ray path loss model. Each process has an omni-directional antenna
with an efficiency of 0.8.

City Section in Qualnet. For this model, the map of our campus at EPFL was chosen
and a specific mobility model for 15 processes was created. The EPFL campus cov-
ers 1200x900[m2]. The processes do not walk/drive randomly on each of the roads.
The real traffic conditions were considered (e.g., some roads are more often used than
others). The overall settings of the simulator are the same as for the random waypoint,
except for the reception sensitivity which is -65[db] for all rates (1,2,6 and 11[Mbps])12.
We have adapted these values to simulate the real radio range of a city.

11 This corresponds to a radio range of a sphere which radius is 442[m], 339[m], 321[m] and
273[m] respectively.

12 This corresponds to a radio range of a sphere which radius is 44[m].

Frugal Event Dissemination in a Mobile Environment 217

5.2 Results

Random Waypoint Model. We conducted the simulation for different speeds: 0[mps],
1[mps], 5[mps], 10[mps], 20[mps], 30[mps] and 40[mps]. All the simulations were run
30 times with different initialization (i.e., seed) values and the results presented in each
case were averaged over the 30 obtained values. One event is published in each case.

In the first experiment, the validity period of the events and the speed of the pro-
cesses were considered. The plain and dashed graphs of Figure 11 represent reliability
values obtained when only 20% and 80%, of the processes, have respectively subscribed
to the topic of the event. We can see that, when few processes have subscribed to that
topic (20%), it is very difficult to achieve high reliability, unless if the processes move at
high speed. We can explain this by the fact that the area is far too big with respect to the
number of subscribers. If only 20% of them have subscribed to the topic of the event, we
end up with only 30 processes for a region of 25[km2]; the network is too sparse. How-
ever, when more processes have subscribed to the topic (80%), we can achieve a fairly
high reliability with different validity periods and different speeds of the processes. For
example, processes moving at 10[mps] and publishing events with a validity period of
180[s] have the same 95% reliability than processes moving at 30[mps] and publishing
events with a validity period of 90[s]. Interestingly, under some lower bounds of valid-
ity period, it is possible, to achieve a specific reliability given different mobility models
and speeds of the processes.

20 %
80 %

0 5 10 15 20 25 30 35 40 20 40 60 80 100120
140160

180

1

0.5

R
el

ia
bi

lit
y

Speed [mps] Validity [s]

Fig. 11. Probability of event reception as a
function of the validity period, the speed of the
processes and the number of subscribers

Interest [%]

1-40 [mps]

40 60 80 100 120 140 160 180 20 30 40 50 60 70 80 90 100

20
0

0.5

1

R
el

ia
bi

lit
y

Validity [s]

Fig. 12. Probability of event reception as a
function of the validity period and the num-
ber of subscribers, in a heterogeneous mobile
environment

In Figure 12, we depict the same experiments as before, except that now we have a
more heterogeneous mobile network, in which the processes randomly move between
1[mps] and 40[mps]. With a low number of subscribers, the reliability is low also. How-
ever, even if only 60% of the processes have subscribed to the topic of an event with
a validity period of 120[s], all of them receive the event. We can relate these results
to the ones of a network in which all processes move at a speed of 20[mps]. Indeed,
according to our results, the overall reliability depends on the validity period and the
average speed of the processes in the network, rather than on the specific speed of each
process.

218 S. Baehni, C.S. Chhabra, and R. Guerraoui

City Section Model. In this model, all 15 processes drive at a given speed which is
the speed limit of the road they are currently driving on (which is between 8[mps] and
13[mps]) and it may happen that they stop for a while for several reasons (red light,
parking etc.). In all experiments, all processes, in turn, become the original publisher.
This basically means that the original publisher is not always the same process but
changes for each experiment. Again, all experiments were conducted 30 times and the
results we present are an average over these 30 times for the 15 publishers.

In the first set of experiments, the importance of the heartbeat period over the overall
reliability was measured. In such a network, with no upper bound set, the processes send
heartbeats every 4[s] (which is the fraction of x over the average speed of 10[mps]).
Figure 13 depicts the different results obtained when varying the heartbeat upper bound
period from 1[s] to 5[s], where all the processes have subscribed to the topic of the
event and where the validity period of this event is 150[s].

We can notice that there is no real difference in reliability between the heartbeats
sent every 1[s] or 2[s]. However, between 1[s]-2[s] and 5[s], we have a loss of 22%
reliability. Interestingly, having heartbeats every 4[s] is better than having them every
3[s]. This surprising result is explained by the fact that, with this heartbeat period of
3[s], the messages sent by the processes are more likely to collide.

In the second set of experiments, the heartbeat upper bound period was set to 1[s]
and the number of subscribers varied from 20% to 100%. Interestingly, these results are
not comparable with the ones obtained in the random waypoint model. Indeed, even if
only 20% of the processes have subscribed to the topic of the event, almost 60% of them
receive the event which is better than the previous model. This can be explained by the
fact that, in this model, the processes follow specific paths defined according to specific
rules, so they are more likely to become neighbors than in the random waypoint model,
especially if certain roads have more importance than others (which was the case in our
simulations). We also point out the importance of the path taken by the processes when
we compare the reliability achieved by each of the publishers. In Figure 15, we depict
the maximum difference between the minimum reliability and the maximum reliability
between the publishers, for different percentage of subscribers. There can be a huge
difference of reliability between the publishers that originally publish the event and this
difference is due to the path taken by the publisher.

In the third set of experiments, the heartbeat upper bound period was set to 1[s]
and the validity period of the events varied between 20[s] and 150[s]. In Figure 16,
we can see that the validity period of the event has a crucial importance on the overall
reliability. This comes from the fact that, in this specific model, we cannot distinguish
where and when the processes become neighbors. In the random waypoint model, the
processes exchange information uniformly during the simulation: there is no real hot-

Heartbeat upper bound period [s]

1 2 3 4 5
76.9% 75.1% 65.5% 69.9% 54.0%

Fig. 13. Probability of event reception as a
function of the heartbeat period

Subscribers [%]

20% 40% 60% 80% 100%
58.1% 59.7% 62.5% 68.6% 76.9%

Fig. 14. Probability of event reception as a
function of the number of subscribers

Frugal Event Dissemination in a Mobile Environment 219

Subscribers [%]

20% 40% 60% 80% 100%
40.9% 44.7% 47.9% 53.9% 60.0%

Fig. 15. Difference of reliability between the
processes

Event Validity Period[s]

25 50 75 100 125 150
11% 27% 44% 52% 69% 77%

Fig. 16. Probability of event reception as a
function of the event validity period

spot where the processes meet. On the contrary, in the city section model, the processes
are more likely to meet and exchange their information at social meeting points, hence
the huge differences in reliability.

Frugality. To quantify the frugality of our algorithm, it was compared with three alter-
native approaches: (1) simple flooding, (2) simple flooding while taking into account the
interests of the subscriber (interests-aware flooding) and (3) simple flooding in taking
into account the interests of both the subscriber and its neighbors (neighbors’ interests
flooding). In (1), an event is sent every second by a process to all its neighbors which
in turn, irrespective of their interests, propagates it with the same technique. In (2), the
processes, at every one second interval, propagate only the events they are interested in.
In (3), a process propagates an event to its neighbors only if the process itself and its
neighbors are interested in the event. We compared four different measurements: (1) the
bandwidth used per process, (2) the number of events sent per process, (3) the number
of duplicates received per process and (4) the number of parasite events received per
process.

All of the following measurements were averaged over 30 experiments and have
been done using the random waypoint model described above with the speed of the
processes set to 10[mps] (in order to compare the approaches with the same reliability
degree)13. The size of one heartbeat was set to 50 bytes and the size of one event iden-
tifier to 128 bits. We varied the number of subscribers from 20% to 100% as well as the
number of events from 1 to 20 (the size of one event has been set to 400 bytes).

Figure 17 shows the bandwidth used per process during a simulation of 180[s].14

Our algorithm consumes less bandwidth than the other approaches in every cases, ex-
cept if the sum of the events’ sizes is lower than 1,5[kB] and the number of interested
processes is less or equal to 20%. In this very special case, the second alternative is
better. However, our algorithm is much less sensitive to the size of the events as we
send very few of them (see Figure 18). Our algorithm sends between 50 to 100 times
lesser events compared to the other alternative approaches. Consequently, if one event
is of size 1.6[kB] instead of 400 bytes, we outperform every other alternatives, even for
a small number of events published and a small number of subscribers.

Figure 19 depicts the number of duplicates received per process during the 180[s].15

Our algorithm outperforms approach (2) by a factor varying from 50 up to 80 and
approaches (1) and (3) by a factor between 80 to 700. On the worst case, when all the

13 Please note that approach (1) as always 100% reliability, due to its inherent behavior.
14 Approach (3) is not shown in this figure because of the high bandwidth it consumes per process

(more than 1[MB]).
15 Again, in Figure 19, we do not show approach (1) and (3) in order to clearly depict the distinc-

tion between our algorithm and the best alternative approach (2).

220 S. Baehni, C.S. Chhabra, and R. Guerraoui

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 20
 40

 60
 80

 100

 0
 100
 200
 300
 400
 500
 600
 700
 800

Bandwidth [kb]

Our algorithm
Interests-Aware Flooding

Simple Flooding

Events to publish

Interests [%]

Bandwidth [kb]

Fig. 17. Bandwidth usage per process as a
function of the number of events to publish and
the number of subscribers

 0 2 4 6 8 10 12 14 16 18 20 20 40 60 80 100

 0

 500

 1000

 1500

 2000

Events sent

Our algorithm
Interests-Aware Flooding

Simple Flooding

Events to publish

Interests [%]

Events sent

Fig. 18. Number of events sent per process as
a function of the number of events to publish
and the number of subscribers

 0 2 4 6 8 10 12 14 16 18 20 20
 40

 60
 80

 100

 0

 500

 1000

 1500

 2000

 2500

 3000

Duplicates received Our algorithm
Interests-Aware Flooding

Simple Flooding

Events to publish Interests [%]

Duplicates received

Fig. 19. Number of duplicates received as a
function of the number of events to publish and
the number of subscribers

 0 2 4 6 8 10 12 14 16 18 20 20 40 60 80 100

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Parasite events received

Our algorithm
Interests-Aware Flooding

Neighbors’ Interests Flooding

Events to publish
Interests [%]

Parasite events received

Fig. 20. Number of parasite events received as
a function of the number of events to publish
and the number of subscribers

processes are interested in receiving the events, they will at most receive them 4 times
during 180[s]. This corresponds to 1 duplicate per minute, which is very few.

Figure 20 depicts the number of parasite events received per process.16 Our algo-
rithm does not induce a lot of parasite events unlike the other two depicted alternatives.
Not surprisingly, the more the subscribers, the lesser the parasite events (because more
and more subscribers are interested in receiving the events). The greatest number of par-
asite events received per process is reached when 60% of the processes are interested in
receiving such events. In this case, we outperform the other approaches by a factor of
20 to 50 depending on the number of events.

6 Concluding Remarks

Many algorithms [10,11,12,13,14,15,16,17,18] have tackled the issue of disseminating
events in a MANET. In [10], the broadcast storm problem is introduced. This problem

16 Again, Figure 20 does not contain approach (1), because our algorithm outperforms it by a
factor of up to 800 times.

Frugal Event Dissemination in a Mobile Environment 221

is raised when flooding is used for broadcasting an event in a wireless network. Differ-
ent schemes are compared: (1) a probabilistic scheme, (2) a counter-based scheme, (3)
a distance-based scheme, (4) a location-based scheme and (5) a cluster-based scheme.
The last two schemes (i.e., (4) and (5)) rely on a GPS device and cluster heads respec-
tively: assumptions that we do not make in our algorithm. It has been shown in [10]
that the first scheme is outperformed by the others. The second and third schemes have
been revisited in [19] and feature very interesting characteristics. In our algorithm, we
did not explore any distance-based techniques as this would imply more calculation for
the mobile devices and require more computing power. In addition, the distance-based
scheme together with the counter-based one have been proved to be outperformed by the
neighborhood scheme [20]. Our algorithm is close to the latter with certain specificities
that we discuss below.

The neighborhood scheme has often been studied in the literature
[13,14,15,16,17,18,19]. The corresponding algorithms follow roughly one of two dif-
ferent patterns: (1) one-hop neighbor information and (2) multi-hops neighbors infor-
mation. The first pattern is called self-pruning and the decision of rebroadcasting an
event depends on the one-hop knowledge of the neighbors of the processes [18,13,19].
This approach achieves fairly good performance without involving too much processing
time, which is not the case with the second approach [13,15,16,17], where the processes
rebroadcast either according to their two-hops neighborhood knowledge [15,16,17] or
according to the decisions of other processes [13]. As the decision of rebroadcasting
is often based on a greedy algorithm [21], this consumes a large amount of processing
time and is not suited to highly mobile networks. To limit the number of duplicates mes-
sages, the neighborhood schemes can be used with a back-off mechanism (like in [14]).
In the model we consider, the processes are mobile and only have information about
their one-hop neighbors. In this sense, our algorithm belongs to the one-hop category.
In our approach however, a process pi disseminates an event according to: (1) the va-
lidity period of the events of pi, (2) the subscriptions of the neighbors of pi and (3) the
events those neighbors have received.

The algorithms presented in [11,12] make specific assumptions on the stabilization
of the network, use cluster heads, and switch to flooding when network partitions are
frequent. We make no assumption on the topology or stabilization of the network and
do not rely on any cluster heads or routing algorithms.

Topic-based pub/sub algorithms for MANETs were also presented in [22,23,24].
The algorithm relies on brokers which are responsible for buffering the events the sub-
scribers are interested in. When the subscribers connect again to one of the brokers, they
ask for the events they have not yet received and the brokers are responsible for provid-
ing them with these. Speeding up the bootstrapping latency has been tackled in [25,26],
where client proxies are responsible for collecting events and dispatching them to the
real clients when those connect back to the brokers. All these schemes are based on
brokers. Our algorithm is completely decentralized.

The approaches described in [27,28,29,30,31,32,33] do not rely on brokers. In [27]
a direct acyclic graph is maintained between the subscribers and the publishers. To
maintain this graph, the network is supposed to remain unpartitioned for some period

222 S. Baehni, C.S. Chhabra, and R. Guerraoui

of time: we do not make this assumption. Moreover, unlike in our algorithm, there can
be a huge latency in [27] before a publisher is allowed to publish an event.

A generic way to store data at the most interested mobile processes is described
in [28]. The dissemination scheme is not detailed and it is not clear how flooding is
avoided when different subscribers have subscribed to the same topic. A specific kind
of validity is considered in the sense that each data is associated with a counter which is
kept up to date only when the data is used, but the limited memory of the processes is not
addressed. In our approach, each event is associated with a timeout that never changes
during the entire lifetime of the publication, and after which the event is garbage col-
lected. Like [28], the algorithm presented in [29] implements a distributed hashtable in
a MANET. The algorithm of [29] uses dynamic source routing [5] (DSR) to create the
routes between publishers and subscribers and consequently floods the network with
request and reply messages, which is not the case of our algorithm. Unlike our algo-
rithm, the algorithm of [29] does not consider any validity period for the events and
mobile processes must route events they are not interested in. In [30], events are split
into several pieces and dispatched on the network. When a process wants to recover the
full event, it moves in the network, gathers the different pieces and re-conciliates them.
Though this algorithm does not make use of brokers, several processes receive pieces
of information they are not interested in, and no notion of validity period is considered.

A pub/sub implementation based on a weakly connected multicast tree is given
in [32]. The root of the multicast tree is responsible for publishing the events. This
scheme has two drawbacks: the maintenance is time consuming in a high mobile envi-
ronment and the processes located at the root of the multicast tree have more work to
perform than the ones at the leaves. Our algorithm does not need to create or maintain
a multicast tree, and processes that have not subscribed to a topic do not need to care
about events of that topic.

In the content-based pub/sub algorithm of [33], event dispatchers are responsible for
forwarding the events to the interested subscribers and need to store subscriber infor-
mation located multiple hops away. Our algorithm relies only on one-hop information
and events are only forwarded by mobile processes that are interested in those.

In the proximity-based algorithm of [31], the subscribers only receive events asso-
ciated to a certain geographical region. Filtering techniques are used to minimize the
burden at publishers and subscribers. In comparison, our algorithm is not limited to a
specific location, it supports the dynamic inclusion of topics and exploits the mobility
of the processes to disseminate events.

References

1. Cugola, G., Jacobsen, H.A.: Using publish/subscribe middleware for mobile systems. In:
Proceedings of the ACM SIGMOBILE Mobile Computing and Communications Review.
Volume 6. (2002) 25–33

2. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/subscribe.
ACM Computing Surveys 35 (2003) 114–131

3. (Bluetooth web site: http://www.bluetooth.com/)
4. (IEEE organisation, 802.11 web site: http://grouper.ieee.org/groups/802/11/)

Frugal Event Dissemination in a Mobile Environment 223

5. Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. In Imielinski,
Korth, eds.: Mobile Computing. Volume 353. Kluwer Academic Publishers (1996) 153–181

6. Davies, V.: Evaluating mobility models within an ad hoc network. Master’s thesis, Colorado
School of Mines (2000)

7. Flury, R., Baehni, S.: EPFL Free Car Parks Application, http://lpdwww.epfl.ch/sbaehni/work/
carPark/carPark.html. (2004)

8. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: a library for parallel simulation of large-
scale wireless networks. In: Proceedings of the 12th Workshop on Parallel and Distributed
Simulations. (1998)

9. T. Camp, J. Boleng, V.D.: A survey of mobility models for ad hoc network research. In:
Proceedings of Wireless Communication and Mobile Computing: Special issue on Mobile
Ad Hoc Networking: Research, Trends and Applications. Volume 2. (2002) 483–502

10. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad hoc
network. In: Proceedings of the 5th ACM International Conference on Mobile Computing
and Networking. (1999) 151–162

11. Pagani, E., Rossi, G.P.: Providing reliable and fault tolerant broadcast delivery in mobile
ad-hoc networks. Journal of Mobile Networks and Applications 4 (1999) 175–192

12. Gupta, S.K.S., Srimani, P.K.: An adaptive protocol for reliable multicast in mobile multi-hop
radio networks. In: Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems
and Applications. (1999) 111–122

13. H. Lim, C.K.: Multicast tree construction and flooding in wireless ad hoc networks. In:
Proceedings of the ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems. (2000) 61–68

14. Peng, W., Lu, X.C.: On the reduction of broadcast redundancy in mobile ad hoc networks.
In: Proceedings of the 1st ACM International Symposium on Mobile Ad Hoc Networking
and Computing. (2000) 129–130

15. Peng, W., Lu, X.C.: AHBP: An efficient broadcast protocol for mobile ad hoc networks.
Journal of Science and Technology (2002)

16. Sucec, J., Marsic, I.: An efficient distributed network-wide broadcast algorithm for mobile
ad-hoc networks. Technical Report 248, Rutgers University (2000)

17. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast messages
in mobile wireless networks. In: Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences. (2002) 298–308

18. Cartigny, J., Simplot, D., Carle, J.: Stochastic flooding broadcast protocols in mobile wireless
networks. Technical report, LIFL Univ. Lille 1 (2002)

19. Tseng, Y.C., Ni, S.Y., Shih, E.Y.: Adaptive approaches to relieving broadcast storms in a
wireless multihop mobile ad hoc network. IEEE Transactions on Computers 52 (2003) 545–
557

20. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc networks.
In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking
and Computing. (2002) 194–205

21. Lovasz, L.: On the ratio of optimal integral and fractional covers. In: Discrete Mathematics.
Volume 13. (1975) 383–390

22. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. In: Proceedings
of the 2nd ACM international workshop on Data engineering for wireless and mobile access.
(2001) 27–34

23. Cugola, G., Nitto, E.D., Fuggetta, A.: The jedi event-based infrastructure and its application
to the devlopment of the opss wfms. IEEE Transactions on Software Engineering 27 (2001)
827–850

224 S. Baehni, C.S. Chhabra, and R. Guerraoui

24. Caporuscio, M., Inverardi, P., Pelliccione, P.: Formal analysis of clients mobility in the
siena publish/subscribe middleware. Technical report, Department of Computer Science,
University of L’Aquila (2002)

25. Cicila, M., Fiege, L., Haul, C., Zeidler, A., Buchmann, A.P.: Looking into the past: enhancing
mobile publish/subscribe middleware. In: Proceedings of the 2nd international workshop on
Distributed event-based systems. (2003) 1–8

26. Caporuscio, M., Carzaniga, A., Wolf, A.L.: Design and evaluation of a support service for
mobile, wireless publish/subscribe applications. IEEE Transactions on Software Engineering
29 (2003) 1059–1071

27. Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G.: Publish/subscribe scheme for mo-
bile networks. In: Proceedings of the second ACM international workshop on Principles of
mobile computing. (2002) 74–81

28. Datta, A., Quarteroni, S., Aberer, K.: Autonomous gossiping: A self-organizing epidemic
algorithm for selective information dissemination in wireless mobile ad-hoc networks. In:
Proceedings of the International Conference on Semantics of a Networked World. (2004)

29. Pucha, H., Das, S.M., Hu, Y.C.: Ekta: An efficient dht substrate for distributed applications
in mobile ad hoc networks. In: Proceedings of the 6th Workshop on Mobile Computing
Systems and Applications. (2004)

30. Li, Z., Li, B., Xu, D., Zhou, X.: iFlow: middleware-assisted rendezvous-based information
access for mobile ad-hoc application. In: Proceedings of the 2st ACM International Confer-
ence on Mobile Systems, Applications and Services. (2003) 71–84

31. Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc networks. In:
Proceedings of the 22nd International Conference on Distributed Computing Systems Work-
shops. (2002) 639–644

32. Huang, Y., Garcia-Molina, H.: Publish/subscribe tree construction in wireless ad-hoc net-
works. In: Proceedings of the 4th International Conference on Mobile Data Management.
(2003) 122–140

33. Costa, P., Picco, G.P.: Semi-probabilistic Content-Based Publish-Subscribe. In: Proceedings
of the 25th IEEE International Conference on Distributed Computing Systems. (2005)

RTZen: Highly Predictable, Real-Time Java
Middleware for Distributed and Embedded

Systems�,��

Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares� � �,
Raymond Klefstad, and Trevor Harmon

Department of Electrical Engineering and Computer Science,
University of California, Irvine, CA 92697, USA

{kraman, yuez, mpanahi, jcolmena, klefstad, tharmon}@uci.edu

Abstract. Distributed real-time and embedded (DRE) applications
possess stringent quality of service (QoS) requirements, such as pre-
dictability, latency, and throughput constraints. Real-Time CORBA, an
open middleware standard, allows DRE applications to allocate, sched-
ule, and control resources to ensure predictable end-to-end QoS. The
Real-Time Specification for Java (RTSJ) has been developed to provide
extensions to Java so that it can be used for real-time systems, in or-
der to bring Java’s advantages, such as portability and ease of use, to
real-time applications.

In this paper, we describe RTZen, an implementation of a Real-Time
CORBA Object Request Broker (ORB), designed to comply with the
restrictions imposed by RTSJ. RTZen is designed to eliminate the un-
predictability caused by garbage collection and improper support for
thread scheduling through the use of appropriate data structures, thread-
ing models, and memory scopes. RTZen’s architecture is also designed to
hide the complexities of RTSJ related to distributed programming from
the application developer. Empirical results show that RTZen is highly
predictable and has acceptable performance. RTZen therefore demon-
strates that Real-Time CORBA middleware implemented in real-time
Java can meet stringent QoS requirements of DRE applications, while
supporting safer, easier, cheaper, and faster development in real-time
Java.

Keywords: RTSJ, Real-Time CORBA, Design Patterns, Middleware,
DRE.

� This material is based upon work supported by the National Science Foundation
under Grant No. 0410218, Boeing DARPA contract Z20402, and AFOSR grant
F49620-00-1-0330.

�� Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

� � � Also with the Applied Computing Institute, College of Engineering, University of
Zulia.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 225–248, 2005.
c© IFIP International Federation for Information Processing 2005

226 K. Raman et al.

1 Introduction

For as long as computers have been able to talk to one another, software en-
gineers have struggled with the task of building distributed applications. Over
the years, various technologies have been created to deal with the problem,
culminating in the “golden age of networking” of the early 1980s, which saw
the advent of remote procedure calls and the socket metaphor. More recently,
object-oriented architectures such as CORBA have become popular for making
computer communication easier to implement.

Traditionally, the overhead of CORBA-based middleware has limited its de-
ployment to large enterprise-class servers and workstations. Developers of dis-
tributed, real-time, and embedded (DRE) systems, who must contend with far
more limited resources, often seek lighter-weight alternatives, such as socket li-
braries, but these solutions are nearly as tedious and error-prone as they were
following their invention a quarter-century ago.

In the last few years, however, research has shown that intelligent design
and careful implementation of CORBA can produce middleware that meets the
needs of today’s DRE developers [1]. By bringing the CORBA model to the DRE
domain, the low-level details of the network are abstracted away to the middle-
ware layer, which shortens and simplifies the development cycle for distributed
applications. Thus, DRE developers can enjoy the same benefits of CORBA that
enterprise developers have enjoyed for many years, such as interoperability across
varying hardware, languages, and operating systems.

CORBA middleware for DRE developers offers more benefits than just sim-
plicity and portability. The recent Real-Time CORBA Specification [2] provides
stringent quality of service (QoS) constraints on memory, performance, and de-
pendability. CORBA middleware that conforms to this specification improves
predictability by bounding priority inversions and managing system resources
end-to-end. Such features are vital for DRE systems.

One key challenge in adopting CORBA, however, has been the steep learning
curve for C++ middleware implementations, primarily due to the complexity of
the CORBA-C++ mapping [3,4,5]. Simpler, easier-to-use languages, particularly
Java, have been applied successfully to address this problem [6]. Java offers less
“accidental complexity” than C++, a higher degree of portability, native support
for concurrency and synchronization, a comprehensive class library, and other
features that make it attractive to application developers.

In the DRE domain, however, Java middleware has previously been unable
to offer the necessary QoS guarantees of predictability for two primary reasons:
i) the under-specified scheduling semantics of Java threads can lead to the most
eligible thread not always being run; and ii) the Java garbage collector can
preempt any other Java thread, thus yielding unpredictably long preemption
latencies.

The need to allocate or reclaim memory can potentially be a major source
of unpredictability if such operations are allowed to occur on demand in unex-
pected circumstances (e.g., reallocating a buffer to handle a larger-than-expected
amount of data, or having a garbage collector run to reclaim memory). To

RTZen: Highly Predictable, Real-Time Java Middleware 227

address this concern, the Real-Time Java Experts Group has defined the Real-
Time Specification for Java [7]. RTSJ brings a simpler, more portable, and easier-
to-use language to the world of DRE systems. It provides stronger guarantees on
thread semantics than conventional Java and defines a new memory management
model that allows allocation of objects not subject to garbage collection.

By using these newly-defined real-time Java features, CORBA middleware
implemented in Java can provide the best of both worlds: a portable, developer-
friendly language and the guarantee of predictability required by DRE systems.
Implementing such middleware is not simply a feat of engineering, however.
It remains to be seen, for instance, if the developer community will accept the
strict scoped memory model of RTSJ, or whether ongoing research into real-time
garbage collection will make such memory models obsolete.

Real-time systems are inherently more complex to develop and maintain than
conventional systems. Thus, designing and implementing a software system as
powerful as CORBA middleware, using the new RTSJ features for real-time
memory management, is necessarily more complex than developing systems in
conventional Java. However, RTSJ still retains many of Java’s advantages com-
pared to C++, such as superior portability and native thread support. Further-
more, RTSJ’s memory model may be easier to manage than that of C++, which
requires programmers to handle the memory management of each individual ob-
ject. RTSJ addresses this problem with the concept of scoped memory, allowing
the system to reclaim the memory of multiple objects automatically. Maintain-
ing entire blocks of memory as scopes can be less complex and error-prone than
managing each object manually, as in C++.

Mapping Real-Time CORBA object lifetime models into this RTSJ memory
model is a challenging task. The system must be designed carefully to ensure
predictability through RTSJ features, while simultaneously complying with the
Real-Time CORBA Specification, all the while shielding these complexities from
the middleware user and maintaining Java’s key advantage: ease of use.

In this paper, we show how we achieved these goals in designing and imple-
menting the first open-source real-time Java, Real-Time CORBA middleware,
which we call RTZen.1 The largest known open-source RTSJ project, RTZen
demonstrates that real-time Java and Real-Time CORBA are maturing into
viable technologies for DRE system development. More importantly, our work
proves that these specifications can be integrated into a single middleware ar-
chitecture that combines the advantages of each. The result is a predictable,
efficient, customizable, and embeddable RTSJ implementation of CORBA.

The remainder of this paper is organized as follows: Section 2 explains the
RTSJ features used in RTZen to ensure predictability, with special focus on
memory scoping; Section 3 describes the RTSJ-specific design patterns that
we adopted in RTZen’s implementation; Section 4 describes the architecture
of RTZen; Section 5 presents empirical results that demonstrate RTZen’s ability
to accommodate real-time requirements; Section 6 describes related work; and
in Section 7 we provide concluding remarks.

1 Available at http://doc.ece.uci.edu

228 K. Raman et al.

2 Overview of RTSJ

Java offers developers significant advantages, with features like object-oriented
programming, platform independence, dynamic class loading, simplified memory
management, exception handling, and run-time consistency checks. However, the
Java VM mechanism that enables simplified memory management—the garbage
collector—introduces challenges for real-time systems by potentially causing un-
bounded priority inversions, thus reducing predictability. To address this chal-
lenge, RTSJ reduces the need for garbage collection by introducing new types of
memory regions and real-time threads.

2.1 RTSJ Memory Areas and Switching

In addition to heap memory in standard Java, RTSJ introduces two new mem-
ory regions with restrictions aimed at making memory management more pre-
dictable. RTSJ specifies three memory regions: heap memory, immortal memory,
and scoped memory. Each memory region has an associated life-span, and ob-
jects may be allocated within these regions by setting the allocation context
before making allocations.

– Heap memory is the same as the original Java heap. Objects can be al-
located in heap memory, and are alive until the last reference to them is
removed, when the object becomes “garbage.” Garbage objects may be col-
lected automatically by the garbage collector. The running of a garbage
collector is undesirable for real-time systems, because it may be invoked at a
time which causes higher-priority tasks to be interrupted from accomplishing
their time-critical task.2 The lifespan of heap memory is the same as that of
the JVM; i.e., objects created in heap memory can stay alive as long as the
JVM exists or until they become garbage.

– Immortal memory is a fixed-sized area whose lifetime is the same as that
of the JVM. Objects allocated in immortal memory, however, will never
be garbage collected. Therefore, if not managed carefully, the memory in
this region could easily become exhausted which will cause an OutOfMemory
Exception. As a consequence, this region must be used sparingly and man-
aged carefully. In particular, memory allocations from the immortal region
should generally occur at application initialization.

– Scoped memory is a memory region with a limited lifetime. The end of
this lifetime occurs when there are no more threads executing in the region.
Scoped memory is ideal for temporary allocations that follow the lifetimes of
specific threads of control. The benefit of using scoped memory is that it is
both allocated and reclaimed as a single (not necessarily contiguous) block,3

which are predictable operations.

2 This is assuming that real-time garbage collection is not used.
3 While RTSJ supports both linear- and variable-time allocation of scoped memory

regions, we strictly use the linear-time allocation mechanism in this work.

RTZen: Highly Predictable, Real-Time Java Middleware 229

RTSJ also introduces two new thread types which can be used to execute
in memory regions and are used to determine the lifetime of scoped regions.
The most important feature of these new threads is that they are scheduled
preemptively so that the highest priority thread is always running.

– RealtimeThreads (RTTs) are used to enter scoped, immortal, and heap
regions. Also, memory located in the heap can be referenced from any other
region, following the rules imposed by RTSJ (see Sect. 2.2).

– NoHeapRealtimeThreads (NHRTTs) are similarly used to enter scoped and
immortal regions, but possess one important distinction: no heap access is
allowed. According to normal memory access rules, any region can access the
heap. However, if there is code executing in a NHRTT, that code cannot ac-
cess the heap. The important consequence of this restriction is that NHRTTs
can never be preempted by the garbage collector, whereas RTTs can. There-
fore, NHRTTs should be used whenever possible to ensure predictability,
even if heap memory will also be used in the application.

2.2 Nested Scopes

Scoped memory may be nested, producing a scoping structure called a scope
stack. Since multiple memory areas can be entered from an existing memory
area, this scope stack can form a tree-like structure. One key relationship is as
follows: if region B is entered from region A, then A is considered the parent
of B (see Fig. 1(a)). Certain rules govern memory access among scopes. Code
within a given memory scope A can reference memory in another region B only
if the lifetime of the memory in the region B is at least as long as that of
the first region A. This lifetime can be guaranteed only if the requested object
resides in an ancestor region (i.e., a parent or grandparent, etc.), immortal, or
heap memory. A violation of this rule results in an IllegalAssignmentError
or IllegalAccessError.

One important constraint is that a memory region can have only one parent,
thereby preventing cycles in the scope stack. Consequently, a single scope can-
not have two or more threads from different parent scopes enter it. If one thread
takes a particular path to get to a memory region and forms a scoped memory

B

Immortal

A

C

Heap

(a) Nested Scopes

to Heap to Immortal to A to B to C
from Heap yes yes no no no

from Immortal yes yes no no no
from A yes yes yes no no
from B yes yes yes yes no
from C yes yes yes no yes

(b) Access rules for (a)

Fig. 1. RTSJ Access Rules

230 K. Raman et al.

hierarchy, a second thread will have to follow the same hierarchy to reach the
same memory region, otherwise a ScopedCycleException is thrown. For exam-
ple, if a thread enters scope B from A, then another thread that enters B must
also be entered from A. An important implication of this restriction on scoping
structure is that a given region cannot access memory residing in its “sibling”
region. In the event that these two regions need to coordinate to perform some
task, they will need to do so through memory stored in a common ancestor re-
gion. For example, in Fig. 1(a), scope C cannot access scope B. These regions
can coordinate only via objects stored in A or immortal memory. Table 1(b)
depicts the complete access rules among scopes in Fig. 1(a).4

The new memory regions introduced in RTSJ and described above provide
memory that will not be managed by the garbage collector, but the restric-
tions imposed on these memory regions pose challenges for designing real-time
middleware such as RTZen.

3 RTZen’s Design Patterns

Traditional design patterns [8,9] are used to simplify the development process
of large software systems. Using design patterns leads to better modularity and
maintainability of code. RTZen is based on such design patterns, especially those
used in the development of networked and concurrent object-oriented middleware
systems such as Acceptor-Connector, Half-sync/Half-async and Interceptor.

Design patterns have the potential to mitigate the complexity of RTSJ to
a large degree. Consequently, some RTSJ design patterns have been proposed
in the literature [10,11,12]. Also, additional RTSJ design patterns have been
discovered in the course of developing RTZen, and the main goal of this section
is to describe them.

3.1 Summary of Existing RTSJ Patterns

The patterns below alleviate some of the most common difficulties that an RTSJ
programmer is likely to encounter. These difficulties mostly pertain to properly
handling scoped memory hierarchies and obeying memory access rules.

Immortal Singleton. The Immortal Singleton pattern [12] is a simple adap-
tation of the classical Singleton pattern [8]. It allows the creation of a unique
instance of a class from immortal memory, allowing it to be accessed from any
memory area.

Wedge Thread. A Wedge Thread [10,11] is used to prevent the premature
reclamation of a scoped memory area by controlling its lifetime. It consists of
a real-time thread that enters a scope and blocks, waiting for a signal to exit
the area. Wedge threads should be used sparingly since they occupy system
resources.
4 Table 1(b) assumes that real-time threads are used. Note that if no-heap real-time

threads are used, no references to the heap are permitted.

RTZen: Highly Predictable, Real-Time Java Middleware 231

Memory Pool. The Memory Pool pattern [10] is a set of instances of a given
class preallocated in a specific memory area (e.g., immortal memory). When an
instance of this class is requested, an object is taken from the pool and when
the instance is no longer needed, it is returned to the pool. Depending on the
implementation, the pool size may vary (e.g., if the pool is empty, a new instance
may be created and returned). In general, pooled objects must be mutable, so
they can be reconfigured and reused.

Encapsulated Method. The Encapsulated Method pattern [11] allows the al-
location of objects that represent intermediate results of an algorithm in a tem-
porary scope. After the final result is obtained, the temporary scope is discarded,
thereby avoiding unnecessary allocations in the original scope.

Multi-scoped Object. The Multi-scoped Object pattern allows transparent
access of an object regardless of the originating region of the callee. This pattern
ensures that the necessary steps are taken to guarantee that a given method is
called from the correct scope by performing the proper memory scope traversals
on behalf of the callee. Pizlo et al. [11] attempt to generalize the idea, but they
cover only the case of a multi-scoped object performing allocations in its own
scope from a child scope, among other simpler cases.

Memory Block. The Memory Block pattern [10] allows the pooling, via serial-
ization, of objects of varying sizes in a byte array block allocated from immortal
memory, thus allowing read and write access from any memory scope and any
thread type. When an object is discarded, the memory block makes those bytes
available for further use. This pattern can be used to communicate information
between scopes and threads otherwise forbidden by RTSJ access rules. However,
it has important disadvantages: i) it requires explicit memory management, and
ii) (de)serialization incurs additional overhead.

3.2 New RTSJ Patterns

In developing one of the largest and most complex open-source RTSJ software
projects, we have encountered more situations that warrant the use of four new
design patterns.

Separation of Creation and Initialization
Context. To use memory efficiently, RTSJ applications typically create some
pools of recyclable objects, preallocated in specific memory areas such as im-
mortal memory [10].

Problem. Creation of objects in another memory area requires the use of Java
reflection. But reflection can become memory inefficient when creating objects
with parameters because the parameters for the reflection call must be objects
themselves.

Solution. To solve this issue, the Separation of Creation and Initialization pat-
tern is used. It defines classes with the default constructor that creates unini-
tialized instances, as well as accessor methods that allow the modification of the

232 K. Raman et al.

object’s internal state (i.e., the configuration) just before they are going to be
used. RTZen uses this pattern to (de)marshal requests, as well as to create ORB
and POA façades in memory pools.

Cross-scope Invocation
Context. RTSJ programmers often encounter situations in which the calling
object needs to invoke an operation on an object allocated in an different scope,
such as in a sibling scope.

Problem. However, the memory access rules of RTSJ dictate that a given object
can be accessed directly only if it is residing in the calling object’s scope stack
(an ancestor scope). Therefore, for indirect access to occur, elaborate memory
traversal must be performed, in which the control thread must first jump to a
scope that is a common ancestor of both objects, then enter the callee object’s re-
gion (possibly traversing intermediate regions along the way), and finally invoke
the operation.

Solution. By using the ExecuteInRunnable class (see Fig. 2), the Cross-scope
Invocation pattern can simplify the indirect access process. If necessary, this
ExecuteInRunnable class can be used repeatedly to perform such a memory
traversal.

Figures 3 and 4 show the use of this pattern. Assume the simplest case in
which B and C are sibling scopes and A is their parent memory region, with
B being the current scope (Fig. 4). After being instantiated using the default
constructor or obtained from a pool, the ExecuteInRunnable object is initialized
within the sibling scope C and a Runnable object that contains the logic to be
executed in B. Once the executeInArea method of the MemoryArea class is
called by B, the ExecuteInRunnable object starts to run in A, making the
current thread enter C and finally execute the logic provided in the Runnable
object.

As is common in RTSJ programming, the allocation of arguments and re-
turned values of the requested method require special care to avoid illegal access

public class
ExecuteInRunnable

implements Runnable{
private Runnable r;
private MemoryArea a;
public void init(
Runnable r,MemoryArea a){
this.r = r; this.a = a;

}
public void run(){
try { a.enter(r);}
catch(Throwable ex){...}

}}

Fig. 2. The Execute-

InRunnable class

MemoryArea parent;
ScopedMemory sibling;
Runnable logic;
...
ExecuteInRunnable eir =

EIRPool.getEIR();
eir.init(logic, sibling);
...
try { parent.executeInArea(

eir);}
catch (Throwable t) { ... }
finally { EIRPool.freeEIR(eir

);}
...

Fig. 3. Using Execute-

InRunnable

Scope A Scope B

Parent Memory Area

executeInArea() enter()

Fig. 4. Invocation between
sibling scopes

RTZen: Highly Predictable, Real-Time Java Middleware 233

errors: arguments must be accessible from the callee scope, and returned values
must be accessible from the caller scope. This requirement may add significant
code complexity, but this complexity can be alleviated by the adoption of the
Memory Pool and Memory Block patterns [10].

Immortal Exception
Context. In RTSJ applications, exceptions may need to be thrown and handled
in different memory areas.

Problem. However, in RTSJ, the propagation of exceptions is restricted by
memory access rules. A given exception object must be handled in a memory
area that can legally reference that exception. If not, a ThrowBoundaryError is
returned and the original exception is lost.

RTSJ’s memory area rules introduce accidental complexity into exception
handling. The CORBA specification requires exceptions to be thrown in many
scope regions. However, some of those exception objects cannot be handled in
their local scopes, yet cannot be legally accessed from the region that can handle
them either. For example, an exception raised in the Thread Pool Scope may
need to be handled in ORB Memory Scope, but this access is prohibited by
RTSJ memory access rules.

Corsaro et al. [12] proposed that exceptions can be initially handled in the
local scope. With this approach, the notification of the exceptional condition
is encapsulated in a status variable or object and then transferred to an outer
scope, where the condition is finally handled, or propagated again to an outer
scope. Although effective, this approach has the following drawbacks: 1) the
code complexity is increased; 2) the exception propagation mechanism is tightly
coupled with the system’s memory structure; 3) the actual exceptional condition
may not be reported correctly because of an inappropriate mapping between the
exception type and the status variable or object (e.g., exceptions are commonly
handled using general types); and 4) system performance may be affected since
the exception must be re-instantiated several times as it is propagated from
scope to scope.

Solution. Consequently, we have designed the Immortal Exception pattern, an
efficient and flexible solution that allows exceptions to be handled independently
of the memory area in which they are thrown, without violating RTSJ referencing
rules. In this pattern, a factory class that creates exception objects of specified
types resides in immortal memory. The Immortal Singleton pattern [12] is used
to cache the exception objects in the factory so that they can be reused (i.e.,
re-thrown). Distinct families of exceptions, such as CORBA system exceptions
and application exceptions, are organized into different factories.

This pattern offers important advantages and a minor disadvantage. Since
all exceptions are allocated in immortal memory, they can be accessed from
anywhere, thereby avoiding the boundary problem. This design is particularly
useful when the system must handle a large number of exceptions, such as the 400

234 K. Raman et al.

instances of CORBA system exceptions handled by RTZen. A limitation of this
pattern, however, is that since exception objects are preallocated, no message
that explains the cause of the run-time exception can be associated with the
exception objects. However, good documentation can alleviate this
inconvenience.

Immortal Façade
Context. A consequence of RTSJ’s scoping rules is that large RTSJ applications,
such as RTZen, often have complex scoping structures.

Problem. Scoping structures introduce more development complexity to appli-
cation users. In general, when objects in different scopes interact using method
calls, the complexity of traversing the memory structure is exposed to both the
caller object and callee object. Furthermore, the caller is typically tightly cou-
pled with the system’s memory structure, in particular with the callee object’s
locality. This exposed complexity makes development and system maintenance
more difficult and therefore compromises one of RTZen’s design goals.

Solution. To hide complexity from the application developer, as well as to mini-
mize the dependencies of the caller object on the callee object’s memory locality,
we used the Immortal Façade pattern based on the Gang of Four’s Façade design
pattern [8]. The Immortal Façade consists of a façade class and an implemen-
tation class. The façade class acts as a surrogate for and typically implements
the same interface as the actual implementation class. It encapsulates the logic
that handles the cross-scope invocation. The façade objects need to be accessi-
ble from scopes of interest, so they are frequently allocated in immortal memory
and managed by a pool. The implementation class implements the actual busi-
ness logic behind the façade. An instance of it is allocated in a specific scoped
memory.

In RTZen, two key patterns, Cross-scope Invocation and Immortal Façade,
have been used to hide the complex scoping structures between callers and
callees. One example of the combined use of these two patterns is the ORB
façade. RTZen maintains a pool of ORB façade objects in immortal memory.
These façades do not implement any business logic. All the logic is contained in
the ORB implementation object hosted in the ORB scope. Since the ORB façade
is in immortal memory, the user can access it with ease and make invocations
on it. The Cross-scope Invocation pattern is used when the invocation thread
needs to laterally traverse scoped regions.

4 Architecture

This section explains the rationale behind the design of RTZen. First, we outline
the goals for RTZen and the CORBA features influenced by the memory and
thread constructs of RTSJ. Next, we describe the design of RTZen, emphasizing
its scoped memory structure and illustrating the processing of an invocation
on a remote object. Finally, we present an overview of RTZen’s customization
features.

RTZen: Highly Predictable, Real-Time Java Middleware 235

4.1 RTZen Design Goals

The design of RTZen has been driven by the following requirements.

– Predictability. Real-time middleware must provide a high degree of pre-
dictability. As a result, a Real-Time CORBA implementation requires elim-
inating priority inversions and bounding the size of critical sections.

– Specification Compliance. An ORB must be compliant to the CORBA
specification to ensure application portability across ORB implementations.
However, proprietary features and optimizations should still be available if
they prove to be advantageous in certain cases.

– Performance. Even though real-time applications tend to favor predictabil-
ity over performance, it is the goal of RTZen not to compromise on this re-
quirement. RTZen aims to provide both a predictable and high performance
CORBA implementation.

– Minimize User Complexity. One of the key aspects of middleware is that
it offloads the complexities of distributed programming from the application
developer to the middleware developer. In the case of RTSJ middleware,
complexities related to distributed programming brought on by the addition
of memory and thread constructs are offloaded as well.

– Efficient Use of Memory. RTSJ memory constructs must be used effi-
ciently. Allocations must be made in the context of memory scopes or man-
aged carefully in pools or caches located in immortal memory. Memory leaks
must be completely avoided to ensure continuous system operation. If pos-
sible, use of heap memory should be avoided to ensure that the garbage
collector always remains idle.

– Customizability. Finally, middleware should be customizable and support
minimization of footprint for embedded applications while maintaining all
the advantages of using middleware.

Our earlier work with ZEN [13] focused on each of these goals except for the
efficient use of memory, as RTSJ implementations have only recently become
available. Maturing RTSJ implementations, such as jRate [14], have provided the
real-time JVM layer necessary to ensure predictability and make the memory
model of RTZen possible.

4.2 Mapping Real-Time CORBA to RTSJ

Primary features of RTZen are heavily influenced by the constraints imposed by
the added memory and thread constructs of RTSJ. To understand the architec-
ture of RTZen we must first examine them.

The feature that influences the architecture of RTZen the most is the CORBA
requirement that an application developer must be able to control the lifetimes
of various components, including ORB instances, POA instances, and CORBA
objects. As a result of this requirement, each of these components is mapped onto
a scoped memory region (Section 4.3). Furthermore, the CORBA specification
defines the API that must be exposed to application programmers. Since RTZen

236 K. Raman et al.

will use scoped memory regions, the traversal of its internal scoped memory
structure must not be exposed to the user.

The final issue is the selection of priorities of RTSJ threads. Recall that RTSJ
introduces two new types of threads: RealtimeThread (RTT) and
NoHeapRealtimeThread (NHRTT). The RTSJ platform was designed under the
assumption that any NHRTT will possess a higher priority than any RTT, so
that NHRTTs will never block for garbage collection [15]. If the application
developer chooses to use both RTTs (to access heap memory) and NHRTTs,
the priority mappings can ensure that NHRTTs are always mapped to higher
priorities than are RTTs.

4.3 RTZen Design

To meet all of the goals and successfully implement the Real-Time CORBA
specification, RTZen was designed with a unique memory hierarchy (Fig. 5).
The main purpose of this hierarchy is to enable objects to be independently
allocated and freed to follow the Real-Time CORBA specification. As a side
effect, this design also allows for pluggable and customizable architecture that
does not use the heap.

The idea of lifetime – the length of time for which an object is valid – is central
to understand the rationale behind the design of RTZen. CORBA exposes to the
application the ability to both create and destroy various CORBA components
(e.g., ORBs and POAs). RTZen enables this by assigning memory scopes to these
components. When the user creates one of these components, the associated
memory scope is created, along with a wedge thread if required. Recall that
wedge threads occupy system resources; therefore they are only used in scopes
where there is not already an active thread keeping that scope alive. When the
component is destroyed, the associated memory scope is freed by signaling all
active threads in that region to terminate (including wedge threads).

RTZen is organized as a scoped hierarchy: Fig. 5 shows the memory layout of
the RTZen components. Each component with a defined lifetime is allocated in its
own scope and maintains its state within the scope. Moreover, some components
have child scopes for dependent components with smaller lifetimes, thus creating
a tree-like scoped memory structure.

In RTZen the application initially starts in immortal memory. The first ap-
plication scope region is above the initial immortal region and holds references
to the ORB façade and POA façade objects which are allocated from immortal
memory and cached. The ORB and POA façades internally hold a reference to
the ORB and POA scoped memory region respectively, not to the corresponding
implementation object itself. In both cases the implementation object is the por-
tal of the scope. Under the ORB scope, there are various other scoped regions
for transport, acceptor, POAs, thread pools, and temporary request processing.
Each region has at least one thread object inside to keep the region alive. Wedge
threads keep the ORB and POA regions alive, whereas threads in the other
regions perform an active role for request processing.

RTZen: Highly Predictable, Real-Time Java Middleware 237

SCOPED MEMORY

Scoped memory object cache
POA Façade

Cache
ORB Façade

Cache Object Ref Delegate Cache

IMMORTAL MEMORY

ORB Façade Ref POA Façade Ref
Servant

Implementation

BASE APPLICATION SCOPE

ORB MEMORY SCOPE

Connector registry ORB Impl Acceptor registry Active Demux table

TRANSPORT
SCOPE

Socket

TEMP. SCOPE

CDR Stream Ref
Request Data

Byte Buffer Ref

REQUEST
PROCESSING SCOPE

CDR Stream Ref
Request Data

Byte Buffer Ref

ACCEPTOR
SCOPE

Server
Socket

POA MEMORY
SCOPE

POA
Impl

THREAD
POOL SCOPE

Thread pool

CLIENT SIDE

TRANSPORT
SCOPE

Socket

Object Impl
Object Ref

Delegate Ptr

SERVER SIDE

Wedge
Thread

Wedge
Thread

D
IR

EC
TI

O
N

O
F

SC
O

PE
NE

ST
IN

G

Fig. 5. Scoped Memory Structure of RTZen

The scoped memory structure combined with object-oriented concepts like
inheritance and polymorphism enables the development of customizable and
adaptable systems [16,13]. Each component can inherit its interface from a base
class and implement different features. And since each component is maintained
in an individual scoped region, it can be easily plugged in and out of the run-
time memory structure of the program. RTZen’s protocol and transportation
framework is built using this technique. Thus transports and protocols can be
configured, added, and removed in a pluggable manner without affecting the
other components of the ORB.

This scoped hierarchy also allows RTZen to avoid any heap allocation. How-
ever, since RTSJ scoped regions are not garbage collected, RTSJ developers have
to be very careful about allocating and maintaining references to objects in these
scoped regions. In RTZen, this issue has been resolved using memory pools and
the immortal singleton pattern. Memory pools are used for any object that stores
state and is simultaneously accessed by multiple request threads, while an im-
mortal singleton is maintained for those objects which require only a global state
and are accessed in a synchronous manner.

On the other hand, the scoped hierarchy introduces two accidental complexi-
ties into the design of RTZen. The first one is exception handling. Exceptions in
RTSJ are not propagated beyond the scope in which they were thrown. However,
the CORBA specification requires that the ORB throw exception in many loca-
tions. To solve this issue, RTZen uses a combination of local exception handling
and the Immortal Exception pattern (Section 3). The second issue that may oc-
cur is creation of objects and references across scopes. RTSJ does allow creation of
objects across scopes using reflection. However, if the constructor requires any ar-
guments, then reflection causes wasteful allocation of memory for the arguments.
To solve this issue, RTZen separates the creation and initialization of objects.

238 K. Raman et al.

While allowing for more efficient memory usage and customizability, the
scoped hierarchy described above potentially increases the complexity perceived
by application developers – since it requires traversing the application and ORB
internal scoped hierarchy to make invocations – if not for the use of two key pat-
terns: cross-scope invocation and immortal façade (Section 3.2). One example of
the combined use of these two patterns is the ORB façade. RTZen maintains a
pool of ORB façade objects in immortal memory. These façades do not imple-
ment any business logic. All the logic is contained in the ORB implementation
object hosted in the ORB scope. Since the ORB façade is in immortal memory,
the user can access it with ease and make invocations on it. The cross-scope
invocation pattern is used if this invocation’s thread needs to laterally traverse
scoped regions.

Along with using RTSJ scoped memory to enhance predictability, RTZen
also ensures that priorities are maintained and respected throughout the ORB.
To achieve this, RTZen is implemented with an endpoint-per-priority paradigm:
for every distinct priority level, RTZen maintains a separate endpoint [17]. Each
endpoint executes at the highest priority of requests that it may process. This
ensures that i) high priority requests are not queued behind low priority requests,
and ii) incoming requests are guaranteed that the thread reading the request data
from the socket will run at an equal or higher priority.

RTZen also includes many of the performance and predictability enhancing
techniques pioneered in ZEN [18,19,20] and TAO [21,22,23,24]. For example,
RTZen’s thread pool implements the Half-Sync/Half-Async pattern [9] to min-
imize complexity and allow high throughput, and the POA uses active-demux
tables to allow O(1) demultiplexing of server-side objects.

4.4 Sample Invocation Using RTZen

This section traces through an invocation on the client and server side to illus-
trate the traversing of the scoped memory structure of RTZen during a remote
method call. We assume that priorities are propagated with each request from
the client to the server and that the server is using a thread-pool with lanes.

The server object is created on the remote end with the appropriate policies,
and the corresponding Interoperable Object Reference (IOR) is generated. The
IOR informs the client about the remote object’s location and some supported
policies. When the server object is registered on the server side, RTZen creates
a separate endpoint for each supported request priority. This allows requests of
varying priorities to be handled independently of each other. This information
is also propagated to the client in the IOR.

After obtaining the IOR (e.g., from a Naming Service), the client application
reads it and uses the client-side ORB to create a stub of the remote object.
The stub acts as a placeholder for the remote object: local invocations made
on the stub are translated to remote invocations on the server object by the
ORB. RTZen creates the stub objects in the application scope so that the client
application may invoke requests on them directly without having to traverse any
scopes.

RTZen: Highly Predictable, Real-Time Java Middleware 239

The invocation starts when the client application sets the priority of the re-
quest and invokes a method on the stub. Based on the priority, the stub locates
the appropriate endpoint on the remote ORB to contact, sends the request mes-
sage and then waits for the return value. Within the ORB, this translates to
using the Cross-Scope Invocation pattern to jump to the ORB scope and then
to the transport scope. At this point, the message is sent and the active thread
jumps back to the ORB scope and then enters to a temporary scope where it
waits for the reply.

After the request message is received by the server transport, the transport
thread reads the request header to locate the POA that the remote object is
registered with. Then the transport thread uses cross-scope invocation to jump
from the transport scope to the POA scope where it locates the reference to the
target remote object. At this point, the transport thread jumps to the thread
pool region and locates a thread which supports the priority of the request. The
request is passed to a thread from the thread pool, and the transport thread re-
turns to its initial scope (i.e., the transport scope) and listens for more incoming
requests (Half-Sync/Half-Async pattern [9]). The thread-pool thread now pro-
cessing the request uses cross-scope invocation to jump to a temporary memory
scope where the request is processed. At this point, the invocation is made on
the actual remote object and once the invocation is complete, the thread jumps
to the transport thread and sends back the reply message.

Finally, on the client side, the client transport thread receives the reply mes-
sage and jumps to the temporary scope where the thread that made the request
is waiting. The client transport thread hands the reply back to the waiting thread
which exits back to the client scope and returns from the invocation on the stub.

4.5 Customization Features

Over and above the Real-Time CORBA specification, RTZen also implements
some additional features which allow for greater customizability. First, RTZen
allows the server-side object to be hosted on thread pools which can be based on
either RTTs or NHRTTs. This feature allows the application developer to choose
the tradeoff between being able to use the heap or having a more predictable
environment.

Second, RTZen includes the implementation of a pluggable transport and pro-
tocol framework [25,13] that allows the application developer to plug in custom
transport layers or protocols to the ORB. This is specially useful in embedded
environments where standard TCP/GIOP functionality may be unnecessary or
wasteful. Currently, RTZen includes a very compact version of GIOP with re-
duced functionality as well as a pluggable serial transport that enables the use
of the serial port for CORBA invocations.

Third, RTZen also includes a set of Mock RTSJ classes5 which enable it to
run on standard (non-RTSJ) Java VMs. This feature also allows Java developers
to use a standard Java VM to prototype RTSJ applications.
5 Currently, the Mock RTSJ classes expose a reduced set of the RTSJ API and do not

perform allocation of access checks.

240 K. Raman et al.

Finally, we have also developed ZEN-kit [26], a user-friendly graphical tool
for customizing RTZen. ZEN-kit implements a customization strategy based on
conditional compilation that takes advantage of the RTZen’s modular architec-
ture. Using this tool, developers can selectively include Core and Real-Time
CORBA features into the ORB in order to meet specific requirements of DRE
applications, in particular those related to memory footprint.

5 Empirical Results

5.1 Testing Environment

All experiments were run on 865 MHz Pentium III (Coppermine, 256KB Cache)
processors with 512MB PC133 ECC SDRAM, for both server side and client
side, connected via 10 Mbps Ethernet on a closed subnet. The operating system
was TimeSys Linux GPL 4.1 based on the Linux kernel 2.4.21, which supports
the Native POSIX Thread Library (NPTL) [27]. The non-real-time Java Virtual
Machine (JVM) used for comparison was the Sun JDK 1.4 JVM. The real-time
Java platform was jRate [14], a real-time Java ahead-of-time compiler.

5.2 Performance Measurements

For all tests, measurements were based on steady state observations, where the
system is run until the transitory effects of cold starts are eliminated before
collecting the measured observations.
Measuring typical performance. We used the median as a measure of typical
performance because, as so often is true in real-time systems, distributions were
typically highly skewed toward the minimum observation, with a large spike
near the typical observation, and with a long, low-probability tail toward the
maximum.
Measuring worst-case performance. We used the maximum as an estimate of a
system’s “worst case.” The worst case is an important measurement for real-
time systems because real-time systems must be designed with the assumption
that the system will always deliver the worst possible performance, even though
designing to that assumption is wasteful since typical times are usually near the
best case [15].

For these experiments, the observed maximum in a sample size of 10,000
observations was used to estimate the worst case for each message size. A sample
size at least this large was necessary to observe a reasonable estimate for the
maximum latency because the maximum values tended to be extremely low-
probability events. The range of the observations (maximum − minimum), or
jitter was also used as another measure of a system’s predictability.

5.3 Typical Performance: Comparison of RTZen on jRate; TAO,
JacORB on Sun JVM; and RTZen on Sun JVM

The test case used here has a single thread running on the client side, sending
variable-size octet sequences to the server side. The size ranged from 32 bytes
to 1024 bytes.

RTZen: Highly Predictable, Real-Time Java Middleware 241

 100

 1000

 10000

102451225612832

N
um

be
r

of
 c

al
ls

 /
se

co
nd

Message size [bytes]

RTZen on jRate
TAO

JacORB on Sun JVM with default garbage collector
Simulated RTZen on Sun JVM with default garbage collector

Fig. 6. Typical Performance: Comparison of RTZen on jRate; TAO, JacORB on Sun
JVM; and RTZen on Sun JVM

Comparison of RTZen on Sun JVM to JacORB on Sun JVM. Java developers
in non-real-time domains can afford to be careless about memory management
because of the existence of the garbage collector. The process of memory house-
keeping — allocating memory and cleaning it after it is used — creates overhead
that can slow an application substantially. RTSJ developers, on the other hand,
do not have the luxury of depending on a garbage collector for memory reuse,
and must instead be more heedful of memory usage. Section 4 described the
careful memory management design in RTZen. Along with the obvious effect
of improved predictability, yet another consequence of careful memory manage-
ment is improved performance. This would be shown by the fact that the typical
performance of RTZen is better than JacORB’s.

To measure this performance improvement, we compared RTZen with
JacORB [6], a widely used Java-based ORB. Both ORBs were tested on the
standard Sun non-real-time JVM detailed above. In this case, RTZen used its
Mock RTSJ classes (Section 4.5), so all scopes and immortal memory regions
were therefore simulated as heap memory, and all allocations in those regions
were subject to garbage collection.

The performance of JacORB was measured using the four types of garbage
collectors (default, throughput, concurrent low pause, and incremental) sup-
ported by the JVM [28]. JacORB obtained its highest throughput with the
throughput garbage collector, shown in Fig. 6. Note that, in the same conditions,
RTZen significantly outperforms JacORB. Thus, the test shows the performance
improvement gained from the extensive memory reuse (memory pools) and other
performance enhancing techniques in RTZen (Section 4.3).

Comparison of RTZen on Sun JVM and RTZen on jRate. Figure 6 shows that
RTZen on jRate performs about 30% slower than RTZen on Sun JVM. On the Sun
JVM, RTZen uses the heap instead of the scoped memory and immortal memory

242 K. Raman et al.

regions; thus it does not incur any RTSJ scoped region traversal or access/alloca-
tion check penalties. In addition, jRate is not an optimizing compiler, so it gener-
ates unoptimized code; jRate also uses an open-source implementation of the Java
API libraries which may not have been optimized. This measurement provides an
approximate idea of the overhead introduced by RTSJ over normal Java.

Comparison of RTZen on jRate and TAO. We used TAO as our baseline mea-
surements for RTZen performance. TAO was written in C/C++ and thus pro-
vides a good approximation of the highest performance possible by a Real-Time
CORBA ORB. Figure 6 shows that RTZen is slower than TAO; however, con-
sidering the overhead of RTSJ and Java VMs discussed above, RTZen compares
favorably to TAO.

5.4 Consistency: Comparison of RTZen on jRate to JacORB on
Sun JVM

We next compared the round-trip latency jitter of RTZen and JacORB. JacORB
was run on the Sun JVM with the default garbage collector, on which JacORB
obtained its narrowest jitter; RTZen was run on jRate. Although the platforms
were different, the measurements show the performance that can be expected
from these ORBs on the platforms for which they were designed. Since perfor-
mance was more or less equivalent across different message sizes, as shown in
Fig. 6, we compared the two ORBs for a message size of 128 bytes. Figure 7
shows the distribution of the round-trip latency values with the maximum and
minimum bound indicated, as well as the circle to represent the median value.
From Fig. 7 we can see RTZen is highly predictable compared to JacORB, with
the jitter value of 90 μs and 9770 μs respectively; RTZen’s maximum value is
close to its median. Also, RTZen has not achieved this predictability by unduly
degrading performance. Notably, RTZen’s typical performance and predictabil-
ity, as measured by the worst case observed, are within the range of time units
typically used for distributed real-time systems (10 ms) [15]. These jitter values
were expected and highlight the predictability gained by developing in RTSJ.

5.5 Typical Performance and Consistency: RTZen on jRate with
Variable Message Size

Figure 8 shows that RTZen is predictable across varying message sizes. RTZen
performs within round-trip latency jitter of around 200 μs in all cases, which is
better than the distributed real-time application requirements of 10 ms [15].

While satisfying the jitter requirement, RTZen’s typical performance stays
roughly constant even when message size increases. Throughput increases mini-
mally (about 20 μs) as the message size increases from 32 bytes to 1024 bytes.
Once the message size exceeds the allocated buffer limit (1024 bytes), the round-
trip latencies increase slightly (about 50 μs, about 8%). RTZen allows applica-
tion developers to configure the message buffer size to customize performance
and predictability as required.

RTZen: Highly Predictable, Real-Time Java Middleware 243

RTZen on jRate JacORB on Sun JVM
0

2000

4000

6000

8000

10000

12000

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
s]

Fig. 7. Consistency: Comparison of
RTZen on jRate and JacORB on
Sun JVM

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 760

102451225612832

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
]

Message size [bytes]

Fig. 8. Consistency: RTZen on jRate with variable
message sizes

5.6 Consistency: Comparison of RTZen on jRate and TAO

To compare the round-trip latency jitter of RTZen and TAO, we set up a test
case running two client threads. The purpose of this experiment was to test the
jitter bounds of both ORBs and to show that RTZen can be set up with NHRTTs
that are not interrupted by the garbage collector. The first thread was run at the
highest CORBA priority, while the second thread was run at the lowest CORBA
priority. The low priority thread performed a long operation; the high priority
thread performed a short action which would interrupt the lower priority thread.
In RTZen, the high priority was a NHRTT, and the low priority thread was a
RTT. The RTT was also set up to allocate data on the heap to generate some
garbage data which would be reclaimed by the garbage collector.

Figure 9 shows a comparison of jitter measurements on the high priority
thread with RTZen and TAO running. Although RTZen is still slower than TAO,
the jitter of the high-priority task in RTZen is similar to TAO’s. These perfor-
mance and jitter measurements demonstrate RTZen’s ability to accommodate
real-time requirements.

RTZen on jRate TAO
400

600

800

1000

1200

1400

1600

1800

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
s]

Fig. 9. Consistency: Comparison of RTZen on jRate and TAO

244 K. Raman et al.

6 Related Work

During the last decade, a considerable amount of standardization [29] and re-
search [30,31,32,33,34] work has been done on CORBA, and some results derived
from this work have been incorporated in various ORBs available today, both
commercial [35,36] and open-source [37,6,38].

Additionally, significant efforts have been carried out to enhance the pre-
dictability and performance of CORBA and make it suitable for DRE sys-
tems. The research community has determined the strengths and limitations of
CORBA as foundation for DRE systems [39,40], and based on them, researchers
have proposed i) software architecture designs [25,23], ii) scheduling approaches
and mechanisms [41,42,43], iii) techniques for improving quality of service [44,24],
iv) extensions for real-time network protocols [25,45,46,47], v) the adaptation of
CORBA services [48,49], vi) techniques for tailoring CORBA ORBs to compu-
tational platforms under stringent resource constraints [50,51,13], and vii) mod-
eling and verification methods [52]. Meanwhile, the Object Management Group
has produced the Real-Time CORBA specifications [53,17].

Several Real-Time CORBA implementations exist as of this writing. Per-
haps the most well-known is TAO [21,54], a popular open-source ORB compli-
ant with most of the features and services defined in CORBA 3.x [55]. Built
on top of TAO is CIAO [56], a CORBA Component Model (CCM) implemen-
tation for developing component-oriented DRE systems. ROFES [57] is a mini-
mal memory footprint prototype of Real-Time CORBA. It has been adapted to
work with several different hard real-time networks, including SCI [45], CAN,
ATM, and an Ethernet-based time-triggered protocol [46]. Commercial Real-
Time CORBA implementations are also available: OpenFusion e*ORB C Edi-
tion for Real-time [58] from PrismTech, ORBexpress RT [59] from Objective
Interface Systems, and VisiBroker-RT [60] from Borland Software Corporation.
Very recently, PrismTechnologies and Objective Interface Systems announced
Real-Time CORBA compliant ORBs for RTSJ: OpenFusion RT for Java and
ORBexpress RT for Java, respectively.

Java Remote Method Invocation (RMI) [61] is a mechanism for developing
object-oriented distributed systems in Java, and there is some progress adapting
RMI so that RTSJ supports timely invocation of remote objects [62]. Stan-
dard Java RMI has become more compatible with CORBA, in particular due to
RMI/IIOP, a form of RMI that uses IIOP as the underlying protocol. RMI/IIOP
holds promise to evolve into a bridge to RT-CORBA.

7 Conclusion

Memory management is a vital part of any RTSJ application. The RTZen ar-
chitecture addresses the memory allocation and scoping issues related to imple-
menting a Real-Time CORBA ORB using RTSJ. It provides a solid foundation
for further research into implementations of Real-Time CORBA services and
applications based on Java. Such research would incorporate RTSJ scheduling

RTZen: Highly Predictable, Real-Time Java Middleware 245

features into the RTZen scheduling service and provide support for custom con-
figuration of RTZen to minimize its memory footprint for smaller embedded
applications. Further research is also needed for adapting RTZen to Java virtual
machines that support a real-time garbage collector.

In its current state, however, RTZen fulfills the essential goals of real-time
distributed systems: predictability, specification compliance, high performance,
minimal user complexity, customizability, and efficient use of memory. Our work
proves that the RTSJ and Real-Time CORBA specifications can be integrated
into a single middleware architecture that combines the advantages of each.

Acknowledgments

The authors thank Susan Anderson Klefstad for significant revision work and
suggestions and Morgan Deters for timely jRate bug fixes. Juan A. Colmenares
thanks the University of Zulia (LUZ) for supporting his participation in this
research.

References

1. Schmidt, D.C.: R&D Advances in Middleware for Distributed, Real-time, and
Embedded Systems. Communications of the ACM. Special Issue on Middleware
45 (2002) 43–48

2. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

3. Schmidt, D.C., Vinoski, S.: The History of the OMG C++ Mapping. C/C++
Users Journal (2000)

4. Schmidt, D.C., Vinoski, S.: Standard C++ and the OMG C++ Mapping. C/C++
Users Journal (2001)

5. ZeroC, I.: The Internet Communications EngineTM . www.zeroc.com/ice.html
(2003)

6. Gerald Brose and André Spiegel and Reimo Tiedemann et al.: Jacorb.
http://www.jacorb.org/ (2004)

7. Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, Turnbull: The Real-Time Specifi-
cation for Java. Addison-Wesley (2000)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

9. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley
& Sons, New York (2000)

10. Benowitz, E.G., Niessner, A.F.: A patterns catalog for RTSJ software designs. In:
Lecture Notes in Computer Science. Volume 2889., OTM 2003 Workshops (2003)
497–507

11. Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-time java scoped memory: Design
patterns and semantics. In: 7th IEEE Int’l Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2004). (2004) 101–110

12. Corsaro, A., Santoro, C.: Design patterns for RTSJ application development. In:
Lecture Notes in Computer Science. Volume 3292., OTM 2004 Workshops (2004)
394–405

246 K. Raman et al.

13. Klefstad, R., Rao, S., Schmidt, D.C.: Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-time CORBA. In: Pro-
ceedings of the 36th Annual Hawaii Int’l Conference on System Sciences. (2003)

14. Corsaro, A., Schmidt, D.C.: The Design and Performance of the jRate Real-Time
Java Implementation. In Meersman, R., Tari, Z., eds.: On the Move to Meaningful
Internet Systems 2002: CoopIS, DOA, and ODBASE, Berlin, Lecture Notes in
Computer Science 2519, Springer Verlag (2002) 900–921

15. Dibble, P.C.: Real-Time Java Platform Programming. Prentice Hall (2002)
16. Klefstad, R., Schmidt, D.C., O’Ryan, C.: Towards highly configurable real-time

object request brokers. In: Proceedings of the 5th IEEE Int’l Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2002). (2002) 437–447

17. Object Management Group: Real-Time CORBA (Dynamic Scheduling). 2.0 edn.
(2003)

18. Klefstad, R., Krishna, A.S., Schmidt, D.C.: Design and Performance of a Modu-
lar Portable Object Adapter for Distributed, Real-Time, and Embedded CORBA
Applications. In: Proceedings of the 4th Int’l Symposium on Distributed Objects
and Applications. (2002)

19. Krishna, A., Klefstad, R., Schmidt, D.C., Corsaro, A.: Towards predictable real-
time Java object request brokers. In: Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTTAS 2003). (2003) 49–56

20. Krishna, A., Schmidt, D.C., Klefstad, R.: Enhancing real-time CORBA via real-
time java features. In: Proceedings of the 24th Int’l Conference on Distributed
Computing Systems (ICDCS 2004). (2004) 66–73

21. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the TAO real-time object
request broker. Computer Communications 21 (1998) 294–324

22. Gokhale, A., Schmidt, D.C.: Techniques for optimizing CORBA middleware for
distributed embedded systems. In: Proceedings of the 18th Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM ’99).
Volume 2. (1999) 513–521

23. Pyarali, I., Spivak, M., Cytron, R., Schmidt, D.C.: Evaluating and optimiz-
ing thread pool strategies for real-time CORBA. In: Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES ’01). (2001) 214–222

24. Pyarali, I., Schmidt, D.C., Cytron, R.: Techniques for Enhancing Real-time
CORBA Quality of Service. Proceedings of the IEEE 91 (2003) 1070–1085

25. O’Ryan, C., Kuhns, F., Schmidt, D.C., Othman, O., Parsons, J.: The design and
performance of a pluggable protocols framework for real-time distributed object
computing middleware. In: IFIP/ACM Int’l Conference on Distributed Systems
Platforms (Middleware ’00). (2000) 372–395

26. Gorappa, S., Colmenares, J.A., Jafarpour, H., Klefstad, R.: Tool-based configura-
tion of real-time corba middleware for embedded systems. In: Proceedings of the
8th IEEE Int’l Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2005). (2005)

27. Corp., T.: TimeSys Linux GPL 4.1. www.timesys.com (2004)
28. Sun Microsystems, I.: Tuning garbage collection with the 1.4.2 java[tm] virtual

machine. (2003)
29. Object Management Group: Catalog of OMG Specifications.

http://www.omg.org/technology/documents/spec catalog.htm (2005)
30. Gokhale, A., Schmidt, D.C.: Principles for Optimizing CORBA Internet Inter-ORB

Protocol Performance. In: Proceedings of the 31st Annual Hawaii Int’l Conference
on System Sciences. Volume 7. (1998) 376–385

RTZen: Highly Predictable, Real-Time Java Middleware 247

31. Arulanthu, A.B., O’Ryan, C., Schmidt, D.C., Kircher, M., Parsons, J.: The Design
and Performance of a Scable ORB Architecture for CORBA Asynchronous Mes-
saging. In: Proceedings of the IFIP/ACM Int’l Conference on Distributed Systems
Platforms (Middleware 2000). (2000) 208–230

32. Mishra, S., Shi, N.: Improving the Performance of Distributed CORBA Applica-
tions. In: Proceedings of the Int’l Parallel and Distributed Processing Symposium
(IPDPS 2002). (2002) 36–41

33. Alberto Coen Porisini, Matteo Pradella, Matteo Rossi, Dino Mandrioli: A formal
approach for designing CORBA-based applications. ACM Transaction on Software
Engineering and Methodology 12 (2003) 107–151

34. Majumdar, S., Shen, E.K., Abdul-Fatah, I.: Performance of adaptive CORBA
middleware. Journal of Parallel and Distributed Computing 64 (2004) 201–218

35. Borland Software Corporation: Borland Enterprise Server, VisiBroker Edition.
http://www.borland.com/visibroker/ (2005)

36. IONA Technologies: Orbix 6.2. http://www.iona.com/products/orbix/ (2005)
37. McConnell, S., Pedersen, J., Evans, J.S., Kühne, L., Rumpf, M., Boyce, S., Wood,

C.: Openorb community project. http://sourceforge.net/projects/openorb/ (2004)
38. Puder, A.: Mico: An open source corba implementation. IEEE Software 21 (2004)

http://www.mico.org/.
39. Gokhale, A., Schmidt, D.C.: Evaluating CORBA latency and scalability over high-

speed ATM networks. In: Proceedings of the 17th Int’l Conference on Distributed
Computing Systems (ICDCS ’97). (1997) 401–410

40. O’Ryan, C., Schmidt, D.C., Kuhns, F., Spivak, M., Parsons, J., Pyarali, I., Levine,
D.L.: Evaluating policies and mechanisms for supporting embedded, real-time
applications with CORBA 3.0. In: Proceedings of the 6th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS 2000). (2000) 188–197

41. Gill, C.D., Levine, D.L., Schmidt, D.C.: The Design and Performance of a Real-
Time CORBA Scheduling Service. Real-Time Systems 20 (2001)

42. Dipippo, L.C., Wolfe, V.F., Esibov, L., Cooper, G., Bethmangalkar, R., Johnston,
R., Thuraisingham, B., Mauer, J.: Scheduling and priority mapping for static
real-time middleware. Real-Time Systems 20 (2001) 155–182

43. Hao, T., Zhigang, L., Jinde, L.: An end-to-end scheduling approach for real-time
CORBA. In: Proceedings of the 2002 IEEE Region 10 Conference on Comput-
ers, Communications, Control and Power Engineering (TENCON ’02). Volume 1.
(2002) 318–322

44. Zinky, J.A., Bakken, D.E., Schantz, R.: Architectural Support for Quality of Service
for CORBA Objects. Theory and Practice of Object Systems 3 (1997) 1–20

45. Lankes, S., Pfeiffer, M., Bemmerl, T.: Design and Implementation of a SCI-based
Real-Time CORBA. In: Proceedings of the 4th IEEE Int’l Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2001). (2001) 23–30

46. Lankes, S., Jabs, A., Reke, M.: A time-triggered ethernet protocol for real-time
corba. In: Proceedings of the 5th IEEE Int’l Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2002). (2002) 215–222

47. Lankes, S., Jabs, A., Bemmerl, T.: Design and performance of a CAN-based
connection-oriented protocol for Real-Time CORBA. Journal of Systems and Soft-
ware 77 (2005) 37–45

48. Harrison, T.H., Levine, D.L., Schmidt, D.C.: The design and performance of a
real-time CORBA event service. In: Proceedings of the 12th ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’97). (1997) 184–200

248 K. Raman et al.

49. Hong, S., Kim, Y., Kweon, M., Min, D., Han, S.: Object-oriented real-time CORBA
naming service on distributed environment. In: Proceedings of the 12th Int’l Con-
ference on Information Networking (ICOIN-12). (1998) 637–640

50. Gokhale, A., Schmidt, D.C.: Optimizing a CORBA IIOP Protocol Engine for Min-
imal Footprint Multimedia Systems. Journal on Selected Areas in Communications
- Special issue on Service Enabling Platforms for Networked Multimedia Systems
17 (1999)

51. Kim, K., Geon, G., Hong, S., Kim, S., Kim, T.: Resource-conscious customization
of CORBA for CAN-based distributed embedded systems. In: Proceedings of the
3rd IEEE Int’l Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2000). (2000) 34–41

52. Rossi, M., Mandrioli, D.: A formal approach for modeling and verification of
rtcorba-based applications. In: Proceedings of the 2004 ACM SIGSOFT Int’l Sym-
posium on Software Testing and Analysis (ISSTA ’04). (2004) 263–273

53. Object Management Group: Real-Time CORBA (Static Scheduling). 1.2 edn.
(2005)

54. Schmidt, D.C.: TAO. Real-time CORBA with TAO (The ACE ORB).
http://www.cs.wustl.edu/ schmidt/TAO.html (2004)

55. Object Management Group: Common Object Request Broker Architecture: Core
Specification. 3.0.3 edn. (2004)

56. Schmidt, D.C.: CIAO. Real-time CCM with CIAO (Component Integrated ACE
ORB). http://www.cs.wustl.edu/ schmidt/CIAO.html (2004)

57. RWTH Aachen: ROFES. http://www.rofes.de (2005)
58. PrismTech Corporation: OpenFusion e*ORB C Edition for Real-time.

http://www.prismtechnologies.com (2005)
59. Objective Interface Systems, Inc.: ORBexpress RT. http://www.ois.com (2005)
60. Borland Software Corporation: VisiBroker-RT. http://www.borland.com/

visibroker/ (2005)
61. Sun Microsystems Inc.: Java Remote Method Invocation (Java RMI). http://java.

sun.com/products/jdk/rmi/ (2004)
62. Borg, A., Wellings, A.: A real-time RMI framework for the RTSJ. In: Proceedings

of the 15th Euromicro Conference on Real Time Systems. (2003)

Composite Subscriptions in Content-Based
Publish/Subscribe Systems

Guoli Li and Hans-Arno Jacobsen

Middleware Systems Research Group, University of Toronto,
Toronto, ON, Canada

Abstract. Distributed publish/subscribe systems are naturally suited
for processing events in distributed systems. However, support for ex-
pressing patterns about distributed events and algorithms for detecting
correlations among these events are still largely unexplored. Inspired
from the requirements of decentralized, event-driven workflow process-
ing, we design a subscription language for expressing correlations among
distributed events. We illustrate the potential of our approach with a
workflow management case study. The language is validated and imple-
mented in PADRES. In this paper we present an overview of PADRES,
highlighting some of its novel features, including the composite subscrip-
tion language, the coordination patterns, the composite event detection
algorithms, the rule-based router design, and a detailed case study il-
lustrating the decentralized processing of workflows. Our experimental
evaluation shows that rule-based brokers are a viable and powerful al-
ternative to existing, special-purpose, content-based routing algorithms.
The experiments also show that the use of composite subscriptions in
PADRES significantly reduces the load on the network. Complex work-
flows can be processed in a decentralized fashion with a gain of 40%
in message dissemination cost. All processing is realized entirely in the
publish/subscribe paradigm.

1 Introduction

In distributed applications large numbers of events occur. In isolation these
events are often not too interesting or useful. However, as correlations over
time, for example, these events may represent interesting and useful information.
This information is important for coordinating activities in a distributed system.
Workflow processing and business process execution, where different stages of the
flow or process execute on distributed nodes, are examples of distributed appli-
cations generating potentially huge numbers of events. The efficient correlation
of these events reveals information about the status of the workflow. Events in
a workflow could be the initiation, the termination, or the status of a task.

Distributed publish/subscribe systems are well-suited to handle large num-
bers of events. A publish/subscribe system is comprised of information producers
who publish and information consumers who subscribe to information. The key
benefit of publish/subscribe for distributed event-based processing is the natural
decoupling of publishing and subscribing clients. This decoupling can enable the

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 249–269, 2005.
c© IFIP International Federation for Information Processing 2005

250 G. Li and H.-A. Jacobsen

design of large, distributed, loosely coupled systems that interoperate through
simple publish and subscribe-style operations.

However, current publish/subscribe approaches lack the ability to address
event correlation and enable the coordination of activities associated with dis-
parate clients in the content-based network. In order to allow publish/subscribe
to support such distributed applications, first, an appropriate subscription lan-
guage needs to be designed which offers a suitable view over available events
to enable coordination. Second, event correlation requires the detection of dis-
tributed events. In publish/subscribe this is based on routing subscriptions and
publications throughout the broker network and on efficient composite event
detection algorithms realized on a single publish/subscribe broker.

Some work on detecting composite events in distributed publish/subscribe
systems is starting to appear [21,22,5]. However, these approaches are mainly
focusing on the design of the subscription language and do not address the event
correlation problem central to our approach. We have developed an expressive
content-based subscription language that is derived from the requirements of
event-driven, decentralized workflow management and business process execu-
tion scenarios. To validate our approach we have implemented the language in
PADRES (Publish/subscribe Applied to Distributed REsource Scheduling), a
novel distributed, content-based publish/subscribe messaging system, and have
built all the necessary infrastructure to support the deployment, monitoring,
and execution of workflows and business processes. In essence, we have realized
a decentralized workflow management and execution environment that builds
directly on top of a standard publish/subscribe interface.

PADRES’s subscription language is fully content-based, includes notions to
express time, supports variable bindings, coordination patterns, and composite
subscriptions. Composite subscriptions offer a higher level view for subscribers by
enriching the expressiveness of the subscription language. A composite subscrip-
tion consists of several atomic subscriptions linked by logical or temporal oper-
ators. An atomic subscription refers to the traditional notion of a subscription
in publish/subscribe and is matched by a single publication event; a composite
subscription is matched by a set of independent events potentially occurring at
different locations and times. PADRES is based on a rule-based broker that im-
plements composite event detection and introduces a novel distributed algorithm
for composite subscription routing.

Support for composite subscriptions is essential for applications where it
is impossible to detect a particular condition from isolated atomic events. For
example, in workflow management systems, tasks can only be executed if cer-
tain conditions are met. A given task may require that two other tasks have
successfully completed and a certain timing constraint is met. We will show
experimentally that supporting composite subscriptions in content-based pub-
lish/subscribe systems has two key advantages. First, subscribers receive fewer
messages and network traffic is reduced. Without composite subscriptions, the
subscriber must subscribe to all the corresponding atomic events in order to
receive the necessary information. The subscriber would be overwhelmed by an

Composite Subscriptions in Content-Based Publish/Subscribe Systems 251

excessive amount of atomic events, most of which may be irrelevant and could
be filtered out before reaching the subscriber. Second, the overall performance
of the publish/subscribe system is improved by detecting composite events in
the network, rather than at the edge of the network. Moreover, composite sub-
scriptions reduce the complexity of subscriber components.

The rest of this paper is organized as follows. Section 2 presents background
material and related work. An overview of PADRES is given in Section 3. Sec-
tion 4 presents the PADRES subscription language, composite subscription rout-
ing and composite event detection in detail. A workflow management system case
study built on PADRES is discussed Section 5. An experimental evaluation of
PADRES and its potential for workflow management is presented in Section 6.

2 Background and Related Work

Content-based Routing. Content-based publish/subscribe systems typically
utilize content-based routing in lieu of the standard address-based routing. Since
publishers and subscribers are decoupled, a publication is routed towards the
interested subscribers without knowing specifically where subscribers are and
how many subscribers exist. The content-based address of a subscriber is the set
of subscriptions issued by the subscriber. There are several interesting projects
dealing with content-based routing, such as SIENA [3], REBECA [18], JEDI [6],
Hermes [20] and Gryphon [19]. Covering and merging-based routing, which are
optimizations for content-based routing, are discussed in SIENA [3], JEDI [6],
REBECA [18], and PADRES [15]. In addition to publications and subscriptions,
content-based routing can use advertisements [18,3], which are indications of
the data that publishers will publish in the future. Advertisements are used
to form routing paths along which subscriptions are propagated. Without ad-
vertisements, subscriptions must be flooded throughout the network. PADRES
adopts the publication-subscription-advertisement model for content-based rout-
ing and suggests several novel features not realized in existing approaches. The
novel features of PADRES discussed in this paper include a rule-based router
design, algorithms to support composite subscription routing, composite event
detection, coordination patterns for expressing workflows and business processes,
and support for the decentralized deployment and execution of workflows and
business processes.

Composite Events. An event is defined as a state transition. In the pub-
lish/subscribe literature, events describe state transitions of interest to sub-
scribers. Events are often synonymously referred to as publications1. A sub-
scription captures the interest of a subscriber to be informed about possible
events. We generically refer to subscriptions, publications, and advertisement as
messages, if no distinction is required.

A composite event refers to a pattern of event occurrences of interest to a
subscriber. These patterns may express temporal or causal relationships between
1 One could further distinguish between the state transition (i.e., event) and the pub-

lished information that reports on the transition (i.e., the publication).

252 G. Li and H.-A. Jacobsen

different events. A pattern is matched, if the specified events have occurred,
subject to optional timing constraints. Since several events are involved in the
matching of a single subscription pattern the matching engine has to store partial
matching states. In the literature, the term composite event has been used to
refer to a subscription that expresses the pattern defining a composite event.
To make the difference between the state transitions (i.e., the events) and the
actual interest specification clearer, when discussing our work, we use the term
composite subscription to refer to the pattern and use composite event to mean
the distributed state transitions of relevance for the subscriber of the composite
subscription. Also to distinguish composite subscriptions from traditional, non-
composite subscriptions, we refer to the latter as atomic subscriptions.

The earliest approaches for enabling the processing of composite events were
rule-based production systems established in artificial intelligence. One of the
most widely used matching algorithms, the Rete algorithm is used in many
expert systems today [9]. Rete compiles rules into a network. The design of
Rete trades off space for processing efficiency. The Java Expert System Shell
(Jess) [10] is a rule-based matching engine based on the Rete algorithm. Our
PADRES broker is based on Jess. The Publication Routing Table (PRT) and
Subscription Routing Table (SRT) are two Jess engines. We show how content-
based publish/subscribe messages (i.e., subscriptions, composite subscriptions,
publications, and advertisements) can be mapped to rules and facts processed
by Rete-type rule engines.

Many early approaches for composite event processing relate to active
databases and are based on centralized evaluation schemes [12,11,16,13,17,4].
These projects differ primarily in the mechanism used for event detection.
Ode [12] uses a finite automaton and SAMOS [11] uses a Petri Net. Other ap-
proaches use trees as the data structure for representing and detecting composite
events. The main reason for adopting trees is that they are simple and intuitive
for representing composition. The traversal and manipulation of trees have been
thoroughly studied in the past, and a large number of efficient algorithms have
been developed [16,13,1,17]. GEM [16] and READY [13] are projects using tree-
based approaches to process incoming events. Atomic events are leaf nodes and
operators are inner nodes in the tree structure. The composite event is repre-
sented by the root of the tree. The main limitation of GEM is each composite
event has its own tree, and identical subtrees cannot be shared among composite
event trees. Similar to GEM and READY, EPS (Event Processing Service) [17]
provides a tree-based event specification language. EPS alleviates the limitation
of GEM by using a shared subscription tree to process incoming events. Snoop [4],
also a tree-based approach, provides an expressive composite event specification
language with temporal support. Snoop introduces the notion of consumption
policies called contexts. They are used to capture application semantics by re-
solving which events are consumed from the event history for composite event
detection in case of ambiguity. Composite subscriptions in PADRES are also
represented by trees. Unique to PADRES is the mapping of atomic and com-
posite subscriptions to rules and the support of full content-based, composite

Composite Subscriptions in Content-Based Publish/Subscribe Systems 253

subscriptions. The rule-based processing has been thoroughly studied, leading
to a large number of efficient algorithms for rule/fact matching. The rule-based
approach employed in PADRES takes advantage of the existing research for the
PADRES broker design. PADRES also supports a tree decomposition algorithm
for composite subscription routing.

The specification and detection of composite events in the context of pub-
lish/subscribe systems has recently become an important research area [21,22,5].
Hermes [20] and Gryphon [19] provide parameterized atomic events to enrich the
expressiveness of subscriptions. Courtenage [5] specifies composite events based
on the λ-calculus. The approach lacks support for temporal constraints. CEA [21]
proposes a Core Composite Event Language to express event patterns that occur
concurrently. CEA constitutes a composite event detection framework built as
an extension of an existing publish/subscribe middleware platform. The CEA
language is compiled into automata for distributed event detection supporting
regular expression-type patterns. CEA employs policies to ensure that mobile
event detectors perform distributed event detection at favorable locations, such
as close to event sources. REBECA [22] describes composite events using com-
posite event filter expressions, which can be mapped to expressions of the Core
Composite Event Language [21]. The subscription language design of PADRES
has been inspired from requirements set forth by workflow and business process
description languages and the requirements of distributed execution of these
processes. Unique to PADRES is the use of variables in subscriptions to join
atomic events. PADRES also supports language elements to express dependen-
cies and condition-based repetition relationships of activities (i.e., while loops).
Architecturally different from existing approaches, PADRES builds the compos-
ite subscription processing and composite event detection capability into the
publish/subscribe layer.

3 PADRES System Description

The PADRES system consists of a set of brokers connected by a peer-to-peer
overlay network. Clients connect to brokers using various binding interfaces such
as Java Remote Method Invocation (RMI) and Java Messaging Service (JMS).
Each PADRES broker employs a rule-based engine to route and match pub-
lish/subscribe messages, and is used for composite event detection. An overview
of PADRES is provided in [8]. This paper focuses on the specification, detec-
tion, and use of composite events. PADRES provides four other novel features
as well: monitoring support, historic query capability, fault detection and re-
pair, and load balancing. A monitor module, which is an administrative client in
PADRES, could display the broker network topology, trace messages, and mea-
sure the performance of the broker network. The historic data access module
allows clients to subscribe to both future and historic publications. The fault
tolerance module detects failures in the publish/subscribe layer and initiates
failure recovery. The load balancing module handles the scenarios in which a
broker is overloaded by a large number of publishers or subscribers. The detail

254 G. Li and H.-A. Jacobsen

Fig. 1. Broker Network Fig. 2. Broker Architecture

of these features goes beyond the scope of this paper. Fig. 10 shows the protocol
stack of PADRES. This section discusses the architecture of PADRES for pro-
cessing of atomic subscriptions. The extension of PADRES to process composite
subscription and the case study applying composite subscription processing to
workflow management are discussed later.

3.1 Message Format

The PADRES subscription language is based on the traditional [attribute,
operator, value] predicates used in several existing content-based publish/
subscribe systems [3,18,19,7]. An atomic subscription is a conjunction of pred-
icates. For example, an atomic subscription in workflow management may
be ([class, =, job-status], [appl, =, payroll], [job-name, isPresent,
*]). The comma between predicates indicates the conjunction relation. This sub-
scription is matched by publications of all jobs involved in application payroll.
We support operators, such as =, >, <, ≥, ≤, and isPresent. The special op-
erator isPresent means an attribute could be any value in a given range. Each
subscription message has a mandatory tuple describing the class of the mes-
sage. The class attribute provides a guaranteed selective predicate for matching,
similar to the topic in topic-based publish/subscribe systems2. Other predicates
are constraints on particular attributes. Advertisements have the same format
as atomic subscriptions. Publications are sets of [attribute, value] pairs.
There is a match between a subscription and a publication if each predicate in
the subscription is satisfied by a corresponding [attribute, value] pair in the
publication. A match between a subscription and a advertisement means the sets
of publications matching the advertisement and the subscription are overlap.

3.2 Network Architecture

The overlay network connecting the brokers is a set of connections that form
the basis for message routing. The overlay routing data is stored in Overlay
2 The PADRES language is fully content-based based on a rich predicate language.

Composite Subscriptions in Content-Based Publish/Subscribe Systems 255

Routing Tables (ORT) at each broker. Specifically, each broker knows its neigh-
bors from the ORT. Message routing in PADRES is based on the publication-
subscription-advertisement model established by the SIENA project [3]. We as-
sume that publications are the most common messages, and advertisements are
the least common ones. A publisher issues an advertisement before it publishes.
An advertisement allows the publisher to publish a set of publications matching
this advertisement. Advertisements are effectively flooded to all brokers along
the overlay network. A subscriber may subscribe at any time. The subscrip-
tions are routed according to the Subscription Routing Table (SRT), which is
built based on the knowledge of advertisements. The SRT is essentially a list
of [advertisement,last hop] tuples. If a subscription overlaps an advertise-
ment in the SRT, it will be forwarded to the last hop broker the advertisement
came from. Subscriptions are routed hop by hop to the publisher, who adver-
tises information of interest to the subscriber. Meanwhile, the subscription will
be used to construct the Publication Routing Table (PRT). Like the SRT, the
PRT is logically a list of [subscription,last hop] tuples, which is used to
route publications. If a publication matches a subscription in the PRT, it will
be forwarded to the last hop broker of that subscription until it reaches the sub-
scriber. A diagram showing the overlay network, SRT and PRT is provided in
Fig. 1. In this figure, step 1) an advertisement is propagated from B1. Step 2)
a matching subscription enters from B2. Since the subscription overlaps the ad-
vertisement at broker B3, it is sent to B1. Step 3) a publication is routed along
the path established by the subscription to B2. A subscription/advertisement
covering and merging scheme [15] is used to optimize content-based routing by
reducing network traffic and routing table size, especially for applications with
highly clustered data.

3.3 Broker Architecture

The PADRES brokers are modular software components built on a set of queues:
one input queue and multiple output queues. Each output queue represents a
unique message destination. A diagram of the broker architecture is provided
in Fig. 2. The matching engine between the input queue and output queues is
built using Jess. It maintains the SRT and PRT, which are Rete trees [9]. For
example, in the PRT, subscriptions are mapped to rules, and publications are
mapped to facts, as shown in Fig. 3. An atomic subscription message is mapped
to the antecedent of a rule; the actions to be taken if the subscription is matched
are mapped to the consequent of the rule. The antecedent encodes the message
filter condition and the consequent encodes the notification semantic.

The matching between subscriptions and publications is transformed to the
matching between rules and facts, which is performed by the rule-based broker.
When a new message is received by the broker, it is placed in the input queue.
The matching engine takes the message from the input queue. If the message is a
publication, it is inserted into the PRT as a fact. When a publication matches a
subscription in the PRT, its next hop destination is set to the last hop of the sub-
scription, and it is placed into the corresponding output queue(s). If the message

256 G. Li and H.-A. Jacobsen

Fig. 3. Mapping Subscriptions/Publications to Rules/Facts

is a subscription, the matching engine first routes it according to the SRT, and,
if there is an advertisement overlapping the subscription, the subscription will
be inserted into the PRT as a rule. Essentially, the rule-based broker performs
matching and decides the next hop destinations of the messages as a router.
This novel rule-based approach allows for powerful subscription language and
notification semantics and naturally enables composites subscriptions.

4 Composite Subscription Processing

4.1 Composite Subscription Language

The composite subscription language is inspired by the requirements of workflow
management and business process execution. The language should be powerful
enough to eventually describe workflows defined using the Business Process Ex-
ecution Langauge (BPEL4WS) [14], which is a standard language for business
processes. PADRES supports parallelization, alternation, sequence and repetition
compositions. PADRES also supports variable bindings that serve to correlate
and aggregate publications by specifying constraints on attribute values between
different atomic subscriptions. A composite subscription is represented by a sub-
scription tree, where the internal nodes are operators and leaf nodes are atomic
subscriptions, as shown in Figure 4 (b).

The operator to represent the parallelization pattern is AND, denoted by the
symbol (&). The composite subscription (s1 & s2) is matched when both s1 and
s2 are matched, irrespective of their matching order. The operator & is to con-
nect two or more subscriptions, and it is different from the conjunction operator
between predicates in an atomic subscription that requires to be matched by
one publication. The alternation pattern represents the matching of any of two
specified subscriptions using operator OR, denoted as (‖). The composite sub-
scription (s1 ‖ s2) is satisfied when either s1 or s2 is matched by a publication.
Furthermore, composite subscriptions in PADRES can have variables bound to
values in the publications. Variables are represented by $ in subscription predi-
cates. Parenthesis are used to specify the priority of operators. In the example
below, the composite subscription consists of three atomic subscriptions, linked

Composite Subscriptions in Content-Based Publish/Subscribe Systems 257

using & and ‖, and requires the values of the attribute appl in the matching
publications to be equal. This is expressed using the variable symbol $X.

{Rule (((job-status (appl = $X) (job-name = A)(state = succ)) &
(job-status (appl = $X) (job-name = B)(state = succ)))||
(job-status (appl = $X) (job-name = C)(state = succ)))

=> (forward a notification to proper destinations)}

Events in applications may have sequential relations, that is, one event hap-
pens before the occurrence of another event. The sequence pattern describes this
kind of event relation. The composite subscription (s1;[timespan:ts] s2)[within:wi]
is matched when a publication p2 matching s2 occurs provided publication p1
matching s1 has already occurred. The timespan parameter specifies the mini-
mum time step of the two publications; the within parameter limits the maximum
time span between them. In the sequence pattern, a time predicate is added to
standard subscriptions. Suppose s1 and s2 subscribe to job A and job B respec-
tively, as in the previous example. The composite subscription is mapped to a
rule as described below. This pattern requires that the time p2 is published is
greater than that of p1.

{Rule ((job-status ...(job-name = A)(time = $Y)...) &
(job-status ...(job-name = B)(time > $Y+ts)(time < $Y+wi)))

=> (forward a notification to proper destinations)}

The repetition pattern describes an aperiodic or periodic event. PADRES
can describe the repetition events as Repetition(S, n, attr, v). It means
publications matching S happen n times and attribute attr increases by step v,
or decreases if v is negative. The iteration is controlled the value of attr with
step v. A repetition pattern can be mapped to a rule as below.

{Rule ((job-status ...(job-name = A)(attr = $Z)...) &
(job-status ...(job-name = A)(attr = $Z+v)...)&

... &
(job-status ...(job-name = A)(attr = $Z+(n-1)v)...))

=> (forward a notification to proper destinations)}

Composite subscriptions can be composed in a nested fashion using the above
operators to create more complex composite subscriptions. Mapping composite
subscriptions to rules consists of three steps: first, each atomic subscription is
mapped to part of the antecedent. Second, connect each part of the antecedent
using logical operators and variables. Third, activites to be taken after matching
are mapped to the consequent of the rule. In the PADRES broker, both atomic
and composite subscriptions are mapped to rules. That is, extending this sub-
scription language does not require significant changes in the matching engine.

4.2 Composite Subscription Routing

In a large-scale publish/subscribe system, publications are issued at geographi-
cally dispersed sites. A centralized composite event detection scheme constitutes
a potential bottleneck and consists of a single point of failure. All atomic pub-
lications have to be centrally collected in order to detect an occurrence of a

258 G. Li and H.-A. Jacobsen

Fig. 4. Composite Subscription Routing

composite event. Our distributed solution consists in detecting parts of an event
pattern and aggregating the parts. A notification message signifying the occur-
rence of the composite event is sent to the subscriber only after all the parts
are detected. The main difficulties of distributed event detection are routing
composite subscriptions, including where and how to decompose a composite
subscription, and routing the individual parts of the subscription. The loca-
tion of detection should be as close to publishers as possible to ensure that the
publications contributing to a given composite subscription are not unnecessar-
ily disseminated throughout the broker network. In other words, the composite
subscription should be forwarded to the publishers within the broker network as
far as possible before it is decomposed. As a result, bandwidth usage is reduced.
Following the example in Fig. 4 (a), suppose a composite subscription ((s1 &
s2) ‖ s3) arrives from broker 1, and its matching publications arrive from bro-
ker 3, 5, and 6. The composite subscription is split into parts along the routing
path, since the matching publications may arrive from different brokers. Atomic
subscriptions s1 and s2 are detected at broker 5 and 6 respectively and the de-
tection results are combined at broker 4 for (s1 & s2). Moreover, the detection
results could be shared among subscribers that have common subexpressions of
composite subscriptions in order to save bandwidth and computational effort.

Each atomic subscription in a composite subscription could find its destina-
tion(s) from SRT. If all atomic subscriptions have the same next hop destination,
a broker should forward the composite subscription as a whole to the destina-
tion; otherwise the composite subscription should be split into parts according to
different destinations, and each part should be forwarded to its own destination.
In Fig. 4 (b), since all matching publications are coming from broker 2, broker 1
routes the composite subscription as a whole. At broker 2 publications matching
s1 and s2 arrive from broker 4 according to the SRT, while s3’s publications will
arrive from broker 3. As a result, the composite subscription is split into two
parts: (s1 & s2) and s3. The first part is sent to broker 4, where it is split into
s1 and s2, and sent to broker 5 and 6 respectively. The second part s3 is routed
to broker 3. The routing scheme is to detect the event pattern matching a com-
posite subscription at a location which is as close as possible to the data sources.
A composite subscription is mapped to a rule, and a publication is mapped to
a fact at a single broker. The rule-based broker matches facts against rules and
decides where to route the notification if there is a match. Therefore, the broker

Composite Subscriptions in Content-Based Publish/Subscribe Systems 259

acts as both a message router and a composite event detector. The advantage
of using a rule-based matching engine is that it enables composite subscriptions
naturally without significant changes to the broker.

Composite subscriptions in PADRES are represented by a tree structure.
When a broker receives a composite subscription, it performs the following steps.
First, a destination tree is built bottom-up for the composite subscription ac-
cording to the SRT, which knows where all the atomic subscriptions came from.
Leaf nodes of the tree are destinations of atomic subscriptions; an internal node
is the destination of its child nodes if the two child nodes have the same desti-
nation, or null otherwise. If a node is null, all its parent nodes are null. Each
node in the composite subscription tree has a corresponding node in the des-
tination tree. The recursive algorithm for building such a tree is presented in
Fig. 5. The average time complexity of this algorithm is O(N) and the average
space complexity is O(N+logN), where N is the number of atomic subscrip-
tions in a composite subscription. Second, the composite subscription tree is
split according to its destination tree. The decomposition process of a compos-
ite subscription tree is top-down. If the destination of a node in the composite
subscription tree is null, the subscription represented by the node is split into
two parts, one for each child node. Otherwise the node and its subtree are kept
as a whole unit. The algorithm is given in Fig. 6. The time and space complex-
ity of this algorithm is the same as algorithm buildDestinationTree(cs). Last,
each part resulted from the decomposition is routed to its destination, and the
composite subscription is mapped to a rule and inserted into the PRT for later
event detection. The process happens at each broker on the routing path. As a
result, all the atomic subscriptions are routed to their destinations as specified
by the destination tree and the broker network is ready to detect composite
events in a distributed mode. Moreover, after composite subscriptions are split
into atomic subscriptions, the covering-based and merging-based routing tech-
niques can be applied to create compacted PRTs/SRTs at brokers and further
reduce the network traffic [18,15].

Fig. 5. Algorithm for Building a
Destination Tree

Fig. 6. Algorithm of Decomposing
a Composite Subscription

260 G. Li and H.-A. Jacobsen

There are several advantages of using distributed composite event detection.
Redundant detection is eliminated by sharing the detection results among sub-
scribers. For the overlapping expressions of composite subscriptions issued by
clients, the detection is executed once, and subscribers close to each other can
reuse the detection results. Distributed detection also reduces network traffic. A
composite subscription is forwarded into the network as far as possible before
it is split. As a result, the number of subscriptions injected into the network
does not increase significantly for composite subscriptions. Furthermore, com-
posite events are detected close to their data sources in the network and are not
widely disseminated. A single notification is sent after a match, instead of a set
of individual notifications for each matching publication, reducing the number
of publications routed in the federation.

4.3 Distributed Composite Event Detection

Each broker is an atomic/composite event detector. It processes a large number
of publications/subscriptions and maintains them as rules/facts in its matching
engine. The broker matches the rules against the facts. The occurrence of a com-
posite event is marked by the occurrence of the last event that completes the
composite event. When a publication is received, it is inserted as a fact. The fact
may match part of a rule, or several rules. Then the rule(s) are maintained in
the engine in a partial match state. If the fact does not fire a rule, the match-
ing engine updates the partial match state with the new fact. If the fact fires a
rule, that is, the fact makes a partially matched rule a full match then associated
composite subscription is satisfied. A notification message with a set of matching
publications, called a detection set, as its payload is issued as result. The main
problem in composite event detection is consuming the publications received by
the brokers, e.g. among all the matching publications what should go to the
detection set. To be more flexible, our matching engine provides all the possi-
ble combinations of matching publications. Consider the composite subscription
((s1 & s2) & s3), where si matches publication type eij , i=1 ∼ 3 and j is the
instance number of ei. Subscription is issued after e22. Our composite event de-
tection semantic is based on the constraint that at least one of the events in the
detection set must be issued after the composite subscription. This is to remain
compatible with standard publish/subscribe approaches, where subscriptions re-
fer to information published in the future. The subscription is inserted into the
PRT as a rule. The matching engine filters out the solution set < e11, e21, e31,
which is older than the subscription. The rule is partially matched in the match-
ing engine. Four possible composite event patterns matching the subscription
are given in Fig. 7 when e32 arrives.

4.4 Unsubscription of Composite Subscriptions

In PADRES, if a client wants to revoke a subscription, it issues an unsubscription
message. To maintain the consistency of routing tables in the broker network,
ack messages are used to ensure the unsubscription process is successful. An

Composite Subscriptions in Content-Based Publish/Subscribe Systems 261

Fig. 7. Event Consuming Fig. 8. Unsubscription

ack message is sent if a broker removes a subscription from its matching engine.
The unsubscription message is sent periodically every t1 ms until its ack is
received.3 When a broker receives an unsubscription, the following three steps
are performed: first, it checks the SRT to find the list of neighbor brokers to which
it previously routed the subscription (or part of the subscription). Second, if the
list is empty, it removes the subscription from its routing table, and sends back
an ack message. Otherwise, it splits the unsubscription if necessary, forwards
the unsubscription(s) to the brokers in the list, and waits for ack messages from
them. Last, the broker cannot safely delete the subscription until it collects all
the ack messages back from its neighbors. An ack message is sent back to the
broker/client who forwards the unsubscription. Fig. 8 shows an example of the
unsubscription process.

5 Case Study: Event-Based Workflow Management

A workflow management system performs coordinated execution of workflows.
A workflow, also called an application, is a set of business-related activities that
are invoked in a specific sequence to achieve a business goal. An activity is
a computer job, such as a Unix job, a Windows NT job or a database job,
which is executed by a job execution agent. The agents are distributed in the
network, working in coordination with each other. The workflow manager starts
an execution instance of a workflow by issuing a workflow trigger, a message
starting the execution of a workflow.

The publish/subscribe messaging paradigm efficiently supports the decentral-
ized execution of event-driven, loosely coupled applications, such as workflows
and business processes. Since routing is content-based, the workflow manager
does not need to maintain the address information of each job execution agent
and route the messages to and from agents, as those messages are automatically
delivered using content-based routing. Moreover, no centrical workflow manager
is required, as workflow processing is fully decentralized. Job execution agents are
lightweight components without special logic for workflow management. They
only need the capability to send and receive messages and execute jobs. The

3 If the ack does not arrive in t2 ms, we assume the neighbor broker has failed. A
fault tolerant module is called to recover SRTs/PRTs. The details are beyond the
scope of this paper.

262 G. Li and H.-A. Jacobsen

Fig. 9. Envelope Wrapper Message

agents are publish/subscribe clients, who subscribe and publish to exchange
information using the publish/subscribe network. PADRES, which introduces
composite subscriptions in addition to the standard publish/subscribe features,
illustrates the successful application of the publish/subscribe paradigm to work-
flow management. The overall architecture for supporting workflow processing
is shown in Fig. 10. The publish/subscribe-based workflow management sys-
tem includes four components: workflow transformation, workflow deployment,
workflow execution and workflow monitoring.

Workflow Transformation. Workflows are specified as XML documents de-
tailing the job execution information and the various dependencies between jobs.
The XML documents are converted into a set of subscriptions and advertise-
ments. Fig. 9 shows an example of a workflow consisting of four jobs. Job D
depends on job B and job C, respectively, subject to certain constraints, such
as time and resources. Composite subscriptions are used to express all job de-
pendencies and constraints. A job can be run only when its job dependency
subscription is matched. Advertisements enable job execution agents to publish
job status information after completing a job. In a workflow, the jobs that have
no predecessors are called start jobs, for instance, job A is a start job in payroll.
Start jobs subscribe to a workflow trigger.

Workflow Deployment. The goal of workflow deployment is to send the sub-
scriptions and advertisements generated from the workflow definition file to the
corresponding job execution agents. For example, the agent for job D should sub-
scribe to execution status information of job B and job C. To send job dependency
subscriptions to job execution agents, the workflow manager uses an envelope
wrapper4 message pattern to wrap the subscription inside an envelope message
that is complies with the publish/subscribe messaging paradigm. Each envelope
wrapper is a publication which indicates its destination agent. Agents receive
the wrapper messages by subscribing to the wrapper. For instance, agent D sub-
scribes to ([class,=,agent ctl],[agent,=,agent D]) in Fig. 9. As a result, agent D
receives the wrapper with a composite subscription embedded in the message.
Agents unwrap envelope messages by extracting the subscriptions from the en-
velopes, and issue them as their own subscriptions. The same process applies for
advertisements. As a result, the agents are ready to receive and publish work-

4 The class of the envelope wrapper message is agent ctl.

Composite Subscriptions in Content-Based Publish/Subscribe Systems 263

Fig. 10. PADRES Protocol Stack Fig. 11. PADRES System Monitor

flow execution information. This deployment process is performed entirely using
publish/subscribe interactions.

Workflow Execution. The job execution agents are both subscribers and
publishers. The dual roles enable them to exchange messages within the pub-
lish/subscribe messaging system, enabling a coordinated execution of the work-
flow. A particular instance of a workflow is started by a trigger. It fires all start
jobs. When these start jobs are finished, they trigger their subsequent jobs. Ex-
ecution continues until all the jobs defined in the workflow are finished. The
key to workflow execution is job dependency subscriptions, which determine the
order of execution of jobs. All the message routing is automatic and transparent
to the workflow management layer.

Workflow Monitoring. A workflow management system maintains a trace of
job executions and provides a control and monitoring interface. The monitor
may be a separate publish/subscribe client in Fig. 10. An important function of
a workflow management system is monitoring. Real-time monitoring fits directly
in the content-based publish/subscribe paradigm. The monitor simply subscribes
to job execution status information publications of a particular set of jobs. As a
result, when the job is completed, the monitor knows the execution status infor-
mation. PADRES also provides a graphical interface which allows the monitor
to visualize the network topology and message routing in order to gain an intu-
itive picture of the workflow execution as shown in Fig. 11. All the monitoring
functions are entirely based on the publish/subscribe layer’s primitives.

There are several advantages to use a publish/subscribe system for workflow
management. First, workflows are by nature event-driven. A workflow is started
by a trigger and is driven by publication messages of finished jobs. Control mes-
sages are automatically and transparently routed to the appropriate agents in
the publish/subscribe layer. Second, workflows are easily scalable to multiple
platforms, as the publish/subscribe architecture supports cross-platform appli-
cations in a distributed environment. Moreover, large-scale applications can be

264 G. Li and H.-A. Jacobsen

supported easily. Third, the management of workflow definitions is flexible. It
is easy to add, modify or delete jobs from a workflow. The modification can
be performed dynamically. Furthermore, job monitoring is a natural fit for the
publish/subscribe paradigm, since managers can subscribe to job execution in-
formation. Fourth, multiple workflows can be deployed into the broker federation
at the same time. Concurrent execution of several workflow instances is possi-
ble. Finally, the distributed application deployment provides a robust workflow
management mechanism. Deploying a workflow application into a distributed
network, instead of using a central manager to control the execution of the
workflow, avoids a single point of failure.

6 Evaluation

We implement PADRES in Java with JDK1.4.2 using Jess as a matching engine
and RMI as the native transport protocol. All our experiments are performed
on a computer with an Intel Xeon 3GHz processor and 2GB RAM, of which
1GB is allocated to the JVM. Due to lack of benchmarks or real application
data, we generate the subscriptions and publications using a workload generator
which produces the data by selecting between 3 and 6 attributes from a list of
twenty attributes {ai, i = 1...20} and selecting values from given value ranges,
[1..100] by default. We generate two kinds of data sets. Attributes and values
in the first data set are selected randomly following a uniform distribution. The
second data set follows a Zipf distribution, in which attributes are chosen from
the attribute set {ai, i = 1...20}, where the probability of selecting ai is 1

i ,
and value vi is chosen with the probability of 1

vi
. For evaluating the distributed

workflow management system, we deployed a distributed network of 5 overlay
brokers, one with 10 job agents and one with 30 job agents, each representing a
separate workflow. In our experimental evaluation we focus on proving the via-
bility of composite subscriptions to encode workflows and business processes and
the use of publish/subscribe for the decentralized execution of these workflows.
Furthermore, we aim to evaluate the performance and overhead associated with
composite event detection and the effect of composite subscriptions on network
traffic for the execution of workflows. A small network is fully sufficient for this
purpose. The evaluation of large-scale broker networks comprising hundreds of
nodes is deferred to future work.

Publication Matching Time. We generate 200,000 subscriptions and 5,000
publications for both uniform distribution and Zipf distribution to evaluate the
publication matching time of PADRES brokers. Fig. 12 shows the average match-
ing time of publications against atomic subscriptions. The matching time is given
using a logarithmic scale. Each data point is obtained by averaging the time
taken to process 5,000 publications. We compare our broker based on the Jess
rule-based matching engine with two other methods. One is a naive matching
algorithm which linearly scans the routing table to find the matched subscrip-
tions. The other is a matching algorithm that is similar to the predicate counting
algorithm [2]. This algorithm calculates distinct predicates only once. Our exper-

Composite Subscriptions in Content-Based Publish/Subscribe Systems 265

0.001

0.01

0.1

1

10

100

1000

0 50,000 100,000 150,000 200,000

Number of Subscriptions

R
ou

tin
g

T
im

e
(m

s)
(l

og
 s

ca
le

)

Naive Matching Algorithm

Predicate Counting

PADRES Broker with Random Data
PADRES Broker with Zipf Data

0

50

100

150

200

250

300

350

400

450

500

10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Number of Composite Subscriptions

N
um

be
r

of
 M

at
ch

in
g

Pu
bl

ic
at

io
ns

0.1

1

10

100

C
om

po
si

te
 S

ub
sc

ri
pt

io
n

M
at

ch
in

g
T

im
e(

m
s)

Number of Matched Pubs (Uniformly Distr.)

Number of Matched Pubs (Zipf Distr.)

Matching Time (Uniformly Distr.)

Matching Time (Zipf Distr.)

Fig. 12. Publication Matching Time Fig. 13. Composite Event Detection

iments show that the rule-based matching engine using a Rete network is very
efficient. It takes only 4.52ms to route a publication against 200,000 subscriptions
for both sets. The well-known Rete algorithm trades space for time. (Matching
a publication against 200,000 subscriptions, the PADRES broker uses 644MB
of memory while the predicate counting algorithm uses about 38MB memory
space.)5 The matching time does not increase significantly with an increase in
the number of subscriptions for both data sets. This indicates that the Rete-
based approach is suitable for large scale publish/subscribe systems and can
process a large number of publication and subscription messages efficiently.

Composite Subscription Matching Time. The performance of composite
subscription matching is shown in Fig. 13. We first inject 1,000 publications
into the broker, and then insert 2,000 composite subscriptions, each of which
consists of 3 atomic subscriptions. Fig. 13 shows the average detection time
per composite subscription against the publications and the number of matched
publications. Each data point in Fig. 13 represents the average detection time for
50 composite subscriptions. In the uniformly distributed data set, the number of
matched publications per composite subscription6 does not change significantly,
as a result, the composite subscription matching time is stable. In the Zipf data
set, more publications are matched and the composite subscription matching
time varies according to the number of matched publications. The results show
that, given the publication set, the detection time does not increase with the
number of composite subscriptions in the matching engine for both data sets.
The matching time is effected by the number of matched publications. That
is, the more publications match a subscription, the longer it takes the matching
engine to process the subscription. From the experiment, we notice that if there is

5 We maintain two Jess Retes in the matching engine as SRT and PRT. To support
composite subscription, publications are maintained in PRT as facts which consume
the space.

6 The matched publications maybe count multiple times in different detection sets.

266 G. Li and H.-A. Jacobsen

Table 1. Composite Subscription Routing Delay

Number of Atomic Subscriptions 2 3 4 5 6
Routing Delay (ms) 3.210 5.367 9.287 11.437 12.074

no publication matching a composite subscription, the matching engine stops the
matching in 0.01ms no matter how many composite subscriptions are resident in
the broker. The number of publications resident in the matching engine affects
the detection time as well. The larger the number of publications, the more
publications are matched, and the longer matching time it takes per composite
subscription.

Routing Delay. We route a composite subscription according to its destination
tree. The routing delay for a composite subscription at a broker includes the time
to build the destination tree and to split the composite subscription. Table. 1
shows that the routing delay increases with the number of atomic subscriptions
included in a composite subscription. This substantiates the time complexity
of the two algorithms we discussed in Section 4.2 are O(N), where N is the
number of atomic subscriptions in a composite subscription. The more complex
a composite subscription is, the longer it takes to route the subscription.

Network Traffic Overhead. Detecting composite events in the broker network
reduces the message traffic received by clients. We compare two scenarios. In the
first scenario, a client issues 200 composite subscriptions, each consisting of 5
atomic subscriptions. In the second scenario, instead of composite subscriptions,
the client issues the 1000 atomic subscriptions that make up the original 200
composite subscriptions. After 40,000 publications are injected into the broker
network, we measure the number of notifications received by the client in the
different scenarios, as shown in Fig. 14. The result shows that the number of
notifications sent to the client is greatly reduced by the composite subscriptions,
yielding an overall reduced message traffic. For this scenario, the reduction is up
to 65%.

Distributed Workflow Deployment and Execution. We measure the net-
work traffic overhead of a workflow deployment and execution to show the effect

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 10,000 20,000 30,000 40,000 50,000

Number of Publications

N
um

be
r

of
 N

ot
if

ic
at

io
ns

Without Composite Subscription

Composite Subscription

Fig. 14. Number of Notifications

0

500

1000

1500

2000

2500

3000

3500

Network Traffic
(KB)

W/t Composite Sub. 1582 3264

Composite Sub. 1084 2026

Workflow A (8 jobs) Workflow B (24 jobs)

Fig. 15. Workflow Traffic

Composite Subscriptions in Content-Based Publish/Subscribe Systems 267

of composite subscriptions for workflow processing. We design two workflows:
workflow A is a workflow with 8 jobs which includes the payroll example, a di-
amond workflow shown in Fig. 9, twice in sequence. Workflow B is a workflow
with 24 jobs, which is workflow A followed by 4 concurrent diamond workflows.
The manager dispatches the workflow to agents7., and the agents submit ad-
vertisements and subscriptions, which represent the job dependencies. Without
composite subscriptions, agents have to subscribe to several atomic subscrip-
tions instead of a single composite one. When a composite subscription issued
by an agent is matched, only one notification message is sent back to the agent,
as opposed to several individual atomic notifications. So more messages are dis-
seminated in the broker network. To simplify the measurements, we assume each
publication and subscription message is 1KB. We measure the traffic overhead
of the workflow deployment and 10 execution instances in Fig. 15. The results
show that composite subscriptions reduce the network bandwidth by about 40%
for both workflows.

7 Conclusions

In this paper, we introduce the PADRES project. PADRES is a distributed
publish/subscribe system building on and extending existing content-based rout-
ing approaches. PADRES offers an expressive subscription language, including
unique features such as composite subscriptions, various coordination patterns,
a notion of time and time-based subscriptions, and variable bindings. PADRES
fully integrates these features in a standard content-based subscription language.
The choice of language features has been derived from the requirements of work-
flow management and business process execution use cases. For example, struc-
tured coordination activities, such as sequence and while loops, today avail-
able in BPEL4WS, are expressible.

The PADRES brokers build on a rule-based approach to perform content-
based event matching and composite event detection. We present two algorithms
for composite subscription routing and distributed composite event detection.
The experimental evaluation of PADRES shows that the rule-based broker design
is an efficient alternative to existing content-based message routing, matching,
and distributed event detection algorithms. For example, the routing overhead
is on the order of a few milliseconds for hundreds of thousands of subscriptions.

A distributed, decentralized workflow management system based on
PADRES is presented to validate the approach. The case study proves the via-
bility of the approach and introduces the concepts of decentralized deployment,
execution, and monitoring of workflows entirely in the publish/subscribe layer.
Our experiments show that through the use of composite subscriptions, sub-
scribers receive less notification messages. As a result, the overall network traffic
overhead is reduced. The experiments for workflow management further substan-
tiate this conclusion by showing that more benefits are gained from composite
7 This is done through the publish/subscribe based injection mechanism described in

Section 5.

268 G. Li and H.-A. Jacobsen

subscriptions, for both workflow deployment and execution, leading to about
40% fewer messages overall.

Acknowledgements

We would like to thank the PADRES team for their help and feedback in car-
rying out this research. The team is currently comprised of Eli Fidler, Vinod
Muthusamy, Pengcheng Wan, Alex Cheung, and Serge Mankovski (Cybermation,
Inc.) Between May 2003 and April 2005, the PADRES project was supported
by Cybermation, Inc., CITO, and NSERC.

References

1. A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Reading,
MA: Addison-Wesley; 1983, 1983.

2. G. Ashayer, H. Leung, and H.-A. Jacobsen. Predicate matching and subscrip-
tion matching in publish/subscribe systems. In DEBS’02 Workshop at ICDCS’02,
Vienna, Austria, 2002.

3. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

4. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data and Knowledge Engineering, 14(1):1–26, 1994.

5. S. Courtenage. Specifying and detecting composite events in content-based pub-
lish/subscribe systems. In Proceedings of the 1st International Workshop on Dis-
tributed Event-Based Systems(DEBS’02), 2002.

6. G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9), 2001.

7. F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
SIGMOD Rec., 30(2):115–126, 2001.

8. E. Fidler, H.-A. Jacobsen, G. Li, , and S. Mankovski. Distributed publish/subscribe
for workflow management. International Conference on Feature Interactions in
Telecommunications and Software Systems (ICFI’05), Leisester, UK, 2005.

9. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17–37, 1982.

10. E. J. Friedman-Hill. Jess, The Rule Engine for the Java Platform.
http://herzberg.ca.sandia.gov/jess/.

11. S. Gatziu and K. R. Dittrich. Detecting composite events in active database sys-
tems using petri nets. In Proceedings of the 4th Intl. Workshop on Research Issues
in Data Engineering (RIDE): Active Database Systems, Houston, Texas, 1994.

12. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in
active databases: Model & implementation. In Proceedings of the 18th International
Conference on Very Large Data Bases, pages 327–338, 1992.

13. R. E. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the ready
event notification service. In 19th IEEE International Conference on Distributed
Computing Systems Middleware Workshop, 1999.

Composite Subscriptions in Content-Based Publish/Subscribe Systems 269

14. IBM and Microsoft. Business process execution language for web services version
1.0. http://dev2dev.bea.com/techtrack/BPEL4WS.jsp.

15. G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing, covering and
merging in publish/subscribe systems based on modified binary decision diagrams.
International Conference on Distributed Computing Systems (ICDCS’05), Colum-
bus, Ohio, USA, 2005.

16. M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring lan-
guage for distributed systems. IEE/IOP/BCS Distributed Systems Engineering
Journal, 4(2), June 1997.

17. D. Moreto and M. Endler. Evaluating composite events using shared trees. IEE
Proceedings - Software, 148(1):1–10, 2001.

18. G. Mühl. Large-scale content-based publish/subscribe systems. PhD thesis, Depart-
ment of Computer Science, Darmstadt University of Technology, 2002.

19. L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman.
Exploiting IP multicast in content-based publish-subscribe systems. In IFIP/ACM
International Conference on Distributed systems platforms, pages 185–207, 2000.

20. P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware ar-
chitecture. In Proceedings of the 22nd International Conference on Distributed
Computing Systems, pages 611–618. IEEE Computer Society, 2002.

21. P. R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a generic
middleware extension. IEEE Network Magazine, Special Issue on Middleware Tech-
nologies for Future Communication Networks, January/February 2004.

22. A. Ulbrich, G. Mühl, T. Weis, and K. Geihs. Programming abstractions for content-
based publish/subscribe in object-oriented languages. In CoopIS/DOA/ODBASE
(2), pages 1538–1557, 2004.

Scrivener: Providing Incentives in Cooperative
Content Distribution Systems�

Animesh Nandi1, Tsuen-Wan “Johnny” Ngan1, Atul Singh1,
Peter Druschel2, and Dan S. Wallach1

1 Department of Computer Science, Rice University
2 Max Planck Institute for Software Systems

Abstract. Cooperative peer-to-peer (p2p) applications are designed to share the
resources of participating computers for the common good of all users. However,
users do not necessarily have an incentive to donate resources to the system if
they can use the system’s services for free. In this paper, we describe Scrivener,
a fully decentralized system that ensures fair sharing of bandwidth in coopera-
tive content distribution networks. We show how participating nodes, tracking
only first-hand observed behavior of their peers, can detect when their peers are
behaving selfishly and refuse to provide them service. Simulation results show
that our mechanisms effectively limit the quality of service received by a user to
a level that is proportional to the amount of resources contributed by that user,
while incurring modest overhead.

1 Introduction

This paper concerns itself with the fair sharing of resources in cooperative peer-to-
peer (p2p) systems. In such a system, participating nodes are expected to contribute a
fraction of their resources in exchange for access to a service provided by the system.
Clearly, if participants fail to contribute enough resources to offset the load imposed by
all users, then the system’s stability and usability may be in danger.

Experience with file-sharing systems like Gnutella and KaZaA shows that many
users may choose to consume the system’s services without providing any of their own
resources for the use of others [2]. The problem is that participants have no natural in-
centive to provide services to their peers if it is not somehow required of them. Users
more closely resemble economically “rational” agents who are willing to follow the
protocol only if that behavior maximizes the node’s “utility” from the p2p network. If
there is no immediate penalty for selfish behavior, then nodes will behave selfishly, and
the p2p system will fail. Economic theory calls these users “free riders” or “freeload-
ers,” and the resulting scenario “the tragedy of the commons” [21].

Ideally, we would like to design a system where nodes, acting in their own best in-
terest, behave collectively to maximize the common welfare. Designing such a system
without a centralized authority that has complete knowledge of the system becomes

� This research was supported in part by Texas ATP (003604-0079-2001), by NSF (ANI-
0225660, http://project-iris.net) and by gifts from Microsoft Research and from Intel Research.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 270–291, 2005.
c© IFIP International Federation for Information Processing 2005

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 271

a distributed algorithmic mechanism design (DAMD) problem [12]. DAMD is a cur-
rent area of study that combines computational tractability in theoretical computer sci-
ence with incentive-compatible mechanism design in the economics literature. It pro-
vides a useful framework for considering p2p systems [33,27,28]. This paper considers
incentives-based mechanisms that ensure fair sharing, focusing on cooperative systems
where network bandwidth is the contented resource.

One way to enforce fairness is to have, for each node in the system, a set of other
nodes account for that node’s actions and approve requests according to the system’s
policy. KARMA [36] is an example of such a system. However, coordinating the actions
of this auditor set requires both cryptographic operations and additional communication
every time a peer issues or responds to a request. This can add substantial overhead and
latency to the system. Moreover, this approach introduces the additional problem of
how to incentivize the auditor set to perform its function correctly [36].

Instead, we hypothesize that a normal p2p node, monitoring the behavior of its
overlay neighbors, will have sufficient information to locally identify and discourage
selfish behavior. When nodes give preferential service to peers who follow the rules,
rational agents will choose to follow the rules to receive better services. An early ex-
ample of a p2p system built in this fashion is BitTorrent [7], where nodes employ a
“tit-for-tat” policy, preferring to transmit content to other nodes who are willing to
return the favor. BitTorrent focuses on the case where all peers are interested in the
same content, e.g., different blocks of a large software distribution. Thus, it is common
that two peers simultaneously have a block that is of interest to the other, enabling a
“clean swap.”

In this paper, we are attempting to solve the more general problem of a content dis-
tribution system where peers are interested in obtaining objects from a large collection,
consisting of both popular and unpopular objects. In this setting, a simultaneous swap
of content is rarely possible. Instead, it is necessary to maintain a history of interac-
tions (in terms of credit and debt) with a peer to make decisions concerning the peer in
the future. Moreover, the good will accumulated by a BitTorrent node is lost when that
node completes downloading the object and leaves the system. BitTorrent nodes have
no incentive to stay around and help their peers. In our system, we wish to encourage
such behavior by allowing peers to accumulate credit that can be redeemed at a later
time, for possibly unrelated content.

The remainder of this paper is structured as follows. Section 2 describes the model
and the goals of our system. In Section 3, we present the design of Scrivener, a sys-
tem that enforces fair bandwidth sharing in a cooperative content distribution system.
Section 4 describes the implementation of Scrivener in the context of an existing con-
tent distribution system. We present simulation results in Section 5. Finally, Section 6
discusses related work and Section 7 concludes.

2 System Model and Goals

We consider cooperative content distribution systems where participants wish to obtain
content stored on other participants’ computers. Content is assumed to be published by
its owner and disseminated into the system for distribution. We assume that, at least for

272 A. Nandi et al.

popular objects, the owner has insufficient bandwidth to service every possible request
and wishes to leverage the bandwidth available among other nodes in the system.

The set of participating nodes is assumed to form an overlay network. Scrivener
is based on mechanisms that in principle can be applied to both unstructured [23, 17]
and structured overlay networks [34, 30], as long as they meet the following minimal
requirements: (1) Each node in the overlay communicates directly with only a bounded
(i.e., constant or logarithmic in the size of the overlay) number of overlay neighbors;
(2) the overlay has a mechanism to discover new overlay neighbors; and, (3) the overlay
supports a search primitive that discovers, when given a valid content identifier, one or
more overlay paths to a node that stores content associated with that identifier.

We further assume that node identifiers cannot be created and discarded freely. The
mechanisms we will describe are all based on observing which nodes have behaved
properly and which have not. If nodes could misbehave under one identity, only to
discard it and assume another identity, then there would be no incentive for proper be-
havior. Such “Sybil attacks” [11] are a fundamental issue in overlay networks and a
host of different attacks become possible unless nodeIds are somehow controlled. For
the purposes of our research, we require an external solution to Sybil attacks. For ex-
ample, Castro et al. [6] address this by requiring a trusted authority to issue certificates
that bind a nodeId to a public key; they also describe a weaker, decentralized approach
to issuing such certificates. Since we are primarily interested in supporting systems
for the distribution of legal content, maintaining user anonymity is not a design goal
of Scrivener. If, however, an anonymity-preserving defense against Sybil attacks was
available, Scrivener might still be applicable.

2.1 Attack Model

The adversarial model assumed by Scrivener is limited to simple freeloading behavior,
whose only objective is to obtain service without contributing an equivalent fair share
of bandwidth to the system. This is in contrast to more general malicious behavior,
where the objective of the attacker may include obtaining unauthorized access to con-
tent, corrupting or censoring content, or denying or degrading service to other users.
Mechanisms to prevent or mitigate such behavior (e.g., sealed and self-certifying con-
tent [15], content entanglement [37], Castro et al. [6]’s secure routing primitive) may
be employed to complement Scrivener. Most p2p systems are already engineered to be
robust against traffic loss due to network failures. In the extreme case of a node re-
fusing to properly forward low-level traffic, that nodes’ neighbors could flag the node
as unresponsive and would likely remove the node from the network. As such, we are
primarily concerned with application layer freeloading, where the application’s goal is
the sharing and distribution of content of varying size and popularity.

It is useful to consider freeloading separately from more general malicious behavior,
particularly when in many systems it is much easier to freeload than to mount a mali-
cious attack. In KaZaA [23], for example, a client configured to have minimum upload
bandwidth and turning off the super-peer flag suffices to freeload. A malicious attack,
on the other hand, would require considerable technical expertise. Thus, the fraction of
users who have the motivation and ability to freeload is likely to far exceed the fraction
of users that are intent and able to mount a malicious attack.

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 273

Accordingly, the two threats call for different mechanisms. A defense against free-
loading must be effective and efficient even when a large fraction of participants
attempt to freeload. A defense against malicious behavior can, and often must, as-
sume that malicious behavior is limited to a small minority of users. We expect that a
production content distribution system would include both types of mechanisms. For
the remainder of this paper, we will focus exclusively on detecting and preventing
freeloading.

2.2 Goals

Scrivener’s goal is to achieve fair sharing of bandwidth in content distribution systems.
The key aspects of this goal are summarized below.

– Fairness. The system must ensure that participants receive a quality of service that
is proportional to the amount of bandwidth they are actually contributing to the
system. Furthermore, no participant should be permitted to perpetually consume
resources in excess of their contributions at the expense of another participant. This
provides an incentive for nodes not to freeload.

– Low overhead. The overhead imposed by the mechanisms used should be mod-
est. Moreover, the marginal cost related to ensuring fairness when downloading an
object should be low, to ensure efficiency despite small object sizes.

– Robustness. The system should retain the above properties even in the presence of
large numbers of freeloaders and in the presence of modest churn.

3 Design

Fundamentally, Scrivener is based on the idea of a pairwise exchange of content be-
tween overlay participants. This is similar in spirit to BitTorrent, where participants
exchange content fragments “tit-for-tat.” However, unlike BitTorrent, Scrivener con-
siders the general case of a content distribution system where participants with dif-
ferent interests choose from a large set of content objects. In such a system, it is un-
likely that two overlay neighbors are simultaneously interested in each other’s content,
which would enable a “clean swap.” Making pairwise exchange work in a general con-
tent distribution network presents several challenges. The basic concepts of Scrivener
include:

Relationships: A Scrivener node maintains a relationship with each of its overlay neigh-
bors. Each of the two nodes involved in a relationship maintains a credit and a confi-
dence value for the other node, defined below. These values are maintained in persistent
storage and are remembered even as a node departs and subsequently rejoins the over-
lay. The values are maintained and used only locally to a given node.

Credit: Credit is the difference between the amount of data sent to and the amount of
data received from the peer.1 Negative values of credit are called debt.

1 We assume here that the cost of transferring an object is equal to the size of the object in bytes.
It is equally possible to define certain objects as more valuable than others.

274 A. Nandi et al.

Confidence: The positive confidence value for the neighbor is calculated according to
an additive increase, multiplicative decrease policy, based on the success or failure of
content requests that were forwarded to the neighbor. The confidence value is used in
deciding how to forward requests during content search and it is used to compute the
credit limit (defined below) granted to the neighbor node.

Building on these core ideas, easily applicable to any p2p content distribution sys-
tem, we can invent a number of mechanisms:

Maintaining credit / debt: To enable non-simultaneous pairwise swapping, each
Scrivener node maintains a record of credit / debt with each of its overlay neighbors.
We wish to enable a node A to obtain content from another node B, even when A may
not currently have any content of interest to B. A can repay the resulting debt to B at a
future time, when B happens to be interested in some content held by A. A node honors
requests from a peer if and only if that peer is in good standing, i.e., the peer’s debt is
below a certain limit.

Limiting generosity: To bootstrap the system, one node must be willing to extend a loan
to another node with which it has had no prior relationship. However, such loans must
not enable freeloading. A Scrivener node A grants a small initial credit to each node B
that A has chosen to initiate a relationship with. However, node B does not necessarily
grant A any credit in return. As A and B interact and respond to each other’s requests,
the confidence among the peers, and thus the amount of credit granted, can increase
over time.

Limiting relationships: Each node initiates relationships with only a limited number of
peers, typically the neighbors chosen by the overlay network. This limits the amount of
state maintained by each node and it limits the total credit a node grants its peers.

Transitive trading: What if a node wishes to obtain a content object not held by any
of its overlay neighbors? We need a mechanism that allows a node to use the credit it
has with its neighbors to obtain content from a more distant node that has the desired
content, but with which it does not have a pre-existing relationship. Transitive trading
is such a mechanism. Performing a transitive trade involves finding a path from the
requester to a content holder such that each node along the path is in good standing
with the subsequent node. Then, the content holder sends the content to the requester,
and each node along the path credits the subsequent node.

3.1 Relationships

Each Scrivener node maintains relationships with a small number of other nodes, typi-
cally its overlay neighbors, as selected by the overlay protocol. More precisely, any two
nodes in the overlay network form a relationship if and only if at least one of them has
the other in its overlay neighbor table. A Scrivener node A grants a small initial confi-
dence value (and thus a small credit limit) to any node that A has chosen as a neighbor,
but it assigns an initial confidence of zero (and thus no credit) to any node that has
invited A to be a neighbor. This prevents freeloaders from obtaining a large credit limit

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 275

by initiating many relationships with many nodes, perhaps pretending that its normal
neighbors have failed.2

The small initial credit limit allows neighbors chosen by A to request content from
A, and it allows A to request content from legitimate nodes who have chosen A as a
neighbor. As content is exchanged, the parties gain more confidence in each other and
gradually grant each other larger credit limits. Our scheme puts newcomers at a disad-
vantage; they need to initiate relationships, forcing them to grant credit and offer service
while receiving little in return initially. This is the price for defending against freeload-
ers in any reputation-based system. However, as we will show, the initial sacrifice is
rewarded quickly as the node establishes confidence and gains credit with its neighbors.

When a Scrivener node A finds that one of its neighbors B has accumulated debt in
excess of its credit limit, it ceases to accept requests from B. Regardless, A continues
to make requests to B in order to give B the opportunity to pay back its debt. Likewise,
A may find that the confidence value of one of its neighbors B goes to zero, perhaps
because B has repeatedly failed to fulfill requests from A even though A is in good
standing with B. In this case, A ceases to make requests via B or to accept requests from
B. From A’s perspective, B might as well not be a part of the overlay network. A then
uses existing mechanisms provided by the overlay network to replace B with a different,
and hopefully more cooperative, neighbor.

In principle, a Scrivener node must maintain a record of its past overlay neighbors
indefinitely. Erasing a negative record would amount to forgiving debt, and would en-
able freeloading. In practice, it is acceptable to delete records of nodes that have been
offline for long periods, perhaps a year, thus seriously inconveniencing freeloaders who
wish to exploit the resulting loophole. Storing a year’s worth of records is reasonable
as these records are very compact: only a nodeId and two integer values, the credit and
confidence values, are required. Such concise records could easily scale to track the
millions of neighbors that a node might see in a year’s time.

Note also that due to the pairwise relationships, freeloader cannot benefit from col-
lusion. While colluding freeloaders may be able to convince legitimate nodes to shift
credit from one freeloader to another, the total credit will be unchanged.

3.2 Confidence

Scrivener nodes keep a confidence estimate for each of their overlay neighbors. The
confidence value serves two purposes: (1) it determines the magnitude of the credit
limit granted to a neighbor and (2) it can be used to bias overlay routing decisions
towards cooperative neighbors.

The confidence assigned by a node to its neighbor is based on the history of their re-
lationship. The confidence estimate has the following properties: (1) As nodes exchange
content, the confidence increases slowly; (2) The confidence drops rapidly once a neigh-
bor starts to misbehave; (3) The confidence is bounded to limit the damage caused by a

2 Overlay network systems are generally engineered to assume a high rate of node failure and
include elaborate mechanisms to locate previously unknown nodes and form new relationships
in order to preserve important invariants, including the degree of node-to-node connectivity
and of file replication. As a result, we need to limit the benefits automatically granted to a
node solely because it happens to be a peer.

276 A. Nandi et al.

A B C Z

Data transmission
Debt

Fig. 1. Using a credit path to leverage a chain
of credit to obtain content directly from a
non-neighbor node

2a

1 PD PD
PD

A B C Z

ACK

REQ

Object chunk

REQ REQ

DNEDNEDNE2b

Fig. 2. The stages in the transitive trade pro-
tocol

node that plays by the rules for an extended period and then starts to freeload. An addi-
tive increase, multiplicative decrease (AIMD) strategy offers a simple implementation
of these properties.

3.3 Transitive Trade

In p2p content distribution systems with a large content set, the odds are small that a
desired object can be found on an immediate overlay neighbor of the node wishing to
fetch that object. We need a way for nodes to trade their credits and debts with one
another, and we would like to avoid the overhead of digital cash or other cryptographic
schemes. Instead, we designed an incremental trading strategy we call transitive trade,
which works by identifying a credit path from a source node to a node that has the
desired object. In a credit path, each node in the path either has credit with the next
node, or its debt is below the next node’s credit limit. We describe a scheme to locate
such paths in Section 4.3.

Conceivably, once we have identified a credit path, we could rearrange all the credits
in the path such that the destination node now owes something not to its predecessor in
the route, but instead to the source of the route. This is illustrated in Figure 1. A series
of debts, where B owes A, C owes B, and so forth until Z owes its predecessor could all
be replaced with a direct debt from Z to A. Z can now cancel this debt by providing A
with the desired content.

To make debt swapping work, we need a protocol that is robust against any node in
the trading chain cheating. For example, a node could attempt to cancel a debt that it
owes without giving up the debt owed to it by the successor in the trading chain. Rather
than resorting to a complex cryptographic commitment protocol, we take a straightfor-
ward, incremental approach. The protocol is depicted in Figure 2.

1: Credit path discovery: A first routes a “path discovery” message (PD) towards Z. As
a side effect, A “pays” B for this message, B pays C, and so forth until Z is paid. At the
same time, each node reduces its confidence in its successor as if the request had failed
(even though it may be working perfectly well). This design avoids the need to maintain

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 277

timeouts to detect and react to failures. The credit path discovery might fail for a number
of reasons, ranging from a freeloader dropping the message to network failures (see
Section 4.3). The effect is that every node that forwarded the request will have reduced
confidence in its successor. Furthermore, the last node in the chain effectively keeps the
credit originally transfered from A.

2a: Object exists: Upon receiving the request, Z transmits a confirmation message
(ACK) directly to A. A now routes a request message (REQ) for a chunk of the content
object along the existing credit path, paying for the chunk as a side-effect of the mes-
sage transmission. Z transmits the requested object chunk directly to A. A repeats this
step until it has obtained the last chunk of the object. A final message, announcing A’s
success, causes each node to adjust the confidence value of its successor to compensate
for the reduction in step (1), plus an additional confidence gained as a result of the trade.

2b: Object does not exist: Upon receiving the request, Z routes a “does not exist”
message (DNE) along the reverse credit path. The message contains the addresses of the
complete set of nodes that would store replicas of the content if it existed. Intermediate
nodes can contact a member of this set to verify that the object does not exist. If they
are convinced that the object really does not exist, they restore the confidence of the
successor node to compensate for the reduction taken in step (1).

Each participating node has an incentive to follow each of the protocol steps: Node
A wants to receive all the chunks, node Z wants to be credited for transmitting all the
chunks, and all nodes wish to maintain the confidence of their predecessors along the
credit path. When a node defects from the protocol at some stage, it can collect credit
without providing the corresponding service. However, the price is a drop in the con-
fidence of the node’s predecessor. Also, the damage is limited to the size of a single
chunk, which can be made appropriately small.

In general, for any failure, the client A is charged for at most a single chunk – a
modest loss. The charge can be interpreted as the price for imposing load on the overlay
by issuing a request that could not be satisfied. Such a charge also discourages flooding
requests into the system; the client must pay for each and every request it makes. The
client can minimize the loss associated with a failure when it begins with a small chunk
and gradually increases the request size as its confidence in the path increases.

Over the long term, transitive trading tends to balance credit and debt among a
node’s overlay neighbors, maximizing the chances that the node will be able to obtain
content in the future. Moreover, participation in a transitive trade is beneficial because
it increases the confidence of each node along the path in its successor.

At the same time, nodes have a disincentive to refuse participation in a transitive
trade. Such a refusal leads the predecessor along the credit path to reduce its confidence
in the node. While the failure of a neighbor adversely affects a node, if it happens
repeatedly, the node quickly reduces its confidence in that neighbor, and avoids routing
messages through that neighbor in the future. As a result, failing nodes are avoided by
the neighbors and become isolated.

It is important that nodes are not penalized for being off-line. When a node is off-
line, other nodes merely suspend their relationship with the node until it returns. A
related question is whether a node has an incentive to swap credit from an established

278 A. Nandi et al.

neighbor to a newcomer as part of a transitive trade. In practice, having credit with a
large and diverse set of neighbors maximizes the chances that a node will be able to
successfully locate a credit path for a future request.

3.4 Caching

In general, objects in a content distribution system have a highly skewed popularity
distribution [20]3. To avoid load imbalances as a result of such skew, caching is used
in these systems to dynamically adjust the number of nodes serving a content object
according to its popularity. Typically, once a node has obtained some content for itself,
it serves the content to other interested clients from its local cache. Thus, popular objects
tend to be replicated widely.

In Scrivener, dynamic caching is required to address an additional form of im-
balance caused by skewed popularity. Without caching, nodes serving popular objects
would tend to accumulate a huge amount of credit. Nodes that serve less popular objects
would tend to accumulate debt and lack the “earning potential” to ever repay the debt.
Our simulations (see Section 5) will demonstrate this effect in action and show how
caching addresses the problem. Moreover, nodes have an incentive to cache objects,
because it increases their earning potential. Caching popular objects allows a node to
earn the credit needed to satisfy its own future needs.

4 Implementation

In this section, we describe an implementation of our Scrivener prototype. We chose
to implement our prototype using FreePastry, a structured overlay network with a dis-
tributed hash table service called PAST [13, 30, 31]. Scrivener uses only the key-based
routing (KBR) API [9] exported by FreePastry [13]. Thus, our implementation will also
work with any structured overlay that supports this interface, e.g., Chord [34].

4.1 Background

Pastry is a structured p2p overlay network that provides a KBR service. In such over-
lays, every node and every object is assigned a unique identifier randomly chosen from a
large id space, referred to as a nodeId and key, respectively. Given a message and a key,
Pastry can route the message to the live node whose nodeId is numerically closest to the
key in less than log2b N hops, where N is the number of nodes in the network and b is
the routing base, usually set to 4. Castro et al. [6] describe techniques that make Pastry
robust to collusions of a minority of malicious nodes in the overlay who attempt to com-
promise the overlay. These techniques are complementary to the techniques described
in this paper and can be used in conjunction with Scrivener if malicious participants
(rather than mere freeloaders) are a threat.

PAST provides a distributed hash table (DHT) abstraction on top of Pastry. Each
stored item in PAST is given a key (hereafter referred to as the handle), and replicas

3 This is not a problem for BitTorrent, since every user attempts to get the same object, and the
popularity of each block is identical.

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 279

of an object are stored at the k live nodes whose nodeIds are the numerically closest to
the object’s handle (these nodes are called a replica set). PAST maintains the invariant
that the object is replicated on k nodes, regardless of node addition or failure. If a node
in the replica set is out of space, the object will be diverted to a node close in nodeId
space but not in the replica set, and stored there temporarily. The handle is built from a
cryptographically secure hash (e.g., SHA-1) applied to the data being stored. As such,
the handle has sufficient information for the holder of the handle to verify that the
content obtained from PAST is authentic.

4.2 Node Bootstrapping

Recall that when a new node joins the system, it has no credit or debt. To earn credit, it
needs to obtain some initial content that it can then serve to other nodes. In our prototype
implementation, PAST’s normal content placement and replication policy provides a
node with its initial set of content objects.

When a PAST node joins the system, it is required to store a set of objects based
on its position in the identifier space. The node obtains these initial objects from its
neighbors in the id space for free; they form the new node’s initial content offering and
allow it to acquire credit with its overlay neighbors, which forward requests for these
objects to the node as part of PAST’s normal lookup operation. Our simulation results
show that this simple mechanism suffices for a node to quickly bootstrap itself.

4.3 Finding Credit Paths

A key implementation issue is how to efficiently discover credit paths. The Pastry rout-
ing primitive finds an overlay path to a node that stores the requested content object,
given the object’s identifier. Finding a credit path introduces the additional constraint
that each node along the path must be in good standing with its successor.

Our prototype uses a randomized, greedy algorithm to discover credit paths. To
determine the next hop, a Scrivener node first selects the set of neighbors that satisfy the
Pastry routing constraint. These nodes either have identifiers that match the requested
object handle in a longer prefix than the present node’s id, or their id matches as long a
prefix as the present node’s id but is numerically closer to the object handle. Forwarding
the request to a node in this set guarantees that the route is loop-free and will end at a
node that has the desired content, assuming the content exists in the overlay.

Next, we subtract from the candidate set any neighboring nodes where the present
node is not in good standing. These neighbors would refuse requests from the present
node because it had exceeded its credit limit. Because all of the information used by
nodes to rate their neighbors is available equally to both parties, nodes can easily track
their standing with their neighbors.

Among the set of remaining candidate nodes, we make a biased random choice,
based on the following criteria:

– Length of the neighbor’s prefix match with the object handle. Choosing a neighbor
with higher prefix match than the present node reduces the latency and path length,
and therefore also increases the chance to find a working path.

280 A. Nandi et al.

– Confidence in the neighbor. Neighbors with higher confidence values have been
more helpful in the past, and are thus more likely to be helpful this time.

– Amount of credit with the neighbor. Choosing neighbors with higher credit helps
the present node to balance credit and debt and therefore increases flexibility in
handling future requests.

Scrivener strongly biases the forwarding choice toward neighbors with a prefix
match (minimizing the number of overlay routing hops), while also trying to balance
credit and debt, and gives preference to neighbors with high confidence values. More
precisely, let R denote the remaining set of candidate nodes. Scrivener assigns a score
to each node x in set R, which is calculated as score(x) = e	(x) · t(x) · [c(x)− cmin + 1],
where 	(x) ≥ 0 is the number of additional digits that the neighbor x shares with the
object handle relative to the present node, c(x) and t(x) are the credit and confidence
value of neighbor x, and cmin = mini∈R c(i). Then the probability that peer x is chosen
is its score divided by the total score of all candidate peers, i.e., score(x)/∑i∈R score(i).
The quality of a node’s prefix match figures exponentially in its score to give a signif-
icantly greater weight to shorter routes. Note also that both confidence and credit/debt
are measured in the same units, i.e., the number of objects or bytes transferred.

Our randomized, greedy algorithm is not guaranteed to discover a credit path even
if one exists. A request could end up at a node that has no neighbor that satisfies the
Pastry routing constraints and with which the node is in good standing. In such cases,
the request cannot be forwarded on and the client will need to retry the request through
a different neighbor.

Our simulations shows that the success rate is very high and the number of retries
typically necessary to discover a credit path is very low in practice. There are sev-
eral reasons for this. First, the Pastry overlay is richly connected and many redundant
paths exist between a client and a node holding the required content. Second, dynamic
caching effectively balances the “earning power” of nodes, avoiding strong imbalances
in the credit available to different nodes. Third, the bias in the forwarding policy against
nodes with low confidence tends to isolate freeloaders, causing requests to be effectively
routed around such nodes. Lastly, the bias in the forwarding policy based on credit tends
to balance the available credit a node has with its different neighbors. These various
self-stabilizing forces reduce the probability that a credit path search might fail, either
due to lack of credit or because a freeloader refuses to honor it.

4.4 Bounding Lengths of Credit Paths

Unlike the native Pastry routing policy, Scrivener does not always choose a neighbor
with a longer prefix match, even if such a neighbor exists. As a result, Pastry’s logarith-
mic bound on the expected path lengths does not strictly hold. Note that shorter path
lengths are desirable for two important reasons: (1) shorter path lengths ensure low de-
lay and network utilization, and (2) shorter paths are more robust against node failures.
Since the routing policy of Scrivener may occasionally lead to long paths, we resort to
another mechanism to bound the path length.

In the prototype implementation, Scrivener artificially bounds the credit path length
to be logarithmic in the overlay size. When the search for a credit path has reached this
bound, the request is dropped. A rough estimate of the size of the overlay N suffices to

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 281

determine the bound. Since nodeIds are assigned at random, the overlay size can be ex-
trapolated from the local density of nodeIds with sufficient accuracy. When a search
exceeds this boundary, the request is dropped. Our simulation results, presented in
Section 5, show that the impact of this restriction on the ability to locate credit paths is
minimal, while it ensures deterministic bounds on the system’s resource consumption.

5 Experimental Results

In this section, we present simulation results to evaluate our prototype implementation.
We simulate a system where network messages are delivered instantaneously. Objects
are replicated using PAST’s replication strategy, storing an object on the k nodes with
nodeIds closest to the identifier for that object. When requesting an object, client nodes
perform at most 10 queries, each time attempting to discover a credit path using the
randomized greedy algorithm. The initial credit limit is set to 1 object, and increases
linearly with the confidence the node has in its peer. The credit paths are limited to
 3logN! hops. Each node also has a fixed sized, 1024-object soft cache to retain ob-
jects it has previously obtained to satisfy future requests. We implement an LRU cache
replacement policy to replace entries from the cache when it is full.

A node’s peers maintain their credit and confidence values for a node that is tem-
porarily off-line. Also, the Pastry routing tables are persistent, i.e., a node remembers its
table while it is off-line. Inappropriate entries are simply replaced by the existing over-
lay maintenance mechanisms, but biased towards peers with which the node already has
a relationship. As a last resort, the node initiates a new relationship. Also, for each entry
in the routing table, a node maintains at most three neighbors but uses only the one with
the highest confidence value. (Confidence estimation is described in Section 3.2.)

5.1 Workload Model

We use the model described by Gummadi et al. [20] to generate workloads. This model,
derived from KaZaA traffic observations, captures the fetch-at-most-once behavior and
the importance of new object arrivals in typical p2p file sharing applications. Based
on this model, we chose the following parameters: number of nodes online C = 800,
number of objects O = 40,000, request rate per node λR = 50, object arrival rate λO =
12, and node arrival rate λC = 5 (the units are nodes or objects per simulation time
unit). The node departure rate is the same as the arrival rate, keeping the number of
active nodes constant. Each object is initially replicated to k = 3 nodes. We assume that
there is a fixed pool of 1,000 distinct nodes, out of which 800 are online at any time. As
a result, during the first 40 time units all arriving nodes are fresh, but after time 40 all
arriving nodes are those that were online once before. Nodes that go offline are chosen
randomly from the currently live nodes.

5.2 System Performance

First, we study how our mechanisms affect the performance of the underlying coopera-
tive content distribution system in the absence of freeloaders. In particular, we want to
see how much overhead has been added to the system.

282 A. Nandi et al.

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

With caching
No caching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

su
cc

es
s

fr
ac

tio
n

No. of retries

With caching
No caching

Fig. 3. Success rate with only obedient nodes Fig. 4. Cumulative distribution of the number
of retries to find a debt-based path

Success rate. Figure 3 shows the fraction of successful requests, both with and with-
out caching. Without caching, the success rate stabilizes around 80%. This is because
object popularity is so uneven that nodes around the replicas of popular objects be-
come indebted to the replica holders, making it sometimes impossible for a node to
find a credit path to the replicas. Many requests to popular objects fail despite retries.
However, allowing nodes to serve cached objects eliminates this problem and the suc-
cess rate approaches 100%. The stability of the success rate suggests that the system
balances out nicely and obedient nodes do not build up debt over time4.

Figure 4 shows the number of retries required to successfully find a credit path.
When caching is enabled, over 73% of queries succeed on the first attempt, and three
attempts are sufficient to achieve over 95% success rate. We conclude that the policy
enforcement in Scrivener with bounded paths does not seriously affect object fetch
reliability in the absence of freeloaders.

Path efficiency. Scrivener’s randomized greedy routing strategy attempts to use Pas-
try’s routing mechanism to achieve logarithmic-length paths, when possible, and falls
back to less efficient mechanisms, when necessary, that are artificially capped to pre-
serve an O(logN) expected path length (see Section 4.4). A cumulative distribution of
path lengths at different overlay sizes is shown in Figure 5. By observing horizontal
slices through this graph, we see that the growth in path length follows roughly the
log of the number of nodes. Our simulations show that common case routes are quite
efficient and the worst case routes are only twice as long as common-case routes.

Due to limitations of our simulation environment, we were unable to run simulations
for overlay sizes larger than 2000. In order to emulate the effect of larger overlay sizes,
we ran simulations with 1000 nodes, but with Pastry’s routing base set to b = 2 instead
of 4. The results show that the median Scrivener path lengths is around 5, close to
the expected Pastry path length (log22 1000 ≈ 4.98). Note that 5 is the expected path
length for a Pastry overlay with one million nodes when b = 4. This result suggests that

4 We have also implemented speculative caching, where nodes observe the requests they have
forwarded and actively fetch objects that they consider popular. However, the improvements
we observed in terms of success rate were insignificant.

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 283

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

Path length

100
200
400
700

1000
2000

Fig. 5. Cumulative distribution of debt-based path lengths for different system sizes

Scrivener’s greedy routing strategy easily scales to much larger overlay sizes than we
were able to simulate.

Still, these longer paths, which would also occur as the number of nodes in the
overlay increases, raise concerns about path usability, particularly if the system is ex-
periencing high node churn. More nodes in a path increase the odds that one of those
nodes will fail while a transitive trade is in progress. However, the system provides
incentives for nodes to stay online until a transitive trade in which they are involved
completes (see Section 3.3). If a path fails, the original requesting node can restart the
trading protocol, find a new path to the source of the data (or a replica), and resume
downloading the missing data.

The total overhead for Scrivener to fetch an object is the product of the average
number of attempts to discover a credit path (≈ 2) and the average credit path length
(< 3logN!). Among competing systems that use auditor sets, KARMA [36] is the
most efficient system we are aware of. KARMA’s asymptotic message overhead is com-
parable to Scrivener’s, but requires expensive public-key cryptographic operations and
additional means of incentivizing auditors [36].

5.3 Introducing Freeloaders

Next, we introduce freeloaders into our simulation. Freeloaders issue requests like obe-
dient nodes, but they may refuse to serve objects. In a deployed system, freeloaders can
be expected to attempt a variety of strategies. In the following experiments, we consider
a number of freeloading strategies, and show that in all cases there are no sustainable
benefits to freeloading. We simulate 800 nodes, but now with 5% freeloaders. We as-
sume that freeloaders forward requests and participate in transitive trades, as this allows
them to earn confidence with minimal traffic overhead. While obedient nodes undergo
churn as specified in the model, freeloaders are always online throughout the entire sim-
ulation period. Recall that routing tables are persistent, ensuring that freeloaders cannot
neither escape a bad reputation by periodically departing from the system nor by re-
peatedly exploiting the limited credit granted by obedient nodes looking to establish
relationships.

Freeloaders that never serve. First we consider freeloaders that never serve any
object. Figure 6 shows that their success rate drops to below 5% within a few time units,

284 A. Nandi et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

Fig. 6. Success rate with 5% freeloaders that
do not serve objects

Fig. 7. Success rate with 50% freeloaders that
do not serve objects

yet that of obedient nodes is unaffected. Note that the success rate for freeloaders never
goes to zero. This is because freeloaders can still get the objects that they themselves
are storing “for free.”

To determine Scrivener’s sensitivity to the size of the soft cache, we vary the cache
size. The success rate remains virtually constant down to a cache size of 320 objects,
and gradually decreases to 91% at 128 objects. This shows that Scrivener does not
require a large soft cache to work efficiently.

We increased the fraction of freeloaders to 50%, with results shown in Figure 7.
The success rate of freeloaders again drops quickly to near zero, while that for obedient
nodes starts below 60% and plateaus at 80%. Note that with 50% freeloaders and a
replication factor k = 3, it is expected that 12.5% of the objects are only stored by
freeloaders and will thus never be served. This suggests that a more expensive search
may increase the success rate somewhat, but with diminishing returns.

To test the system under extreme conditions, we increase the fraction of freeloaders
to 80%. At this point, more than half of the objects are stored only by freeloaders and,
unsurprisingly, the success rate for obedient nodes is only 30%. Also, as a result of
more transitive trading failures, it takes longer for the success rate of obedient nodes
to stabilize. Scrivener does continue to function remarkably well, despite the extreme
freeloading rate. Given that these freeloaders receive no benefit from being present in
the network, one would expect them to depart, allowing the remaining obedient nodes
to operate more efficiently.

Since it takes time for obedient nodes to recognize freeloaders, one concern is that a
high churn rate might enable freeloaders to get a satisfactory success rate by exploiting
new node arrivals. We simulated a system with 800 nodes, but a churn rate λC of 50
nodes per time unit and with fresh nodes arriving for the first 100 time units. After time
100, the arriving nodes have all previously been part of the network and gone offline.
Figure 8 clearly shows that with this higher churn of fresh nodes, the success rate for
freeloaders stabilizes at around 15%, dropping after time 100 when the returning nodes
remember previous freeloaders. Thus, while freeloaders can exploit newcomers, the
benefit is limited. More importantly, the success rate for obedient nodes is unaffected.
While obedient nodes waste some effort handling requests from freeloaders, they give
clear priority to serving each other.

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 285

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

Fig. 8. Success rate with a higher churn rate Fig. 9. Success rate with the worst-case sce-
nario where every obedient node gives a high
initial confidence to all freeloaders

Recall that a Scrivener node grants an initial credit to its chosen neighbors. We
next consider an attack where a freeloader somehow convinces an obedient node to
choose it as a neighbor, thus granting it an initial credit. We consider a worst-case
scenario where freeloaders can always manipulate obedient nodes into choosing them
as neighbors. With such an attack, freeloaders could now exploit the initial credit from
each obedient node. Figure 9 shows that, indeed, freeloaders get a better success rate
initially. However, the success rate drops to 30% quickly and gradually goes down as
obedient nodes refuse to serve freeloaders after their debts build up. Our simulations
show that, even with such a hypothetical attack, freeloaders would have little benefit
and obedient nodes would observe no significant change in their own success rate.

Short-term cooperation. Participation in transitive trades, alone, can earn confidence
and increase credit limits without actually serving any object. An interesting question is
whether it is possible for freeloaders to build up confidence simply by participating in
transitive trades, and then exploit that confidence. In Figure 10, we simulate freeloaders
that participate in transitive trades for 20 time units before fetching any object. The

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

Fig. 10. Success rate with freeloaders that
participates in transitive trades but do not
fetch objects for the first 20 time units

Fig. 11. Success rate with freeloaders that
serve objects only for the first 20 time units

286 A. Nandi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

A
vg

. n
o.

 o
f

ob
je

ct
s

Time units

Obedient nodes received
Obedient nodes served

Freeloaders received
Freeloaders served

Fig. 12. Success rate and number of objects served and fetched with freeloaders that serve half of
the object requests

success rate for freeloaders drops to below 0.1 within ten time units. Thus, participation
in transitive trades does have a benefit, but only a small one.

We also simulated nodes that were obedient for 20 time units and then began
freeloading. As shown in Figure 11, the freeloader’s success rate now takes seven time
units to drop below 0.1. The freeloader does benefit from its earlier obedience. How-
ever, once freeloading behavior begins, the success rate remains high for only two time
units, then falls quickly.

These experiments demonstrate that short-term cooperation is not an effective strat-
egy for freeloaders to exploit the system; once they start to freeload, obedient nodes
will quickly refuse to serve them.

Providing partial service. Another possible freeloading behavior is to serve objects at
a reduced rate. We first consider freeloaders that arbitrarily serve half of their requests.
Figure 12 shows that the success rate for freeloaders drops to and remains at roughly
50% — the same rate at which they are providing service. Note also that the number of
objects received by freeloaders also approaches and stabilizes at the same level as the
number they serve.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

A
vg

. n
o.

 o
f

ob
je

ct
s

Time units

Obedient nodes received
Obedient nodes served

Freeloaders received
Freeloaders served

Fig. 13. Success rate and number of objects served and fetched with freeloaders that aim at 50%
success rate

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 287

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Su
cc

es
s

fr
ac

tio
n

Time units

Obedient nodes
Freeloaders

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

A
vg

. n
o.

 o
f

ob
je

ct
s

Time units

Obedient nodes received
Obedient nodes served

Freeloaders received
Freeloaders served

Fig. 14. Success rate and number of objects served and fetched with freeloaders that switch be-
tween cooperation and freeloading every 20 time units

Another potential strategy is to have a target quality of service. This freeloading
behavior serves only enough requests to maintain a desired success ratio. We simulate
freeloaders that target a 50% success rate. Figure 13 shows that the resulting success
rate oscillates around 50%. As before, the number of objects served by the freeloader
quickly dictates the number of objects the freeloader is allowed to consume.

We finally consider a strategy that alternates between obedience and freeloading,
changing behaviors every 20 time units. Figure 14 shows that the success ratio quickly
tends toward 1 and 0 whenever these nodes switch to cooperation and to freeloading,
respectively, with the peak success ratio dropping over time. Also, during the cooper-
ation periods, the former freeloaders service more requests, effectively making up for
the debts they previously accumulated. On average, this alternation strategy performs
worse, from the freeloader’s perspective, than the previous 50% service strategy.

Other experiments. In our simulation, a node requests 50 objects per time unit. If
each object is 64 Kbytes, this translates into roughly 3MB of data per time unit —
about the size of a typical MP3 file or digital photograph. If we consider users that
attempt to download 100MB of data per day, their success rate would drop to zero in
about an hour. Increasing the download rate does not help, since its merely accelerates
the decline in success rate.

To test Scrivener’s sensitivity to the size of the downloaded content, we ran simu-
lations where we divided large objects into smaller chunks that were stored and down-
loaded separately. The success rate of obedient nodes improved relative to our earlier
experiments. When downloading smaller chunks, smaller credits were necessary, in-
creasing the success rate of transitive trading. Also of note, freeloaders experienced
an even lower success rate. Because a desired object may now be spread over several
chunks, the odds successfully obtaining all of a file’s chunks diminished. Of course,
breaking a file into chunks will increase the overhead rate, as each chunk will need to
be separately located and fetched.

We have also simulated scenarios with obedient nodes with diverse bandwidth ca-
pacities. The success rate for both types of nodes are very close to 100%, although the
success rate for high-end nodes drops slightly. This shows that Scrivener can accom-
modate modest imbalances in the demands and “earning potentials” of participating

288 A. Nandi et al.

nodes gracefully. Other approaches, including treating a high-end node as several vir-
tual nodes, may also be applicable.

Discussion. We have evaluated mechanisms to make bandwidth-limited p2p content
distribution networks robust against freeloaders. Obedient nodes experience modest ad-
ditional overhead, and over a variety of freeloading behaviors, freeloaders achieve only
the level of service that they willing to provide to others in the network, even for large
numbers of freeloaders in the system. Our simulations demonstrate that the obedient
strategy maximizes a node’s utility, i.e., Scrivener appears to be economically strategy-
proof.

While our simulation environment does not model delay, the modest increase in the
path length of content requests, combined with the fact that most p2p content down-
loads are bandwidth-limited, strongly suggests that download delay is not significantly
affected by Scrivener.

We note that freeloaders still get some benefit during the first few time units after
they join the system. If a freeloader can create new identities without restriction, such
“Sybil attacks” [11] would be able to defeat our mechanisms. As discussed in Section 2,
we require that the p2p overlay has security features to prevent such attacks. Alterna-
tively, Scrivener could adopt a policy where all nodes receive degraded service quality
when they join the p2p network, with the quality improving only after the new node has
proven its worth.

6 Related work

There has been much work on providing incentives for cooperation in distributed sys-
tems. We roughly categorize the related works as follows.

Bandwidth-sharing networks. SLIC [35] considers the query nature of unstructured
p2p systems like Gnutella [17]. It proposes giving nodes service levels proportional to
their contribution, so as to provide nodes incentives to share more data and handle more
traffic. BitTorrent [7] facilitates large numbers of nodes all trying to acquire exactly
the same file, with an emphasis on very large files (e.g., software distributions, digital
movies, and so forth). Every BitTorrent node will have acquired some subset of the file
and will trade blocks with other nodes until it has the whole file. In order to bootstrap
new nodes, nodes reserve 1/4 of their bandwidth for altruistic service. Nodes that fairly
trade their bandwidth will experience a higher quality of service. Anagnostakis and
Greenwald [3] suggested that performance can be improved if exchanges are extended
to allow involving multiple parties. Scrivener solves the more general problem, where
nodes are interested in content from a large set, of potentially much smaller size. We
allow nodes to acquire credits from the files they serve to obtain any other files they
desire in the future. Thus, they have an incentive to serve, even when they themselves
do not require any content at the moment.

GNUnet [19] uses the idea of locally-maintained debit/credit relations in a similar
fashion to our own work. It also uses debt relationships across nodes, comparable to
our debt-based routing. As GNUnet is more concerned with anonymity than network
efficiency, it does not support transmitting objects directly across the network. All traffic

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 289

goes through the overlay, forcing intermediate nodes to carry the bulk traffic of the
object transfer while giving them no particular incentive to do this, save for maintaining
their own anonymity. For a path with n nodes, GNUnet transfers the object O(n) times.
Scrivener, on the other hand, finds efficient routes and transmits bulk data directly over
the Internet, yielding higher performance, but lacking GNUnet’s anonymity features.
Scrivener also provides mechanism to locate and fetch objects, leveraging its existing
credit/debit framework.

Storage networks. In a storage network, nodes share spare disk capacity for applica-
tions such as distributed backup systems. Ngan et al. [27] propose an auditing mecha-
nism, which allows cheaters to be discovered and evicted from the system. Samsara [8]
enforces fairness by requiring an equal exchange of storage space between peers and by
challenging peers periodically to prove that they are actually storing the data. Storage
incentivicing systems are solving a fundamentally different problem than bandwidth
incentivicing systems. Storage is a commitment, over a long time period, to provide a
stable service. If misbehavior is detected, a node can punish another by simply deleting
its files. Bandwidth, on the other hand, is an ephemeral service. Bits transmitted cannot
be taken back. Retribution can only be taken by refusing future requests.

Reputation. Resource allocation and accountability problems are fundamental to p2p
systems. Dingledine et al. [10] surveys many schemes for tracking nodes’ reputations.
In particular, if obtaining a new identity is cheap and positive reputations have value,
negative reputation could be shed easily by leaving the system and rejoining with a
new identity. Friedman and Resnick [14] also study the case of cheap pseudonyms,
and argue that suspicion of strangers is costly. There have been attempts to build a
distributed trust management system [22,1]. Blanc et al. suggest a reputation system for
incentivicing routing in peer to peer networks that uses a trusted authority to manage
the reputation values for all peers [4]. Unlike those efforts, our design relies solely on
locally observable (and thus more trustworthy) information.

Trading and payments. SHARP [16] is a framework for distributed resource manage-
ment, where users can trade resources like bandwidth with trusted peers. KARMA [36]
and SeAl [29] rely on auditor sets to keep track of the resource usage of each partic-
ipant in the network, similar to Ngan et al.’s quota manager approach [27]. MojoNa-
tion [26] similarly allowed peers to exchange certificates for resources. Golle et al. [18]
considered centralized p2p systems with micro-payments, analyzing how various user
strategies reach equilibrium within a game theoretic model.

Trading and payments architectures may be too expensive for many content distri-
bution systems, as each download would incur cryptographic operations and additional
communication. Moreover, implementing micro-payments either requires a centralized
authority to issue currencies, or uses distributed trust and currency, which is still an
active research area.

Mobile ad hoc networks. Since nodes in mobile ad hoc networks rely on each other
to forward traffic, incentives are as important in these networks as they are in p2p con-
tent distribution systems. Marti et al. [25] consider monitoring the performance of other
nodes and routing around uncooperative nodes. CONFIDANT [5] is a distributed rep-
utation system to detect and isolate misbehaving nodes. Salem et al. [32] propose a

290 A. Nandi et al.

micro-payment architecture for multi-hop cellular networks. Catch [24] is a mechanism
to identify and punish selfish nodes who do not forward packets in a multi-hop wire-
less setting based on an anonymous challenge-response protocol. In general, mobile ad
hoc networks may require different incentive mechanisms than p2p systems due to their
limited computational resources and peer connectivity.

7 Conclusions

This paper presents Scrivener, a decentralized system that provides nodes in a cooper-
ative content distribution network with incentives to share their bandwidth resources.
Scrivener only requires nodes to track their neighbor’s behavior. It uses a greedy ran-
domized routing algorithm to find a credit path, allowing a node to leverage credit is
has with its overlay neighbors to obtain content from an unrelated node that holds the
desired content. At the same time, Scrivener effectively prevents freeloaders from ex-
ploiting obedient nodes. Our results show that Scrivener is scalable and effective at
deterring freeloading behavior while incurring modest overhead.

References

1. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. In Proc.
of the 10th Int’l Conf. of Information and Knowledge Management, Atlanta, GA, 2001.

2. E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10), Oct. 2000.
3. K. G. Anagnostakis and M. B. Greenwald. Exchange-based incentive mechanisms for peer-

to-peer file sharing. In Proc. 24nd Int’l Conf. on Distributed Computing Systems, Washing-
ton, DC, Mar. 2004.

4. A. Blanc, Y.-K. Liu, and A. Vahdat. Designing Incentives for Peer-to-Peer Routing. In Proc.
24th IEEE Infocom, Miami, FL, Mar. 2005.

5. S. Buchegger and J.-Y. Le Boudec. Performance analysis of the CONFIDANT protocol. In
Proc. MobiHoc’02, Lausanne, Switzerland, June 2002.

6. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security for structured
peer-to-peer overlay networks. In Proc. OSDI’02, Boston, MA, Dec. 2002.

7. B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Econ. of Peer-to-Peer
Systems, Berkeley, CA, June 2003.

8. L. P. Cox and B. D. Noble. Samsara: Honor among thieves in peer-to-peer storage. In Proc.
SOSP’03, Bolton Landing, NY, Oct. 2003.

9. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API for
structured peer-to-peer overlays. In Proc. IPTPS’03, Berkeley, CA, Feb. 2003.

10. R. Dingledine, M. J. Freedman, and D. Molnar. Accountability. In A. Oram, editor, Peer-to-
Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates, 2001.

11. J. R. Douceur. The Sybil attack. In Proc. IPTPS’02, Cambridge, MA, Mar. 2002.
12. J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design: Recent results

and future directions. In Proc. 6th Int’l Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, Atlanta, GA, Sept. 2002.

13. FreePastry. Open source implementation of Pastry. http://freepastry.rice.edu/ .
14. E. Friedman and P. Resnick. The social cost of cheap pseudonym. Journal of Economics and

Management Strategy, 10(2):173–199, 2001.

Scrivener: Providing Incentives in Cooperative Content Distribution Systems 291

15. K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure distributed read-only file system.
ACM Transactions on Computer Systems, 20(1), Feb. 2002.

16. Y. Fu, J. S. Chase, B. N. Chun, S. Schwab, and A. Vahdat. SHARP: An architecture for
secure resource peering. In Proc. SOSP’03, Bolton Landing, NY, Oct. 2003.

17. Gnutella. http://www.gnutella.com/.
18. P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for sharing in peer-to-

peer networks. In Proc. 3rd ACM Conf. on Electronic Commerce, Tampa, FL, Oct. 2001.
19. C. Grothoff. An excess-based economic model for resource allocation in peer-to-peer net-

works. Wirtschaftsinformatik, June 2003.
20. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Mea-

surement, modeling, and analysis of a peer-to-peer file-sharing workload. In Proc. SOSP’03,
Bolton Landing, NY, Oct. 2003.

21. G. Hardin. The tragedy of the commons. Science, 162:1243–1248, 1968.
22. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm for reputa-

tion management in p2p networks. In Proc. WWW 2003, Budapest, Hungary, May 2003.
23. KaZaA. http://www.kazaa.com/.
24. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining Cooperation in Multi-hop

Wireless Networks. In Proc. NSDI’05, May 2005.
25. S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile ad hoc

networks. In Proc. MobiCom’00, Boston, MA, Aug. 2000.
26. MojoNation. http://en.wikipedia.org/wiki/MojoNation/ , see also Mnet

http://mnetproject.org.
27. T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair sharing of peer-to-peer re-

sources. In Proc. IPTPS’03, Berkeley, CA, Feb. 2003.
28. T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer multicast.

In 2nd Workshop on the Economics of Peer-to-Peer Systems, Cambridge, MA, June 2004.
29. N. Ntarmos and P. Triantafillou. SeAl: Managing accesses and data in peer-to-peer sharing

networks. In Proc. of the 4th IEEE Int’l Conf. on P2P Computing, Zurich, Switzerland, 2004.
30. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object address and routing for

large-scale peer-to-peer systems. In Proc. Middleware, Heidelberg, Germany, Nov. 2001.
31. A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. In Proc. SOSP’01, Oct. 2001.
32. N. B. Salem, L. Buttyan, J.-P. Hubaux, and M. Jakobsson. Node cooperation in hybrid ad

hoc networks. IEEE Transactions on Mobile Computing, 2005. To appear.
33. J. Shneidman and D. Parkes. Rationality and self-interest in peer to peer networks. In Proc.

IPTPS’03, Berkeley, CA, Feb. 2003.
34. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for Internet applications. In Proc. SIGCOMM’01, San Diego,
CA, Aug. 2001.

35. Q. Sun and H. Garcia-Molina. SLIC: A selfish link-based incentive mechanism for unstruc-
tured peer-to-peer networks. In Proc. 24nd Int’l Conf. on Distributed Computing Systems,
Washington, DC, Mar. 2004.

36. V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A secure economic frame-
work for p2p resource sharing. In Workshop on Econ. of Peer-to-Peer Systems, Berkeley,
CA, June 2003.

37. M. Waldman and D. Mazières. Tangler: A censorship-resistant publishing system based on
document entanglements. In Proc. ACM CCS, Philadelphia, PA, Nov. 2001.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 292 – 313, 2005.
© IFIP International Federation for Information Processing 2005

MEDYM: Match-Early with Dynamic Multicast
for Content-Based Publish-Subscribe Networks

Fengyun Cao and Jaswinder Pal Singh

Computer Science Department, Princeton University,
Princeton, New Jersey 08540, USA

{fcao, jps}@cs.princeton.edu

Abstract. Design of distributed architectures for content-based publish-
subscribe (pub-sub) service networks has been a challenging problem. To best
support the highly dynamic and diversified content-based pub-sub communica-
tion, we propose a new architectural design called MEDYM - Match-Early with
DYnamic Multicast. MEDYM follows the End-to-End distributed system de-
sign principle. It decouples a pub-sub service into two functionalities: complex,
application-specific matching at network edge, and simple, generic multicast
routing in the network. This architecture achieves low computation cost in
event matching and high network efficiency and flexibility in event routing. For
higher scalability, we describe a novel approach to extend MEDYM to a hierar-
chy structure called H-MEDYM, which effectively balances the trade-off be-
tween event delivery efficiency and server states maintenance. We evaluate
MEDYM and H-MEDYM using detailed simulations and real-world experi-
ments, and compare them with major existing design approaches. Results show
that MEDYM and H-MEDYM achieve high event delivery efficiency and system
scalability, and their advantages are most prominent when user subscriptions are
highly selective and diversified.

Keywords: Content-based publish-subscribe network, multicast.

1 Introduction

Content-based publish-subscribe (pub-sub for short) is an important paradigm for
asynchronous communication among entities in a distributed network. In such sys-
tems, users subscribe to future events that are of their interest by specifying complex
conditions on event content, and are notified when events satisfying the conditions are
published into the system. For example, a user who subscribes to stock ticker events
with condition “PriceChange > 10% AND Volume > 100m” is notified when a stock
has price movement of above 10% or transaction volume of more than 100 million
shares. Such timely delivery of customized information is of great value to many
distributed applications, and has become an interesting and important research topic.

For scalability and reliability reasons, a large-scale pub-sub system often takes
the form of a distributed service network: as shown in Fig. 1, a set of pub-sub servers
is distributed over the Internet; clients access the service, either to publish events

 MEDYM: Match-Early with Dynamic Multicast 293

or to register subscriptions, through servers that are close to them or in the same
administrative domains. In this paper, we study the problem of efficient event deliv-
ery in the service network, i.e. from servers where the events are published to servers
with matching subscriptions. We do not address the “last-mile” event delivery from
servers to local clients in this paper.

Efficient event delivery is challenging for two reasons: first, published events do
not carry destination address information. Rather, it is the system’s responsibility to
match each event with user subscriptions to identify the servers that are interested in
it. Second, even if the destinations are known, it is not clear how to route the events to
the destination servers. This is because of the highly diversified user interests in a
content-based pub-sub system: every event can match the interest of a different set of
servers, and in the worst case, there can be 2#servers such destination sets. How to
achieve efficient delivery to so many destination sets is yet an open question.

Existing architecture designs for content-based pub-sub networks typically connect
servers into pre-configured overlay networks. Events are routed along the overlay
network topology, choosing which connections to follow based on matching results.
Because event delivery routes are constrained by the overlay topology, it is inevitable
that events are sent to/through servers that are not interested in them, generating extra
processing and network load. As analyzed in the paper, such overhead can be espe-
cially high when user interests are highly selective and diversified.

In this paper, we explore the possibility of a very different approach. Correspond-
ing to the dynamic communication patterns in pub-sub networks, we propose an
architecture called MEDYM: Match-Early with DYnamic Multicast. In MEDYM,
events are first matched with subscriptions to identify destination servers, and then
delivered to destinations along multicast routes computed and constructed on the fly.
In this way, MEDYM allows fine-grained optimization for delivery of each individual
event. For example, it is able to send events only to the servers that are interested
in them, minimizing event traffic load on pub-sub servers. Using configured overlay
networks, no existing solution achieves this highly desirable property. MEDYM
network is also easy to deploy, and highly flexible to support various matching and
routing policies.

The basic form of MEDYM is well-suited to service networks with up to thousands
of servers. Given that each pub-sub server can support a large number of end users,
this scale is adequate for many interesting pub-sub applications in the foreseeable
future. For even further scalability, we propose a hierarchy structure called H-
MEDYM. Different from existing hierarchal pub-sub network designs, H-MEDYM
partitions the server network as well as the content space of a pub-sub system, to
effectively reduce server states without introducing skewed load distribution.

The rest of the paper is organized as follows: in Section 2, we briefly review exist-
ing pub-sub network design approaches. We present design and efficient implementa-
tion techniques of MEDYM in Section 3, and the hierarchy extension to H-MEDYM
in Section 4. In Section 5, we present simulation and experimental evaluation results
of MEDYM and H-MEDYM, in comparison with the major existing approaches. In
Section 5.8, we conclude the paper with directions for future work.

294 F. Cao and J.P. Singh

A

D

C G

F

H

E

B

Publish

 Notify

Subscribe

End
users

End
users

Pub-sub server

Fig. 1. Example of a publish-subscribe service network

2 Existing Solutions

Existing distributed content-based pub-sub architecture design can be largely catego-
rized into two classes, which we call the Content-based Forwarding (CBF) approach
[1][6][7][8][9][21][26] and the Channelization approach [11][18][19][25]. They
balance the tradeoff between event matching complexity and routing accuracy
differently.

CBF tree

Matched servers Multicast channel ch1 (the event belongs to)
Multicast channel ch2

Matched servers

A

D

B

C G

F

H

E

event

A

D

B

C G

F

H

E

 event

Fig. 2. Event delivery in a CBF tree Fig. 3. Event delivery in Channelization

2.1 Content-Based Forwarding (CBF)

CBF proposes an elegant intelligent-network architecture. CBF servers are organized
into an overlay network, on top of which one or more CBF trees are extracted. For
simplicity, we use the single-tree case to illustrate the idea in Fig. 2. Each CBF server
maintains a forwarding table that keeps track of the sum of subscriptions from servers
in each direction of the tree. A published event is broadcast on the tree, matched
against the forwarding tables at every step, and forwarded only in directions with
matching subscriptions.

Through per-step filtering, CBF achieves highly accurate event routing. Its major
challenges are the computation and maintenance cost introduced. First, the per-step
content-based event matching is a computationally expensive operation; furthermore,
many of the operations may be redundant, as an event may be repeatedly matched

 MEDYM: Match-Early with Dynamic Multicast 295

with the same subscriptions before reaching the destination servers. Second, events
are often routed through uninterested intermediate servers, generating extra network
as well as processing load. Servers and network links close to the center of the net-
work are especially likely to carry irrelevant event traffic and become system bottle-
necks. Finally, the forwarding tables can be expensive to maintain. When the overlay
topology changes, e.g. to adapt to network environment changes, the relative positions
of servers in the CBF tree(s) also change. Since subscriptions from each direction on
the old tree have been aggregated together in the forwarding tables, there is no easy
way to adjust the forwarding tables to reflect the new topology, except by transferring
large amount of subscriptions along the new topology and re-computing forwarding
tables, generating high network traffic and processing load.

In this paper, we use the work by the Siena group in [6] and [7] as representatives
for the CBF approach, as they are perhaps the most prominent and complete works in
this direction. They have also designed efficient event forwarding algorithms in [8].
Many other distributed pub-sub systems follow the CBF approach. In JEDI [9], a
hierarchical event routing network was proposed, but was found to perform worse
than the peer-to-peer topology in [6]. The Gryphon group [1][26] designed efficient
content-based matching algorithms used in forwarding, and proposed using virtual time
vectors to convey temporal consistency of subscription propagation. The Elvin system
[21] proposed the concept of quenching, in which publishers are aware of the sum of
all subscriptions in the system, so that they only publish events that have at least some
interested subscribers.

2.2 Channelization

The central idea in the Channelization approach is to utilize existing group-based
multicast techniques, such as IP multicast or application-level multicast, for
event delivery. As shown in Fig. 3, offline, the event space is partitioned into a small
number of disjoint event channels. For each channel, a multicast group is built that
spans all servers whose subscriptions may match any event in that channel. When an
event is published, the server first determines if any server wants the event. If so, it
identifies the channel it belongs to, and then sends it to the multicast group for that
channel.

The group-based multicast event routing in Channelization is very simple and
fast. The main challenge for the approach is its routing accuracy. As discussed
in Section 1, event traffic pattern in a content-based pub-sub system is highly diversi-
fied. The number of multicast groups a system can build is often much smaller
than the total number of different event destination sets. As a result, the same event
channel often has to accommodate events with different destination sets, and servers
can receive many events that they are not interested in. To reduce such extraneous
traffic, intelligent algorithms are used to cluster events with similar destination sets
into the same channels. However, the effectiveness of clustering heavily depends on
the event and subscription distribution. Unless the distribution offers promising
clustering opportunity, as [18] pointed out, it is usually difficult to accurately support
diversified user interests with only a small number of groups. Furthermore, the data
distribution can be difficult to estimate and change over time.

296 F. Cao and J.P. Singh

In this paper, we use [18] as a representative for the Channelization approach.
As a companion paper, [19] proposed optimization techniques for [18] and more ex-
tensive evaluation results. Although the techniques are proven to be effective, we
expect them to be potentially applicable in other approaches as well, and therefore do
not consider them as part of Channelization design in this paper. [11] studied the
Channelization problem from a theoretical perspective. [25] experimented with
different methods of clustering for different data distributions.

3 MEDYM

We propose a pub-sub network architecture called MEDYM, for Match-Early with
Dynamic Multicast. Fig. 4 illustrates the event delivery process in MEDYM: a pub-
lished event is first matched against subscriptions from remote servers, to obtain a
destination list of successfully matched servers. Then, the event is routed to these
servers through dynamic multicast: a transient, stateless multicast tree is computed
and constructed on the fly, based on the destination lists carried in event message
headers.

 Matched servers

{.., ..} Destination list

A

D

C G

F

H

E

B event
{C,E,H}

{H}

{E}

 Send(DL, msg) Receive(msg)

. . . .
 n1

fs(DL)

Underlying
network

DL msg DL1 msg

 DLd msg
 nd

 < ni, DLi > msg

Server
location

Upper layer
application

Dynamic
Multicast

 Another server

Fig. 4. Event delivery in MEDYM Fig. 5. Dynamic multicast routing

MEDYM can be seen as following the End-to-End distributed system design prin-
ciple [20]. It decouples the content-based pub-sub service into two functionalities:
complex, application-specific matching at network edge, and simple, generic address-
based routing in the network core. Such architecture offers several advantages:

• Low computation cost. Each event is matched with subscriptions for only once;
the rest of the delivery process is through simple address-based routing.

• Minimum event traffic. Events are sent only to the servers with matching sub-
scriptions. This not only minimizes the total event traffic on pub-sub servers, but
also distributes the traffic consistently with servers’ self-interests. Given the het-
erogeneous user interests in content-based pub-sub networks, this can be an im-
portant incentive for servers to join a network.

• Fine-grained routing optimization. Dynamic multicast allows network-efficient
routing decisions be made based on individual event traffic patterns.

 MEDYM: Match-Early with Dynamic Multicast 297

• Easy deployment and management. Servers are loosely coupled by soft states
rather than configured overlay topology. This makes the network easy to deploy
and adapt to changes and failures. Content-independent dynamic multicast can
also support seamless integration of servers or networks running different pub-
sub applications, and upgrade to different data types or matching semantics.

In this paper, we treat the relatively well-studied event matching problem ([1][8])
as an independent plug-in module and do not discuss it further. Next, we present de-
sign and implementation of dynamic multicast, and MEDYM server states mainte-
nance. Due to space limitation, we omit the bootstrapping and self-organization of the
MEDYM network, which are described in detail in [5].

3.1 Dynamic Multicast

Dynamic multicast is a generic scheme for routing messages to dynamic destination
sets. As shown in Fig. 5, it serves a simple interface to the upper layer application:
send (DestinationList, message), and delivers received messages to the application
through a callback function Receive(message). Upon receiving a message with desti-
nation list DL, from either upper layer application or a remote server, a routing algo-
rithm fs runs as follows:

< ni, DLi > = fs (DL) i = 1 . . . d

The algorithm computes a list of d < ni, DLi > pairs, where ni is the ith next-hop
server, and DLi is the new destination list for ni. Different routing algorithms can be
designed to suit different optimization goals, but the input and output of fs should
always satisfy the following routing invariants:

(a) U
d

i
i sDLDL

1

}{
=

−=

(b) jiDLDL ji ≠= ,φI

(c) ii DLn ∈

These invariants guarantee that step by step, the message is sent to all its destina-
tion servers and to each server only once. Routing loops and redundant paths are natu-
rally prevented. A multicast tree is thus resolved in a recursive way.

One of the major advantages of dynamic multicast is that because no routing states
or pre-defined “groups” are maintained, there is no scalability limit on the number of
destination sets it can support.

3.1.1 Distributed Dynamic Multicast
To avoid the fragility of centralized decision-making, in this paper, we focus on
distributed dynamic multicast: each server accurately computes its local part of the
multicast tree – its next-hop servers; it resolves the remote part of the tree only on a
coarse-grain level, by assigning destinations to the destination lists for the next-hop
servers. How the message will be routed beyond the next-hops is transparent and of
no concern to the current server. This strategy suits well the fact that servers in a dis-
tributed network often have more accurate or up-to-date knowledge about their local

298 F. Cao and J.P. Singh

environment than distant areas. In the event delivery process, servers improve routing
decisions on a finer-grained level, and can easily adapt to network changes or failures.
For example, when a server fails to deliver a message to a next-hop server ni, it sim-
ply re-runs fs (DLi -{ni}) so that the message is still delivered to other servers in DLi. It
also inserts ni into the destination lists for one of the new next-hops, so that some
other server will try to contact ni, to bypass the possible network failure between the
current server and ni. After three such attempts, ni is concluded to have failed.

3.1.2 Routing Algorithms
In this paper, we measure communication cost by network latency. Each MEDYM server
maintains a DistanceMatrix, which contains the latency between every pair of servers
in the system. Maintenance of the DistanceMatrix will be described in Section 3.2.

To minimize total network cost, we first experimented with routing algorithm that
computes the multicast tree as a minimum spanning tree (MST) across destination
servers. The major drawback of the MST algorithm is its high computation complex-
ity, O(D2logD) where D is the number of destination servers. As the routing algorithm
is run in real-time for every event message received, it is important that it can run fast
enough to support high event routing throughput.

We then developed algorithm SPMST, for Short-Path-MST, which computes an
approximate minimum spanning tree among the destination servers in a fast and dis-
tributed way. This algorithm is as shown in Fig. 6. Offline, an array called Shadow-
BitVectors is maintained to help quickly identify next-hop servers. We say that server
si is shadowed by server sj, if si is closer to sj than to current server s, and s is closer to
sj than to si. Under this condition, sj would forward the message to si at lower (la-
tency) cost than s does. Therefore, a server is a next-hop server if and only if it is not
shadowed by any other destination. This can be quickly determined by the intersec-
tion of its ShadowBitVector and DLBitVector, the bit vector for DL. After choosing
next-hops, the rest destinations are assigned to the destination lists of the next-hop
servers closest to them.

computeShadowBitVectorss() { // offline
 foreach server si {
 foreach server sj
 if (DistanceMatrix[i][j]<DistanceMatrix[s][i] &&
 DistanceMatrix[s][j]<DistanceMatrix[s][i])
 Set_jth_bit_in_ShadowBitVector[i]; }}

SPMSTRoutings(DL) { // online
 Nexthops = DL;
 foreach server si in DL
 if (ShadowBitVector[i] & DLBitVector !=0)
 Nexthops_remove(si);
 if (|Nexthops|>maxNextHops))
 Nexthops = closest_nexthops(maxNextHops);
 foreach server sj in (DL-Nexthops) {
 ni = closest_nexthop_to(sj);
 DLi +={sj}; }
 return(<ni, DLi>); }

Fig. 6. SPMST routing algorithm

 MEDYM: Match-Early with Dynamic Multicast 299

Table 1 shows the computation time of MST and SPMST algorithm. The algo-
rithms are written in Java and run with 2.0 GHz Pentium-III CPU and 512MB
memory. Results show that SPMST runs much faster than MST, and can support
routing of more than thousands of events per second. Furthermore, note that the aver-
age destination list size in a dynamic multicast message, as analyzed in Section 3.1.3,
is much shorter than the |DL| sizes in the table. Therefore, compared to the results on
content-based matching [1][8], we expect the computation cost of dynamic multicast
routing to be lower and the process faster.

Table 1. Computation time of d-cast routing algorithms, with destination list size |DL|

Computation time (ms) Routing
algorithm |DL|=100 |DL|=500 |DL|=1,000

MST 1.8 9 34
SPMST 0.08 0.29 0.62

Route Caching. An interesting question is whether dynamic multicast routes
can/should be cached, so that future routing decisions can be made by cache look-up
rather than real-time computation. The effectiveness of caching highly depends on the
temporal locality of the pub-sub communication. We plan to study it in the context of
specific pub-sub workload in the future, and do not assume caching as a general solu-
tion here. This results in a conservative estimation of the dynamic multicast routing
computation overhead.

Routing on Mesh. Routing algorithms described above assume that every pair of
servers may directly connect, which we expect is the normal scenario in a large-scale
dedicated service network. When this is not the case, e.g. due to configurations or
network failures, it may be inevitable that event messages be sent through non-
destination servers. Our experiments show that the better connected the servers are,
the more routing flexibility dynamic multicast can exploit, and the better performance
it achieves. As this does not affect the overall MEDYM design, due to space limita-
tion, we do not discuss such scenarios further in this paper.

3.1.3 Destination List Overhead
Destination lists carried in event messages introduce traffic overhead in MEDYM.
Fig. 7 gives an informal analysis of the average destination list size in the process of
delivery of one event: in a dynamic multicast tree, the destination lists are reduced at
every step by a factor of the fan-out of the server in the tree. Therefore, the average
list size is about equal to the diameter of the tree. This is confirmed by Fig. 8, which
shows that as the diameters of the SPMST multicast trees are short and grow slowly
with total number of destinations, so do the average destination list sizes. For exam-
ple, to route an event to 1000 servers, an average message carries only 8 server IDs in
its destination list. Such overhead is quite acceptable, especially considering that
event messages in content-based pub-sub networks often carry rich content, such as
attribute-value pairs, full-text or XML documents.

Although the destination lists are short on average, the overhead may not be
well balanced, as the lists are longer at locations closer to the publisher. Instead of

300 F. Cao and J.P. Singh

considering destination lists alone, we developed a routing algorithm to balance
server routing load as a whole, as described in [5]. In Section 5, we examine through
simulations the destination list overhead in various scenarios.

Note that the low destination list overhead is of critical importance to the scalabil-
ity of dynamic multicast. [2] and [13] also proposed routing messages based on the
destination information carried in message headers. However, as these approaches route
messages on top of off-line maintained unicast routes, messages are inevitably sent
through non-destination nodes. Traversing such nodes cannot reduce the destination
information in the messages. Therefore, the average destination information in the
messages is about linear to the number of destinations (rather than about logarithmic
in dynamic multicast), and both approaches were developed on the assumption of a
very small number (tens of) of receivers.

Sum(|DL|) < m

l levels

Sum(|DL|) < m

In total: < ml destinations. (m-1) messages.
On average: l destinations/message

0

2

4

6

8

10

0 500 1000
Destination Servers

Ttree
diameter
Average
DL s ize

Fig. 7. Intuitive analysis of average destination
list size in a dynamic multicast tree

Fig. 8. Simulation results for SPMST multi-
cast tree diameters and average destination
list sizes

3.2 Server States

MEDYM servers maintain two data structures: routing tables to support dynamic
multicast routing, and matching tables for early event matching.

Routing Table. A routing table includes a server list of (serverID, IPaddress, status)
for all servers in the system, and a distance matrix M, where Mi,j represents communi-
cation cost between server i and j. In MEDYM, servers periodically broadcast Refresh
messages using dynamic multicast. A refresh message contains the server’s ID, IP
address, network location and status (e.g. load condition). Servers receiving the Re-
fresh message update their routing tables accordingly.

Server network location can be measured in two ways: servers may actively probe
each other and broadcast the probing results. This approach generates O(#servers3)
total network traffic and therefore only scales to small networks. As an alternative,
MEDYM can utilize state-of-the-art techniques [16][22] to approximately estimate
server locations with much lower overhead. Note that inaccurate server location
information or even inconsistent information across servers does not affect the correct-
ness of dynamic multicast, which is guaranteed by the routing invariants. In Section 5,
we present experimental results of using both probing and the available GNP estima-
tion service [16]. More detailed simulation results of using [22] can be found in [5].

 MEDYM: Match-Early with Dynamic Multicast 301

Matching Table. In a pub-sub network, servers often specialize in publishing only
certain kinds of events. In MEDYM, a server maintains a matching table, with an entry
(serverID, sum_of_subscriptions) for every other server in the system, which records
the sum of subscriptions from that server that are relevant to local publication interest.
To make a new subscription or to cancel a previous one (so-called unsubscibe), a
server broadcasts a Subscribe or Unsubscribe message via dynamic multicast; servers
receiving the message update their matching tables. As an optimization, servers may
first broadcast advertisements on their publication interests, so that subscriptions are
sent (via dynamic multicast) only to servers with relevant advertisements.

Scalability. We do not expect MEDYM routing tables or matching tables to introduce
major storage or maintenance overhead for small or medium scale pub-sub networks.
First, as each pub-sub server is expected to support a large number of end users, rout-
ing tables are expected to be much smaller and more stable than the matching tables.
Second, for any pub-sub network to achieve the highly desirable quenching capability
([21]), i.e. to filter off events that nobody wants locally, publication servers must
know the sum of all (relevant) subscriptions in the network. Servers in MEDYM and
the two existing approaches discussed in Section 2 all have the quenching capability,
though they differ in subscription replication formats and optimization techniques.
We compare their subscription replication cost in detail in Section 5.3.

4 H-MEDYM

MEDYM requires servers to know about all other servers in the network and the
sum of their subscriptions. We believe such information needs are practical for
service networks with up to thousands of servers. Beyond this point, the storage and
maintenance cost of the server states can become the system scalability bottleneck.
Hierarchy is an effective method that makes IP routing extremely scalable. However,
different from IP addresses, content-based subscriptions from servers geographically
close are not necessarily similar and may not be succinctly summarized. Therefore, a
similar hierarchy structure for pub-sub network can impose heavy load on servers at
the upper level of the hierarchy [6][9].

Based on our experience from an earlier work [4], we propose a different hierar-
chical solution called for MEDYM, called H-MEDYM for Hierarchical MEDYM. An
H-MEDYM network is partitioned along two dimensions: geographically, servers are
clustered based on their network locations; content-wise, the event space is partitioned
into non-overlapping topics. Each event falls into one topic, while a subscription may
overlap with multiple topics (Event space partitioning will be discussed later in more
detail). In each cluster, for each topic, one or more servers are designated as matchers,
which will be responsible for matching events falling into that topic.

An example of event delivery in H-MEDYM is shown in Fig. 9. When an event
is published, the publication server identifies the topic the event belongs to, and sends
it the closest matcher for that topic in local cluster. At the matcher, the event is
matched against subscriptions for that topic, and then dynamic-multicast to two sets
of destinations: matched servers in the local cluster, and matched matchers for that
topic from remote clusters. At each remote matcher, the event is matched again with
subscriptions from servers in that matcher’s cluster and dynamic-multicast to the
matched servers.

302 F. Cao and J.P. Singh

 Topic
Cluster

T1 T2

C1 A B
C2 D C
C3 H G
C4 E F

 Servers with matching subscriptions

A

D

C G

F

H

E

B event
 DL{G,F}

 DL{F}

 DL{H} DL{C}

Matchers:

 DL{E}

Fig. 9. Event delivery in H-MEDYM. Server A publishes an event in topic T2. It sends the
event to matcher B, which matches the event and dynamic-multicasts it to matched servers in
the local cluster (not shown) as well as to matched matchers C, G, F in other clusters. The event
is matched again at C, G, F and dynamic-multicast to the matched servers in their local clusters.

4.1 Cluster Configuration and Server States

Unlike in MEDYM, servers in H-MEDYM need to know about only a subset of other
servers and subscriptions. Specifically, the first row in Table 2 describes the content
of the routing and matching tables at a server that is a matcher: the routing table con-
tains only servers in the same cluster and other matchers for the same topic; the
matching table contains only subscriptions from this subset of servers that overlap
with that topic (subscriptions overlapping with multiple topics can be divided into
smaller subscriptions each covering one topic). A server that is not a matcher (not
shown in Table 2) maintains a routing table only for servers in the same cluster, and
no matching table.

Table 2. Server states at an H-MEDYM matcher for topic t in cluster c. N: #servers, C: #clus-
ters, T: #topics.

 Routing table Matching table

Table content
Network location of

servers in c and
matchers for t

Subscriptions in topic t
from servers in c and

matchers for t

Table size, as a fraction
of global knowledge

~ 1/C+max(1/T, C/N) ~ max(C/N, 1/T)

The second row in Table 2 provides an approximate estimate of the table sizes,
normalized as a fraction of global information, i.e. it shows the fraction of all servers
or subscriptions in the system that a server needs to know about. The results can be
intuitively explained as follows: increasing the number of topics T partitions the event
space at finer level, and reduces the number of subscriptions that need to be replicated
for each topic and the number of matchers for each topic. However, increasing T
beyond N/C no longer reduces matching table size at an average server, as the server
now has to match for more than one topic; on the other hand, it continues to increase
the routing table size, as the server needs to know about more other matchers. We
expect a good H-MEDYM configuration to be around T ~ N/C ~ N1/2, in which case

 MEDYM: Match-Early with Dynamic Multicast 303

the matching table size is reduced by a factor of O(N1/2) compared to that in
MEDYM. (We do not focus on routing tables, as they are usually much smaller and
more stable than matching tables, as mentioned in Section 3.2). Such reduction can be
quite substantial in a large-scale network. In Section 5.2, we present simulation results
of H-MEDYM server states under various configurations.

4.2 Scalability Analysis

Compared to MEDYM, H-MEDYM improves scalability in several aspects. First, it
reduces server states as described above. Second, event delivery is divided into two
steps: dynamic multicast within each server cluster, and among matchers for the same
topic. As each step involves only a small subset of servers, messages carry shorter
destination lists. Third, events are no longer matched at publication servers. Separa-
tion of publication and matching responsibility allows for more flexible load man-
agement, as replication of subscriptions and the workload of event matching can now
be allocated based on server capabilities rather than determined by the publication
interests of their nearby end users.

On the other hand, H-MEDYM introduces new overheads. An event is now
matched twice, at local and remote matchers, before reaching a destination server.
The event may also traverse matchers that are not be interested in it. The quenching
capability is moved from publication server to the first matcher the event is sent to.
Finally, managing server clusters and content space partitions introduces additional
cost.

Overall, H-MEDYM trades off efficiency in event delivery for lower server states
overhead, and is applicable to very large pub-sub networks where such overhead is the
scalability bottleneck. We will evaluate these tradeoffs quantitatively in Section 5.

4.3 Other Issues

Several orthogonal design and algorithmic issues need to be addressed in building an
H-MEDYM system. This paper does not make new contributions in these areas. In-
stead, we explore the possibility of applying existing technologies, and expect these
issues to be fertile ground for further optimization and evaluation in the future.

Event Space Partitioning. In H-MEDYM, it is desirable that event space be
partitioned into topics with balanced load, and with few subscriptions overlapping
with more than one topic. The partition should also be easy to maintain and adaptive
to data changes. Many pub-sub applications have inherent concepts of topics, such as
news categories, stock industries or geographic area partitions, which are natural
candidates for the partitioning in H-MEDYM. In [4] we propose to partition the space
into continuous zones, possibly using multi-dimensional partitioning techniques
[12][17][24]. Event clustering in Channelization is also an alternative, although the
process can be relatively complex and results sensitive to data distribution. Note that
unlike Channelization, H-MEDYM matches each event accurately with user sub
scriptions, and delivers events only to matched servers or matchers. A bad event space
partition is likely to affect the load distribution and server states reduction in
H-MEDYM, but will not lead to high extraneous event traffic.

304 F. Cao and J.P. Singh

Matcher Selection. When assigning H-MEDYM servers as matchers for topics, sub-
scription replication and the workload of event matching should be allocated consis-
tently with server capabilities. Load distribution is a well-studied problem in parallel
and distributed computing [10], and even in pub-sub itself [24]. In H-MEDYM, local-
ity is another key issue: it is desirable that servers match for events that are of local
publication or subscription interests, so as to reduce the probability of sending events
to matchers who are not interested in them. How to best assign matchers given these
potentially conflicting goals is an interesting area for future work.

5 Evaluation

We evaluate our work and compare with existing solutions through qualitative analy-
sis, quantitative simulations and real-world experiments.

5.1 Simulation Methodology

We developed a message-level, event-driven pub-sub network simulator. The IP to-
pology is generated using the GT-ITM transit-stub model [3] with 2500 routers and
8938 links in total. 1000 pub-sub servers are randomly attached to the routers. Each
event message has a payload of 200 bytes and a TCP/IP header of 44 bytes.
MEDYM/H-MEDYM destination lists have server IDs of 2 bytes each. For simplicity
and without loss of generality, we use integers as event and subscription values and
perform only equality matching. The results presented are independent of data types
or matching algorithms used.

We compare five architectural approaches: MEDYM and H-MEDYM with the
SPMST routing algorithm; two versions of CBF: CBF_MST as in [6], where a single
CBF tree is built as the minimum spanning tree across all servers, and CBF_SPT as in
[7], where CBF trees are shortest path trees rooted at publication servers; Channeliza-
tion approach as in [18], using Forgy K-Means algorithm to cluster events into 50 chan-
nels, as this algorithm was found to produce the best partition results in the paper.

A major challenge in evaluation of pub-sub systems has been the lack of represen-
tative application data. In the absence of this, we attempt to gain a comprehensive
understanding of the performance of different systems under various distinguishing
scenarios. We define a key parameter, matching ratio, as the fraction of servers with
matching subscriptions for an event, or equivalently, the fraction of events that a
server’s subscriptions match. We examine scenarios with widely varying matching
ratios and our results can be interpreted in several ways: first, low matching ratios
imply highly selective subscriptions and high matching ratios represent popular
events. We are interested to see how systems perform for these different scenarios.
Second, for a given matching ratio, we can understand performance results not only in
“absolute” terms, e.g. resource usage numbers, but also in “relative” terms, i.e. how
far is the performance from the optimal case. For example, with 10% matching ratio,
a server that receives 20% of all published events can be seen as carrying 100% traffic
overhead. Third, a pub-sub network may scale along three dimensions: number of
servers, number of total user subscriptions, and volume of event publications. As we
focus on evaluation of per event delivery, we do not consider the third factor in this

 MEDYM: Match-Early with Dynamic Multicast 305

paper. Table 3 shows three scaling scenarios as combinations of the first two dimen-
sions. Users can infer system scalability in these three scenarios from results with
different matching ratios. Finally, we have experimented with different event and
subscription data distributions, such as uniform, Zipf, exponential and normal distri-
butions. We found that only Channelization is sensitive to data distribution; its clus-
tering is more effective when both event and subscription distributions are highly
skewed and have the same peaks. Even so, in all realistic settings, the relative posi-
tions of different approaches are the same under all distributions. Due to space limita-
tions, we present results only with uniformly randomly generated event and subscrip-
tion values, as this provides the most basic and clear understanding of system’s per-
formance. Results for many other distributions can in fact be computed as the weighted-
sums of the results with different matching ratios.

Table 3. Pub-sub network scaling scenarios

Scenario Total subscriptions Number of servers Matching ratio
A −
B −
C −

5.2 H-MEDYM Configuration

We first look at the configuration of H-MEDYM networks. We use the Hierarchical
Agglomerate Clustering (HAC) algorithm [14] to cluster servers based on their net-
work locations, and partition the event space into continuous ranges with equal
lengths. Fig. 10 shows the average size of routing tables and matching tables at
H-MEDYM servers, normalized as a percentage of global information (see Table 2).
The results validate our quantitative analysis in Section 4.1. Partitioning in both
dimensions is necessary to reduce server state in H-MEDYM: when there is only 1
topic or 1 server per cluster (i.e. 1000 clusters), servers maintain 100% of global
information. Increasing the number of topics is effective in reducing server states only
when there are more servers in each cluster than the number of topics. In subsequent
simulations, we use the configuration in Fig. 10 that is closest to our choice of
T ~ N/C ~ N1/2 in Section 4.1: 20 topics and 50 clusters. In this case, on average, each
server knows about 10% of other servers, and 5% of total subscriptions.

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
Number of clusters

R
ou

tin
g

ta
bl

e
si

ze

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
Number of clusters

M
at

ch
in

g
ta

bl
e

si
ze

1 topic
2 topics
5 topics
20 topics
100 topics

Fig. 10. H-MEDYM server states under different configurations

306 F. Cao and J.P. Singh

5.3 Subscription Replication

Subscription replication is a major source of storage and maintenance cost in pub-sub
networks. This cost differs across systems in three ways:

First, the number of remote subscriptions a server needs to replicate depends on its
matching responsibility. In MEDYM and Channelization, servers only match for
locally published events, and therefore only need to replicate subscriptions that are
relevant to their publication interests. In H-MEDYM, a server replicates subscriptions
that fall into the topics it matches for, and the replication is independent of its own
publication interest. In CBF, a server needs to replicate all subscriptions for which it
appears on the CBF tree path between the subscriber and any possibly matching pub-
lisher. The number of such subscriptions is dependent on other servers’ publication and
subscription interests, not just its own.

Second, replicated subscriptions can be aggregated ([23][26]) to achieve more effi-
cient storage and update. In MEDYM and H-MEDYM matching tables, only subscrip-
tions from the same server can be aggregated. In CBF forwarding tables, subscriptions
from all servers in the same direction in the CBF tree can be aggregated, since the server
needs only determine in which directions to forward an event. In Channelization, all
subscriptions in the network can be aggregated, as the publication server only needs to
know whether an event matches any subscription in the system, for the purpose of quench-
ing. Therefore, Channelization offers greater opportunity for optimization by aggrega-
tion than CBF, which in turn offers greater opportunity than MEDYM and H-MEDYM.

Subscription aggregation is a difficult problem whose solution and effectiveness
heavily depends on pub-sub data type and distribution. It can also make canceling sub-
scriptions difficult, as mentioned in [7]. Therefore, in Fig. 11, we look at subscription
replication assuming no aggregation. In the figure, the x-axis shows an average
server’s publication interest, measured as a percentage of the entire event space; the
y-axis shows the number of subscriptions replicated on an average server, measured
as a percentage of all subscriptions in the system. For the CBF approach, we show
two curves that represent different subscription selectivity: an average server sub-
scribes to events falling into 1% or 100% of the event space. For example, if each

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Server Publication Interest

S
ub

sc
rip

tio
n

R
ep

lic
at

io
n CBF_MST 100% sub

CBF_SPT 100% sub
CBF_MST 1% sub
CBF_SPT 1% sub
MEDYM/Channelization
H-MEDYM

Fig. 11. Subscription replication, without aggregation

 MEDYM: Match-Early with Dynamic Multicast 307

server publishes 1% of events and subscribes to (not necessarily the same) 1% of
events, an average server needs to replicate 8% of total subscriptions. This figure can
be combined with the effectiveness of a particular subscription aggregation scenario
to estimate the subscription replication storage cost in a system.

In the face of network changes, subscription replication in CBF is likely to be more
expensive to maintain than in other systems, as discussed in Section 2.1.

Overall, we expect H-MEDYM to be an effective way to reduce subscription repli-
cation, while a quantitative comparison between the other approaches is likely to be
dependent on application properties.

5.4 Server Processing Load

For generality and comparability, we measure the processing load at a server by the
number of events the server receives. Note that to route each event, the content-based
forwarding process in CBF is likely to be more computationally expensive than
the address-based routing in Channelization and MEDYM/H-MEDYM, though the
concrete results depend on the data type, subscription size, and matching algorithms
used. Fig. 12 plots the number of events a server receives, as a percentage of all
events published in the system, under varying matching ratios. Channelization servers
receive the most events, showing the ineffectiveness of clustering in filtering out
extraneous event traffic. When matching ratio is higher than 15%, almost every
Channelization server joins all the multicast groups and receives all the events. CBF
servers receive much fewer events, due to its accurate per-step filtering. MEDYM
servers receive the fewest possible events, i.e. only the events that they subscribe to.
H-MEDYM introduces a small overhead over MEDYM, as events can be sent to
irrelevant matchers. The difference between the approaches is most apparent when
matching ratio is low. For example, a server that subscribes to only 1% events
receives 1% events in MEDYM, 2% in H-MEDYM, 8% in CBF_MST, 9% in
CBF_SPT, and 29% in Channelization. For very high matching ratios, all approaches
converge to broadcast.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Matching ratio

P
er

ce
nt

ag
e

of
 e

ve
nt

s
re

ce
iv

ed

CBF_M ST CBF_SPT
Channelization M EDYM
H-M EDYM

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Percentage of events received

P
er

ce
nt

ag
e

of
 s

er
ve

rs

CBF_MST CBF_SPT
Channelization MEDYM
H-MEDYM

Fig. 12. Average server processing load Fig. 13. Cumulative distribution of server
processing load, with 10% matching ratio

308 F. Cao and J.P. Singh

Next, we look at the distribution of processing load across pub-sub servers. Fig. 13
shows the percentage of servers that receive no more than a given number
of events,when each server matches 10% of total events. We see that all MEDYM
servers receive 10% events each, while most Channelization servers receive more
than 90% of total events. CBF server load is in between, but is highly imbalanced:
about 40% of servers receive only 10% events each, while 20% servers in CBF_MST
and 10% in CBF_SPT receive more than 80% events each. As expected in Section
2.1, these heavily loaded servers are located at the center of the network, and route for
many irrelevant servers. The imbalance problem is more serious in CBF_MST than in
CBF_SPT, because CBF_SPT has multiple CBF trees and higher routing diversity.

5.5 Server Bandwidth Consumption

Server bandwidth is a very precious resource in service networks. Fig. 14 shows the
average bandwidth a server consumes in the process of delivering one event. Different
from Fig. 12, MEDYM servers only achieve close to minimum bandwidth consump-
tion; the difference between its curve and the optimal line shows its destination list
overhead. While the overhead is small for low matching ratios, for high large match-
ing ratios (above 90%) it makes MEDYM server bandwidth surpass that of CBF and
Channelization by a small amount. H-MEDYM server bandwidth consumption is
higher than MEDYM when matching ratio is low, due to events traversing irrelevant
matchers, but it is lower than MEDYM when matching ratio is high, due to its shorter
destination lists.

Unlike the average case, the maximum server bandwidth consumption can be sen-
sitive to publisher distribution. In Fig. 15 and Fig. 16, we study two extreme scenar-
ios: the all-publisher scenario, in which every server publishes the same number of
events, and the single-publisher scenario, in which only one server publishes all the
events. In both cases, the maximum bandwidth consumption in both CBF approaches
is much higher than the average consumption, again showing the load imbalance
across servers. Different form the processing load case, CBF_SPT has more serious
bandwidth imbalance than CBF_MST. This is because the CBF trees in CBF_SPT,
built as shortest-path trees on the overlay layer, are likely to degenerate into star-
shaped topology with the publication servers at the center (since the shortest path
between a publisher and a subscriber is usually just the direct overlay connection
between them). Therefore, the publication servers often send out a large number of
copies of the same event, and the event routing becomes close to unicasting. The poor
performance of CBF_SPT for single-publisher case especially illustrates this point. In
MEDYM and H-MEDYM, server load is well balanced; the destination list overhead
does not prevent them from significantly outperforming the other approaches for the
all-publisher case. However, MEDYM performs less well for the single-publisher
case, especially when matching ratio is high, due to the destination list overhead at the
publication server. H-MEDYM effectively alleviates this problem, because even with
a single publication server, the destination lists are first generated at different match-
ers. Interested readers can refer to [5] for a dynamic multicast routing algorithm we
developed to balance MEDYM server bandwidth.

 MEDYM: Match-Early with Dynamic Multicast 309

0

1

2

3

4

5

0% 20% 40% 60% 80% 100%

Matching ratio

A
vg

 b
an

dw
id

th
 (

K
b)

CBF_MST CBF_
Channelization MEDY
H-MEDYM Optim

Fig. 14. Average server band-
width consumption

0
10

20
30

40
50

0% 20% 40% 60% 80% 100
%

Matching ratio

M
ax

 b
an

dw
id

th
 (

K
b)

CBF_MST CBF
Channelization MED
H-MEDYM

Fig. 15. Maximum server
bandwidth consumption in all-
publisher case

0

20

40

60

80

0% 20
%

40
%

60
%

80
%

100
%

Matching ratio

M
ax

 b
an

dw
id

th
 (

K
b)

CBF_MST CBF_
Channelization MEDY
H-MEDYM

Fig. 16. Maximum server
bandwidth consumption in
single-publisher case

0

0.5

1

1.5

2

0% 20
%

40
%

60
%

80
%

100
%

Matching ratio

A
vg

 li
nk

 s
tr

es
s

(K
b)

CBF_MST CBF_
Channelization MEDY
H-MEDYM

Fig. 17. Average link stress

0

4

8

12

16

0% 20% 40% 60% 80% 100
%

Matching ratio

M
ax

 li
nk

 s
tr

es
s

(K
b)

CBF_MST CBF_
Channelization MEDY
H-MEDYM

Fig. 18. Maximum link stress
in all-publisher case

0

20

40

60

80

0% 20% 40% 60% 80% 100
%

Matching ratio

M
ax

 li
nk

 s
tr

es
s

(K
b)

CBF_MST CBF_
Channelization MEDY
H-MEDYM

Fig. 19. Maximum link stress
in single-publisher case

0

4

8

12

16

20

0% 20% 40% 60% 80% 100%

Matching ratio

N
um

be
r

of
 o

ve
rla

y
ho

ps

CBF_MST CBF_SPT
Channelization MEDYM
H-MEDYM

Fig. 20. Average event path length in simulation

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

Matching ratio

R
D

P

CBF_MST CBF_SPT
Channelization MEDYM
H-MEDYM

Fig. 21. Relative Delay Penalty (RDP) of
event paths in simulation

310 F. Cao and J.P. Singh

5.6 Network Link Stress

Next, we look at event traffic load on underlying network links. We measure link
stress by the total amount of data transferred over a link in the process of delivering
one event. The average link stress results are shown in Fig. 17, and maximum link
stress under both all-publisher and single-publisher scenarios are shown in Fig. 18 and
Fig. 19. The results exhibit similar trends as server bandwidth consumption results,
but the differences between different approaches are of less extent. This is because the
underlying IP topology offers lower routing diversity than at the overlay layer: differ-
ent systems may route events through different sets of servers, but the messages often
traverse similar sets of underlying network links, especially when there are only a few
long-distance links across IP domains. We expect that in larger IP networks the dif-
ference between the approaches would be more significant, and the results would be
more favorable to MEDYM and H-MEDYM.

5.7 Event Delivery Latency

In real-time pub-sub applications, it is desirable that events arrive at subscribers
within short latency. The end-to-end event delivery latency consists of the processing
latency at intermediate servers and the transmission latency on network links. Fig. 20
shows the average number of servers in an event path in different architectures. In
CBF, the average event path lengths are always equal to the diameters of the CBF
tree(s), with CBF_SPT trees being flatter than CBF_MST trees. In Channelization,
when the matching ratio is low, clustering is effective in constructing small multicast
groups, and events are routed through fewer servers. In MEDYM, since a multicast
tree only spans the matched servers, the average path length is about equal to the
logarithm of the number of matched servers. H-MEDYM has shorter event paths
thanMEDYM, because of the two-level event routing hierarchy. Fig. 21 presents the
average Relative Delay Penalty (RDP) of event paths. RDP is defined as the ratio of
the sum of network latency of event routing in the pub-sub network over the latency
of IP routing between the publication server and the destination server. With shortest
path routing trees, CBF_SPT achieves lowest RDP of close to 1. The other

0%

20%

40%

60%

80%

100%

0 2 4 6
RDP

P
er

ce
nt

ag
e

of
 e

ve
nt

 p
at

hs

Ping_SPMST

GNP_SPMST

0

1

2

3

4

5

6

0 500 1000 1500

IP Latency (ms)

R
D

P

Fig. 22. Cumulative Distribution of RDP in
MEDYM deployment

Fig. 23. RDP vs. IP latency using GNP in
MEDYM deployment

 MEDYM: Match-Early with Dynamic Multicast 311

approaches all route events along minimum spanning trees or its approximations.
RDP in MEDYM and H-MEDYM is lower than in CBF and Channelization, due to
the smaller trees MEDYM and H-MEDYM build. H-MEDYM has higher RDP than
MEDYM because events are “detoured” to matchers first. Fig. 20 and Fig. 21 can be
used, together with the event processing latency at intermediate servers and the IP
latency between publication and destination servers, to estimate the end-to-end deliv-
ery for events with certain matching ratios.

5.8 MEDYM Implementation Results

We deployed a prototype of MEDYM on PlanetLab test bed [15]. MEDYM servers
are run on 86 PlanetLab sites, 68 in the United States and 18 abroad. Experimental
results for server processing load and bandwidth consumption confirm our simulation
results above, and are not presented here due to space limitations. To understand
event delivery performance in real networks, we focus on network latency results.

In the experiments, we measure server locations in two ways: first, each server
randomly pings another server in every 10 seconds, and broadcasts the pinging results
every 10 minutes; as an alternative, we used the GNP [16] service to estimate
server locations: each MEDYM server pings one of the 8 GNP servers every minute.
Based on the pinging results, it computes an 8 dimensional virtual coordinate,
and broadcasts its coordinates once every 8 minutes. Distance matrices are then
computed locally using the servers’ coordinates. Fig. 22 presents the RDP (as defined
in Section 5.7) for the event paths. It shows that the routing latency using pair-wise
pinging is consistent with our expectation and the overhead of using GNP is quite
acceptable. We observe that the inaccuracy of GNP estimation happens most when
servers that are geographically close and derive similar coordinates in GNP in fact
have high IP latencies between them, possibly due to congestions or configurations.
This can also be seen from Fig. 23, which shows that event paths with high RDP
typically have low IP latencies. Overall, Fig. 22 and Fig. 23 confirm our expectation
that MEDYM constructs high-quality event routing paths, and network location
estimation as by GNP is a promising scalable solution.

6 Conclusions and Future Work

We have presented the design and evaluation of MEDYM, a new architecture for
content-based pub-sub service networks, and H-MEDYM, an approach to extend the
architecture to a hierarchical structure for greater scale. While these architectures each
have their challenges and limitations, we believe that they achieve some important
advantages over existing approaches in performance, flexibility and manageability that
are highly desirable for many pub-sub applications.

A key goal of our research has been to gain a comprehensive understanding of the
characteristics of different content-based pub-sub network designs for different applica-
tion circumstances. Our evaluation in this paper leads us to the following conclusions.

CBF is an elegant design that achieves accurate event delivery; however, its in-
network event processing can be computationally intensive, and the server states that are
tightly associated with network topology can be expensive to maintain in a dynamically

312 F. Cao and J.P. Singh

changing network environment. Therefore, we expect CBF to be suitable for stable
pub-sub networks with abundant computational resource. Channelization incurs low
computation and subscription replication overhead, but its routing quality heavily
depends on pub-sub data distribution and can be very poor when the distributions do not
offer very promising clustering opportunity. It is mostly suitable for applications whose
user interests can be approximated by a small number of groups with high accuracy.

MEDYM achieves low and well-balanced routing load on servers and network links
by sending events only to interested servers via customized routes; its major overhead
comes from the servers’ global knowledge of location and sum-of-subscription informa-
tion of all other servers, and the destination lists in its messages. It is well-suited for
pub-sub networks with up to a few thousand servers; beyond this point, H-MEDYM is
likely to be more suitable: it effectively reduces both the number of servers and the
amount of subscription information each server needs to know about, and the destina-
tion list overhead. Its overheads are its complexity and the routing constraints it imposes
on event delivery paths. MEDYM and H-MEDYM appear to perform well across a
range of circumstances; compared to CBF and Channelization, they are most advanta-
geous when user subscriptions are highly selective and diversified. We observe that this
is exactly the scenario in which intelligence and efficiency of a pub-sub service is most
needed, and therefore their properties would be highly desirable for many applications.

To better understand the characteristics of realistic pub-sub workloads and their
implications for architectural tradeoffs, in addition to extrapolating and inferring
characteristics from existing information access systems, we plan to deploy a public
pub-sub service on PlanetLab [15] and collect real workloads to drive further re-
search. We also plan to investigate several open questions raised in this paper, such as
dynamic multicast route caching, event space partitioning and matching distribution
in H-MEDYM.

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M.Astley, and T. D. Chandra, “Matching
events in a content-based subscription system,” In Proc. of ACM PODC, 1999.

2. R. Boivie et al., “Explicit Multicast (Xcast) Basic Specification”, Internet draft, draft-
ooms-xcast-basic-spec-03.txt.

3. K. Calvert, E. Zegura, and S. Bhattacharjee. “How to Model an Internet-work”. In Proc. of
IEEE INFOCOM, 1996.

4. F. Cao, J. P. Singh, “Efficient event routing in content-based publish-subscribe service net-
work”. In Proc. of IEEE INFOCOM 2004.

5. F. Cao, J. P. Singh, “Towards scalable publish-subscribe service networks”. Technical Re-
port, Princeton University, 2005.

6. A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and evaluation of a wide-area event
notification service,” In Proc. of ACM TOCS. 2001.

7. A. Carzaniga, A.L. Wolf, “A routing scheme for content-based networking". In Proc. of
IEEE INFOCOM 2003.

8. A. Carzaniga, A.L. Wolf, “Forwarding in a Content-Based Network". In Proc. of ACM
SIGCOMM 2003.

9. G. Cugola, E. Di Nitto, A. Fuggetta, “The JEDI Event-based Infrastructure and its Appli-
cation to the Development of the OPSS WFMS”, in IEEE Transc. on Soft. Eng., 2001.

 MEDYM: Match-Early with Dynamic Multicast 313

10. D. Culler, J. P. Singh, “Parallel Computer Architecture: A Hardware-Software Approach”,
Morgan Kaufmann, 1998

11. Z. Ge, M. Adler, J. Kurose, D. Towsley and Steve Zabele, “Channelization problem in
large scale data dissemination,” In ICNP, 2001.

12. A. Guttman. “R-Trees: A Dynamic Index Structure for Spatial Searching”. In Proc. of
SIGMOD Conference 1984

13. C. P. Hall, A. Carzaniga, J. Rose and A. L. Wolf , “A content-based networking protocol
for sensor networks”. Tech. Report CU-CS-979-04, University of Colorado, 2004.

14. A.K. Jain, M. N. Murty, and P.J. Flynn, “Data clustering: a review.” In Proc. of ACM
Computing Surveys 31, 3 (1999), 264—323.

15. PlanetLab Testbed: http://planet-lab.org
16. T. S. E. Ng and H. Zhang. “Predicting Internet Network Distance with Coordinates-Based

Approaches.” In Proc. of IEEE INFOCOM 2002.
17. S. Ratnasamy, P. Francis, et al. “A Scalable Content-Addressable Network”, In Proc. of

ACM SIGCOMM, 2001
18. A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang, “Clustering Algorithms for content-based

publication-subscription systems,” In Proc. of ICDCS 2002.
19. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang, “New Algorithms for content-based publica-

tion-subscription systems”, In Proc. of ICDCS 2003.
20. J. Saltzer, D. Reed, and D. Clark. “End-to-end arguments in system design”. In ACM

Trans. Computer System, 2(4), pp. 277--88, 1984.
21. B. Segall, D. Arnold. "Elvin has left the building: A publish/subscribe notification service

with quenching". In Proc. of AUUG97, Brisbane, 1997.
22. L. Tang, M. Crovella. “Virtual Landmark for the Internet”, In Proc. of ACM SIGCOMM

Internet Measurement Conference, 2003
23. P. Triantafillou, A. Economides. “Subscription summarization: A new paradigm for effi-

cient publish/subscribe systems”. In Proc. of ICDCS 2004.
24. Y. Wang, L. Qiu, et. al. “Subscription Partitioning and Routing in Content-based Pub-

lish/Subscribe Networks.” In Proc. of Intl. Symp. on Dist. Comp. (DISC), 2002.
25. T. Wong, R. Katz, and S. McCanne. “An evaluation of preference clustering in large scale

multicast applications,” In Proc. of IEEE INFOCOM 2000.
26. Y. Zhao, D. Sturman and S. Bhola, “Subscription propagation in highly-available pub-

lish/subscribe middleware”. In Proc. ACM/IFIP/USENIX Middleware Conference, 2004.

Generic Middleware Substrate Through
Modelware�

Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen

University of Toronto
{czhang, gilbert, jacobsen}@eecg.toronto.edu

Abstract. Conventional middleware architectures suffer from insuffi-
cient module-level reusability and the ability to adapt in face of func-
tionality evolution and diversification. To overcome these deficiencies, we
propose the Modelware methodology adopting the Model Driven Archi-
tecture (MDA) approach and aspect oriented programming (AOP). We
advocate the use of models and views to separate intrinsic functionalities
of middleware from extrinsic ones. This separation effectively lowers the
concern density per component and fosters the coherence and the reuse of
the components of middleware architectures. Comparing to the conven-
tionally designed version, Modelware improves the standard benchmark
performance by as much as 40% through architectural optimizations. Our
evaluation also shows that Modelware considerably reduces coding efforts
in supporting the funcitonal evolution of middleware and dramatically
different application domains.

1 Introduction

The construction of system software such as middleware is complex. A con-
tributing factor to this complexity, as we have observed first hand, is that the
code-level design reusability in conventional middleware architectures is inca-
pable of adequately dealing with “change” in two dimensions: time (functional
evolution) and space (functional diversification).

The reusability in conventionally developed software components is insuffi-
cient due to the lack of explicit means to effectively distinguish intrinsic and ex-
trinsic architectural elements. Borrowing terms from subject-oriented program-
ming [10], we use the term “intrinsic” to characterize middleware architectural
elements that are essential, invariant, and repeatedly used despite the variations
of the application domains. These “common abstractions” are typically pattern-
based designs, such as proxy, forwarder-receiver [7], and acceptor [16]. Contrarily,
we use the term “extrinsic” to denote elements that are vulnerable to refinements
or can become optional when the application domains change. A simple exam-
ple of an “extrinsic” property is “thread-level concurrency,” including patterns
such as leader/follower [16], which can become redundant when threading poli-
cies are controlled by user applications or if the underlying platform, such as

� This research was supported by an IBM CAS Fellowship and an NSERC grant.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 314–333, 2005.
c© IFIP International Federation for Information Processing 2005

Generic Middleware Substrate Through Modelware 315

Fig. 1. Data marshaling of type long in A:JacORB, B:Sun ORB, and C:ORBacus

Java Card1, does not support threads at all. As we have reported in our previ-
ous work [24], “intrinsic” and “extrinsic” properties interact non-modularly in
conventional middleware architectures. Consequently, middleware architects are
faced with immense architectural complexities because the concern density per-
module is high. The code-level reusability of the “common abstractions”is also
drastically reduced because the generality of intrinsic components is restricted
by the “extrinsic” properties in face of domain variations.

Conventional middleware architectures also lack effective means to reuse “ex-
trinsic” properties, especially ones that are crosscutting [13] in nature, i.e., not
localized within modular boundaries. We illustrate this problem through the
example of data marshalling: a major CORBA feature converting the “typed”
application data to an array of bytes. We study three popular implementations
of CORBA, namely ORBacus 2, a commercial ORB, JacORB 3, an open source
ORB, and Sun’s ORB, shipped with every Java2.0 SDK. Figure 1 lists the imple-
mentations of the marshalling of the data type long. These three independent
implementations are nearly identical in terms of structure and algorithm. Two
design concepts are reused by all of the implementers: the “buffer”, holding a
byte array representing the raw data, and the “shifting and masking” algorithm
for decomposing four bytes of a long value into four byte values. The desired
approach is to package this marshalling functionality for type long, along with
the about 20 other data types in CORBA, as part of a marshalling library, so
that it becomes a reusable development artifact. Conventional architectures have
fallen short of doing so because they are incapable of componentizing and reusing
crosscutting concerns as analyzed in our previous work [25]. Our investigation
1 Java Card. http://java.sun.com/products/javacard/index.jsp
2 ORBacus. http://www.iona.com/orbacus
3 JacORB. http://www.jacorb.org

316 C. Zhang, D. Gao, and H.-A. Jacobsen

has revealed similar problems with many other major CORBA functionalities.
Being able to componentize and to reuse these functionalities tremendously fa-
cilitates the construction of middleware systems.

To tackle the afore-mentioned problems, we propose a new architectural
paradigm, Modelware, which embodies the “multi-viewpoints” [14] approach. We
capture “intrinsic properties”, or common abstractions, in a base view consisting
of a set of coherent components free of crosscutting concerns. We use role-based
aspect views and aspect libraries to capture “extrinsic properties”, i.e., domain
variations. we adopt the Model Driven Architecture (MDA) 4 in both types of
views as the vehicle for the mapping abstractions to implementations. Concrete
middleware instances can be produced by the realization process: selecting im-
plementations for abstractions in both kinds of views, and the projection process:
creating ontological relationships between elements in both aspect views and the
base view.

In describing our experience of the Modelware paradigm, we make the follow-
ing contributions in this paper:

1. We present Modelware, a model-driven approach, to separate middleware
architectural concerns into multiple “viewpoints”: an “intrinsic view” imple-
menting common middleware functionalities through simple and coherent
modules, and “aspect views” providing abstractions for crosscutting con-
cerns.

2. We present the implementation details of the views in Modelware. More
specifically, we describe the “realization” process for both the base view
and aspect views and the “projection” process for integrating aspect view
onto the base view.

3. We present a thorough evaluation of the Modelware paradigm to illustrate
both the performance benefit and the high-level code reuse in supporting
functional variations in both space and time.

The rest of the paper is organized as follows: we first introduce generic models
including both the intrinsic models and aspect models of Modelware in Section 3;
we then describe in Section 4 how transformations can be used to concretize
generic models and to integrate aspect models to support flexible compositions of
middleware functionalities; evaluations of Modelware are presented in Section 5.

2 Background and Related Work

Background and related work can be classified into two categories: aspect-oriented
programming approaches and model-driven approaches.We will present these cat-
egories in turn and discuss similarities and difference to our approach.

Aspect-oriented Programming. Aspects modularize crosscutting concerns,
coding concerns that are not localized, hence, not modularized. Aspect-oriented
programming (AOP) allows the developer to cleanly encapsulated crosscutting
4 MDA. http://www.omg.org/mda

Generic Middleware Substrate Through Modelware 317

concerns in separate modules [13]. Aspect-oriented languages, such as AspectJ5,
defines a set of new language constructs to support two kinds of crosscutting:
dynamic crosscutting and static crosscutting. Dynamic crosscutting is defined by
means of join points that denote well-defined points in the execution of a pro-
gram. A pointcut refers to a collection of join points and parameters associated
with these join points. A method-like construct, referred to as an advice, is used
to define aspect code executed before, after or in place of a join point. Static
crosscutting affects the static structure of a program, such as classes, interfaces,
and the type hierarchy. Inter-type declarations are used to introduce new fields
and methods into classes or interfaces. The declare parents construct is used to
modify the existing type hierarchy. An aspect module includes pointcuts, the
associated advices, inter-type declarations, and declare parents constructs.

In the context of middleware, we refer to aspect-oriented programming ap-
proaches as existing software platforms that expose hooks for applications using
these platforms to adapt, alter, modify, or extend the normal execution flow of a
service requested. In that sense, the CORBA interceptor mechanisms, although
not explicitly positioned as an aspect-oriented approach, belongs to this cate-
gory. Other recent examples, explicitly positioning themselves as aspect-oriented
approaches, are the JBoss AOP approach [3] and the Spring AOP approach [1].
The key difference to our work is that these approaches expose a number of hooks
for enabling the use of the middleware in an aspect-oriented style. However, our
main objective is to build aspect-oriented middleware through the use of aspect-
oriented programming techniques, with the goal of increasing the modularity of
the resulting middleware, to improve the concern separation in the middleware
implementation, and to ultimately enable an automated model-driven approach.

AspectJ2EE [5] is a new aspect-oriented language, specifically targeted at
the generalized implementation of J2EE application servers and applications. It
is a programming language that could form the basis for an approach like ours.

Other approaches have used aspects for the development of middleware, for
example, Facet [11] illustrates the use of aspects for the development of an event
channel. We have shown how middleware implementations can be successfully
refactored with aspects, increasing modularity and configurability [24,22]. None
of these approaches investigates reusability of aspects and effects of aspects on
the evolution, as is our objective with Modelware.

Some work has been done on designing reusable aspects. Clarke and Walker[4]
suggest the use of compositional patterns to better decouple the implementation
of crosscutting concerns from the base classes of a system. Soares et al. [19] show
how the use of abstract aspects effects the re-usability of aspects refactored from
a health-care management system. Both approaches are very different from the
role-based approach of designing aspect-oriented libraries presented in this paper.

Model-driven Development. Generally speaking, model-driven development
refers to a software development process that based on models of the software
synthesized code. The Model Driven Architecture process (MDA) is one promi-

5 AspectJ, http://www.eclipse.org/∼aspectj

318 C. Zhang, D. Gao, and H.-A. Jacobsen

nent examples of a model-driven development approach. MDA advocates de-
veloping complex systems through multiple and hierarchical viewpoints. The
“Platform Independent Viewpoint” and the associated “Platform Independent
Model” does not specify the details necessary for running the system on a partic-
ular platform, which makes it suitable for abstracting the essential functionalities
of a system across a number of middleware platforms. By combining the specifi-
cations of the PIM with the details of how to use a particular type of platform,
a “Platform Specific Model” is established. A set of mapping rules relate a PIM
to its PSM that lays out the details with respect to a given middleware plat-
form. How mappings can be effectively realized is still in question. The approach
suggested in this paper is one possible realization for automating the mapping
between different views and models.

Other approaches aiming at realizing a model-driven approach are [17,2].
CoSMIC [17] defines a set of domain-specific tools for composing and deploying
distributed real-time and embedded middleware-based applications. Bonnet et
al. [2] describe a model-driven software process for the automated configuration
and personalization of smart card software. Both approaches do not employ
aspect-oriented techniques, which is central to our approach.

3 Generic Models in Modelware

The orthogonal natures among middleware functionalities allow Modelware to
enable multiple viewpoints at the architectural level: a base view containing
common middleware functionalities through a conventional layered hierarchy
of modules, and a collection of aspectual views, each containing an “extrinsic”
functionality. We raise the levels of abstractions in both kinds of views through
models and achieve the following benefit: 1. the components of base view modules
become much simpler and more coherent, thus, more tolerant to variations of
application contexts; 2. leveraging traditional object-oriented design principles,
both core and aspectual functionalities can be flexibly supported with different

Fig. 2. Base view and aspectual views

Generic Middleware Substrate Through Modelware 319

concrete implementations; 3. the models in the base view carry many invariant
properties which foster the creation of middleware-specific aspect libraries. Mod-
elware can be thought as methodology for attacking the problem of commonality
and variability [6] through the combination of conventional modules and aspects.

Before details of the models are discussed, we want to rephrase a few MDA
nomenclatures in the context of Modelware. Our definition of the Platform In-
dependent Model (PIM) refers to abstract concepts in both the base view and
aspect views. We define the Platform Specific Model (PSM) as the refined models
of these concepts for specific functional requirements or deployment platforms.
For aspect views, in addition to PIM and PSM models, we introduce role mod-
els as abstractions for the behavior of aspects. As illustrated in Figure 2, each
aspect view contains its own set of role models. An aspect view interacts with
base view models via roles in a non-localized manner.

3.1 Invariant Concepts in Base View

It has long been recognized in literatures [7,16,21] that design patterns play
essential roles in middleware architectures. In their specific problem contexts,
design patterns exhibit invariance in both space and time. The Modelware base
view is composed of a collection of “invariant concepts” including patterns as
well as a number of design choices which we believe to represent common and
essential functionalities of middleware.

3.1.1 Models of Invariant Concepts
The primary responsibility of the “invariant concepts” in the base view is to
support the transparent interpretation and transportation of PRC operations.
We enumerate a few essential elements and describe their semantics with respect
to how they interpret the application requests made through RPC:

1. Proxies (stub and skeleton): Stubs and skeletons are entities masking the
middleware substrate as native programming facilities of the user applica-
tion. Proxies see the application requests as regular method invocations.

2. Connection facilities (acceptor and connector): Acceptors and connectors
“decouple the connection and initialization of peer services ... from the pro-
cessing these peer services perform after they are connected and initialized”
[16]. Connection facilities see the application requests as a sequence of bytes
sent to or received from network hosts.

3. Protocols (initiator and responder): Protocol initiators and responders (also
called forwarder-receiver [7]) leverage connection facilities and implement a
particular sequence of message exchange between clients and servers. Pro-
tocols see the application requests as a set of generic messages subject to a
specific temporal order and a specific spatial structure.

4. Request sessions and service sessions: A request session and a service session
represents an instance of interaction among elements of proxies and proto-
cols in the client and the server side, respectively. Sessions see application
requests as instances of collaborations between proxies and protocols.

320 C. Zhang, D. Gao, and H.-A. Jacobsen

5. Buffer: Buffer is a commonly used data structure for encapsulating the ap-
plication data. Buffer represents the application requests as a bounded array
of bytes and provides interfaces to manipulate this array.

6. Messages (outgoing and incoming): Messages, including both outgoing and
incoming messages, represent the encoding and decoding of byte-oriented
data in Buffer with respect to type-oriented data in user applications. Mes-
sages see application requests as typed and directional data traversing the
middleware stack.

7. Servant: Servant is the internal representation in Modelware of the hosted
servers. It serves as a level of indirection between Protocols and Skeletons
to facilitate management tasks. It sees application requests as invocation
requests to be dispatched to the destination services.

3.1.2 Simplicity and Invariance
There are two important goals driving our design of the base view models: sim-
plicity and invariance. In Modelware, models of these concepts are kept simple
and minimal. On average, there are only around two operations associated with
each entity, and most of these operations accept a single input parameter. This
kind of simplicity is not arbitrary but derived from a small middleware core
refactored out of its complex original version. In other words, this base view
is intended to capture the smallest common denominator of middleware archi-
tectural variations. In fact, an implementation of this base view is capable of
supporting CORBA-style RPC on platforms as small as Java Card, discussed in
detail in Section 5.

More importantly, the base view concepts are stable designs surviving evolu-
tions and variations in many middleware implementations. In addition to design
patterns, some concepts are specified as standards, such as request (specified as
streams in CORBA) and servant (specified as the object adaptor in CORBA).
Others are widely adopted practices, such as buffer and session6. Being resilient
to evolution is crucial to the base view in Modelware as it provides the founda-
tion, i.e., architectural invariance, for establishing and integrating aspect views.
As summarized by Grady Booch7, we adhere to the “simplicity via common
abstractions and mechanisms” principle to manage the complexity of change in
middleware architectures.

3.2 Aspect views

Aspect models and views re-distribute the complexity of middleware implemen-
tation from a single flat module hierarchy to multiple separated and independent
implementations of specialized middleware concerns. In Modelware, each view is
oriented upon one or many roles specifying a specific interpretation of the Model-
ware base view. These interpretations are encapsulated within the aspect view in
6 These design elements are present in all of the three major open source Java CORBA

implementations, namely JacORB, ORBacus, and Sun ORB.
7 Grady Booch. The Complexity of Programming Models. Keynote speech at AOSD

2005.http://www.booch.com/architecture/blog/artifacts/Complexity.ppt

Generic Middleware Substrate Through Modelware 321

the form of additional program states (role attributes), interactions among roles
within the view (role relationships), and interfaces for transferring control be-
tween aspectual views and the base view (contracts). Each aspect view interacts
with the base view through “projection”: a process of establishing an ontological
relationship by mapping aspect roles to base view entities and fulfilling the as-
pect contracts on them. There are two types of contracts: abstract interception
points (or pointcut in AOP terms) and abstract operations enforced by roles.
Abstract operations link the behavior of a role to an base-view entity. Abstract
pointcuts define points of execution and associated computation contexts of the
base view for aspect views to intervene. Each aspect view is modularized as one
or many reusable aspect components.

Different from generic roles in design patterns as well as conventional aspect
oriented treatments of patterns [12,9], we make heavy use of domain-specific
roles that know about the base view abstractions such as buffer or transport.
This dependency is necessary for making a large number of middleware func-
tionalities reusable such as the synchronous communication model, the mar-
shalling/unmarshalling of data types, and many others. We believe this depen-
dency does not restrict the flexibility of the architecture for two reasons: 1. due
to the strong invariance of the base view, the pointcut mapping is stable because
the modular structures and the dynamic behaviours of the base view models are
unlikely to change rapidly; 2. the dependency is made upon abstract models,
therefore, stay unaffected by the platform specific implementations. To further
illustrate aspect views, we present two concrete implementations: the thread-
level concurrency library and the data type marshalling library. The projection
process of aspect views is presented in Section 4.

3.2.1 Thread-Level Concurrency View

Description: Threads are common concurrency primitives popular in middle-
ware implementations for achieving efficient request handling. From the per-
spective of the thread-level concurrency view (TC view for short), entities in
the base view are of three kinds: non-concurrent, thread owners, and objects
carrying the logic for the concurrent task. Currently, the TC view supports two
well-studied middleware concurrency models, thread-per-connection and thread
pool8. The thread-per-connection model detaches a new thread for a new network
client. The thread-pool concurrency model initializes a fixed number of threads
to execute tasks simultaneously. Threads in the thread-pool model are reused
upon the completion of the task instead of being destroyed. The behaviour of
threads is implemented in the library and automatically applied to the objects
in the base view if these objects “play” the prescribed roles through specific
projection transformations as illustrated in Figure 3. We discuss details of these
transformations in Section 4.

8 A third concurrency model, Reactive, as used in TAO [18], is also implemented as
a separate view. Due to the length limit, we defer the discussion to an extended
version of the paper.

322 C. Zhang, D. Gao, and H.-A. Jacobsen

Type: Domain independent. The TC view does not depend on any abstractions
in the base view.

Roles and role relationships: The basic roles in the TC view are Thread
Owner and Thread Worker. The thread worker contains the program logic to be
executed concurrently, and the thread owner is an object in which the thread
worker is created. Through projection, the thread owner role transforms the
corresponding base view entities to different types of thread containers, and the
thread worker role forces the corresponding base view object to conform to a
uniform interface used by the internal threads of the library. Each role has two
sub-roles to support the afore-mentioned two concurrency models.

Attributes: The common attributes of all thread owners are the base name of
the thread, the thread group, and the synchronization primitive. This synchro-
nization primitive is used if the execution thread of the owner needs to wait
for the completion of the task in the thread. The thread-per-connection owner
contains a repository of created threads. The thread-pool owner contains a repos-
itory of threads, a data buffer, and the size of the thread pool. No additional
attributes are associated with the thread worker role. View-specific attributes
are “mixed-in” with base view entities through AspectJ capabilities as shown in
Section 4.

Role contracts: Each thread owner role is associated with a set of abstract
operations and pointcuts. For instance, threads in the TC view are associated
with states, much like Java threads. These states are often required to coordinate
with the running state of the base view objects, e.g., observing the creation, the
activation, or the disposal of the thread owners. The “stateTranslate” opera-
tion defined by the thread owner role forces base view objects which “play” this
role to provide concrete mappings of base view states. Every thread owner is also
associated with a set of abstract pointcuts, among which the most fundamental
ones are to denote when threads need to be created and destroyed. In the case of
the thread-pool model, an additional pointcut is used to define the point when
the new data arrive, and a sleeping thread can be awoken to consume them.

3.2.2 Data Type View

Description: Data marshalling/unmarshalling is an essential middleware func-
tionality responsible for translating typed information in the middleware user
application into an ordered array of bytes. The data type view is an aggregation
of a number of primitive type views, each specializing in dealing with a single
middleware data type.

Type: Domain-dependent. The data type view makes use of the Buffer abstrac-
tion in the base view.

Roles: The data type view consists of two roles, the marshaller role and the
unmarshaller role. They represent entities responsible for encoding and decoding
the user application data of the middleware.

Generic Middleware Substrate Through Modelware 323

Fig. 3. Roles in concurrency view

Role relationships, attributes: No relationships are implemented between
the marshaller role and the unmarshaller role as they represent two independent
directions of data conversion. The data type roles do not have attributes because
they are operation-oriented.

Role contracts: Both roles force the projected base view objects to implement
an interface for retrieving the underlying data, i.e., a Buffer instance.

4 Transformation

The transformation process in Modelware consists of two independent operations:
1. realization, mapping base view models and aspect view models to concrete
implementations; 2. projection, mapping aspect libraries to concrete implemen-
tations of the base view. The realization operation relies on an implementation
library that stores simple and coherent implementation models. We discuss all
the transformation within the Java language framework as it provides a mature
environment for supporting both the base view and aspect views. The following
sections describe the realization and the projection processes in detail.

4.1 Realization: PIM to PSM Transformations

The PIM to PSM mapping is to establish mappings between abstract model
elements and their concrete implementations through either sub-typing or direct
substitution. Central to this process is the Modelware implementation library
which aggregates two types of reusable components: functional implementations
and public application programming interfaces (APIs). The implementation of
models can be native, if it is part of the implementation library, or foreign, if
it already exists in third-party libraries. Proper adaptation of foreign imple-
mentations might be needed to conform to the operations of Modelware enti-
ties. For example, Modelware can leverage zero-copy buffers in the Java NIO

324 C. Zhang, D. Gao, and H.-A. Jacobsen

libraries to achieve high performance I/O. The adaptation of the foreign com-
ponent ByteBuffer to the IBuffer base view entity is simple leveraging the
language facilities and the bytecode weaving capabilities of AspectJ.

Most of the native implementations come out of a crosscutting free version
of ORBacus as a result of our long term refactoring efforts [23,25]. A notewor-
thy characteristic of these implementations is that they are deliberately kept
minimal by supporting simple behavior. For instance, the implementation of re-
quest handling assumes no response, and the transports are non-concurrent and
incapable of handling fragmented messages. To reduce the coupling among con-
crete implementations, a number of patterns can be used including factories [8]
and inversion of control (IOC) principles9. We currently use factories and are
developing external dependency directives through either scripts or graphical
tools.

The Modelware implementation library also contains modules defining public
application programming interfaces. A particular set of public APIs represents
a predefined “look and feel” for accessing middleware services. For instance,
there are multiple public APIs for enabling the pluggability of network trans-
ports in CORBA such as the Extensible Transport Framework (ETF), defined
by the OMG, and the Open Communications Interface (OCI), defined in ORBa-
cus10. Conventionally, public APIs are typically hardwired to implementations
at the development time by a type hierarchy. In Modelware, the base view mod-
els serve as a level of indirection between the implementations and the public
APIs, so that public APIs can be plugged in and changed at post-compilation
time. As illustrated in Figure 4, by separately managing the implementation and
the interface, better flexibility and reusability can be achieved by creating the
appropriate “look and feel” under external transformation directives.

OCI API ETF API

Acceptor_
interface

Acceptor_
interface

Conventional Approach Modelware Approach

Development time
type dependency

OCI API ETF API

Acceptor_
interface Transformation time

type dependency

OCI
Transformation

(weave)
profile

ETF
Transformation

(weave)
profile

Acceptor_impl Acceptor_impl

Acceptor_impl

Fig. 4. Transform-time API dependency in Modelware

9 Martin Fowler. Inversion of Control Containers and the Dependency Injection pat-
tern http://www.martinfowler.com/articles/injection.html

10 ORBacus OCI http://www.orbacus.com/support/new site/manual/4.2.1/
users guide/index.html

Generic Middleware Substrate Through Modelware 325

4.2 Projection: Transformation of Aspect Views

The transformation of aspect models and views consists of both “realization”
and “projection” operations. The purpose of the “realization” operation is to
select concrete implementations for the aspect functionality. This is identical to
the “realization” operation in the base view. The “projection” operation con-
sists of two steps. We first determine the correspondence between entities in the
base view and the roles in the aspect view. In the aspect library code, roles are
represented by Java interfaces and instrumented with additional operations and
states through AspectJ. Leveraging AspectJ’s capability of type hierarchy mod-
ification, this mapping operation is straightforward and affects every concrete
implementation of the mapped base view entity. Once the mapping is estab-
lished, we need to fulfill the contracts declared by the aspect view. This is a
process of locating concrete interception points and providing implementations
of new operations for the base view classes, as the result of “role playing”. Since
contracts are composed of abstract programming elements, the enforcement can
be accomplished by the AspectJ compiler.

To further illustrate the mapping process, we present a usage scenario of the
concurrency aspect view. Figure 5 shows the Modelware implementation of the
server-side request handling. While the focus is not the exact semantics of these
statements, we want to illustrate a typical “simplistic” Modelware implementa-

Fig. 5. Transformation of the thread-level concurrency view

326 C. Zhang, D. Gao, and H.-A. Jacobsen

tion – it is only about the operational logic of request processing. Many common
concerns are absent such as iterative processing, thread safety, and concurrency.
Instead of hardwiring into code as in conventional ways, we illustrate how we
enable the “thread-per-connection” concurrency support with a minimal coding
effort using the Modelware threading aspect library.

Figure 5(B) is a code snippet showing only the core operations of the thread
library. Line A defines a contract using an abstract pointcut to capture the
constructor invocation of the ThreadWorker made by the ThreadOwner. Lines
B2-B5 create a thread before the constructor call, assign the newly constructed
ThreadWorker to the thread, start the thread, and return the created Thread-
Worker instance. The “thread-per-connection” concurrency model requires the
base view operation (line 5 in Figure 5(A)) to execute in a separate thread.
Therefore, the base-view class ProtocolResponderplays the ThreadWorker role,
and the base-view class ProtocolResponderFactory (line 4) the ThreadOwner
role. Figure 5(C) shows the projection code: line 1-2 modify the type hierar-
chy of the base view entities; line 3 fulfills the abstract pointcut contract by
specifying the constructor call of all subtypes of ProtocolResponder; line 4
cancels the invocation to the to-be-made-concurrent method “process” in the
main thread, and line 5-6 fulfills another contract by specifying the method
“process” is to be executed concurrently. The actual functionality of our thread
library11 is more complex including thread lifecycle management, state tran-
sition support, synchronization support, and others. Our experience, also as
shown in this simplified example, is that, once the roles are mapped, the code
needs to be created is simple and small in size. In addition, since the projec-
tion code itself is an aspect module, many different projections can be imple-
mented to support additional concurrency models without intrusive changes
to the base view entities. In addition, in scenarios where middleware thread-
ing is not required or cannot be used, the plain implmentations can still be
used.

5 Evaluation

Our assessment of Modelware examines both the performance characteristic and
the programming effort for the use of Modelware models and libraries in build-
ing common middleware operations. For this purpose, we choose to support
CORBA interfaces as a case study, although Modelware is not designed specif-
ically for CORBA. For the performance evaluation, we compare the Modelware
CORBA (MORB) implementation with ORBacus using Benchie [20], an open
source CORBA benchmark suite. We also quantify the programming effort in
three case studies: 1. creating CORBA-like middleware; 2. supporting functional-
ity evolution of middleware in time; 3. supporting functional diversity in space,
i.e., different computing platforms from Java Card, to mobile devices, and to
desktop environment.
11 Please visit Modelware website for details of the implementations.

http://www.msrg.utoronto.ca/code/Modelware

Generic Middleware Substrate Through Modelware 327

5.1 Modelware Functionalities

The key base view elements of Modelware are implemented largely by generically
reusing ORBacus components such as buffer, acceptor, connector, transport, and
GIOP encoding/decoding algorithms. The following properties are implemented
in aspect libraries: data types such as long and char, two way communication
model, thread-level concurrency, thread safety, codeset support, Java NIO sup-
port(including reactive request handling), and many others. These properties
are largely orthogonal to each other and can be flexibly combined. The base
view elements, without any aspect libraries, are capable of handling remote in-
vocations with octet and integer data types. The reliability of messaging passing
is guaranteed at the network level, and the receiving side processes requests
passively.

5.2 Runtime Characteristics

In this set of performance evaluations, we primarily want to demonstrate the
benefit of the architectural flexibility of Modelware in competing with ORBa-
cus on the same set of benchmark measurements of Benchie. The performance
delta should not be influenced much by algorithmic factors but mainly archi-
tectural ones since almost all of the critical Modelware functions, such as data
marshalling/unmarhalling, GIOP protocol stack, and connection management,
are just reused ORBacus implementations. The benchmark tests are performed
on Pentium 4 2GHZ PC running Linux Redhat 8.0. We disable the concurrency
protection of user applications for both MORB and ORBacus12.

We present three categories of benchmark tests: a. roundtrip pings repre-
senting the minimum cost of CORBA stack traversals; b. data marshalling/-
unmarshalling operations representing the performance of client-encoding and
server-decoding capabilities; c. multi-server tests representing the dispatching
capabilities of CORBA. We customize13 MORB for these three categories as fol-
lows: since the concurrency support is not necessary for tests in categories a and
b, “threading” and “thread-safe locks” become redundant and are configured
out of the architecture. We denote this configuration as “MORB A”. We enable
the “concurrency” support and disable all other features such as “interceptor”
and “context” for category c Benchie tests in the “MORB B” configuration.
We have created 12 configurations of MORB for the complete tests. Due to the
length limit, we present the more detailed and complete benchmarking results
in an extended version of this paper. We show the results of benchmark tests
for both MORB configurations and ORBacus in Figure 6. Figure 6:A shows that,
for 10,000 pings, MORB shows dramatic performance improvements over ORBa-
cus, as the shape of the histogram of “MORB A” shifts to the left of that of
ORBacus. The average invocation time for MORB is 105 microseconds, a 43%
speed-up comparing to 183 microseconds found with ORBacus. We believe this is
12 This is the default policy of ORBacus.
13 A reminder that our customization only involves changing the selections of compiled

classes for bytecode weaving.

328 C. Zhang, D. Gao, and H.-A. Jacobsen

Fig. 6. Benchmark comparison of Modelware to ORBacus

primarily due to the Modelware’s ability of lifting concurrency overheads since,
once we enable “concurrency” and “thread-safe” features in “MORB B”, the
average invocation time increases to 161 microseconds. In the marshalling and
unmarshalling performance comparisons (Figure 6 B and C), the improvement
decreases from 40% to 12%, as the descending differential curves on both graphs
show. This confirms the fact that MORB reuses the encoding/decoding algo-
rithms of ORBacus, and the performance difference tends to diminish, as the
data exchange work dominates the request processing. Figure 6 D shows that,
in the absence of facilities such as “interceptors” and “context”, the dispatching
can be more efficient in MORB compared to ORBacus, an architectural flexibility
enabled by Modelware to optimize for performance.

5.3 Transformation for Evolution in Time: Platform Evolution

In many performance-sensitive application domains, high performance is often
a mandatory requirement in addition to the location transparency. This trans-
lates to low overhead and fast response for request processing in the middleware
layer. TAO [18] is a successful example of high-performance implementations
exploiting techniques such as zero-copy buffer, reactive communication models,
and the high speed network I/O. For a lot of conventional middleware imple-
mentations, many such techniques are not employed because of the limitations
of the underlying OS and VM at the time of the design. The evolution of OSs
or VMs might lift these design limitations in the infrastructure but not easily in
the middleware architecture. This is because leveraging new capabilities often

Generic Middleware Substrate Through Modelware 329

requires systematic, i.e., crosscutting, changes to many middleware architectural
layers such as the data representation and the network communication design.
The new I/O introduced in Java 1.4 platforms14 is an example of VM evolution
having profound impacts on Java-based middleware architectures. Its zero-copy
buffer and asynchronous I/O primitives can be used to dramatically improve
the performance of traditional stream-oriented middleware message passing. In
Modelware, this improvement is captured entirely in a separate aspect library
and can be transparently applied to the base view at post-compilation time.

The core entities of the Async aspect library consist of a reactor and four
roles: AsyncAccpetor, AsyncConnector, AsyncTransport, and AsyncWorker.
The primary function of the library is to disable the blocking operations in con-
ventional Java network I/O, initialize and install “channels” onto appropriate
roles, and register these roles with the Reactor. The Reactor dispatches in-
coming data to corresponding AsyncWorkers based on their registration keys.
There are two different approaches of projecting this library to the base view,
one being mapping these four roles to the base view model entities. The “async”
functionality thus affects all concrete implementations of Acceptor, Connector,
and Transport. However, in foreseeing future non-socket based connection man-
agement in Modelware, we chose to project onto the concrete implementations
instead15. The library is 30KB in zipped byte-code size. The projection code
only involves base view models and their implementations. Therefore, no new
code is created for MORB to become reactive except the mapping of an ab-
stract pointcut. This mapping starts the Reactor when MORB is initialized by
standard CORBA APIs.

To quantify the performance improvement, we simulate a multi-connection
scenario as follows: we host MORB on a IBM ThinkPad T41 running Win-
dowsXP, and we start a number of clients on a Pentium 4 2G box running the
Linux 2.4 kernel. The two computers are on a wireless LAN. Each client uses 300
“oneway” calls to warm up, and the time is taken for the completion of the next
300 calls. All the clients are separate processes synchronized by a semaphore to
try to create as many simultaneous connections on the server side as possible.
Table 1 summarizes the average time for each scenario comparing the reactive
MORB with the proactive version (unit is in milliseconds). Our results confirms
the findings [15] that request processing based on asynchronous I/O greatly al-
leviates the middleware overhead of threading when the number of simultaneous
incoming connections is large (over 50 in our case). In Modelware, these two
communication facilities can be inter-changed at the bytecode level.

5.4 Support Evolution in Space: Platform Diversity

Application domains of middleware systems have diverged from traditional en-
terprise environments to mobile and embedded devices due to the popularity of
ubiquitous computing. Differences of computing environments manifest in the
14 Java NIO. http://java.sun.com/j2se/1.4.2/docs/guide/nio/
15 As we mentioned earlier, projection is done through “declare parents” statements

and very easy to modify.

330 C. Zhang, D. Gao, and H.-A. Jacobsen

Table 1. Improvements of using Java New I/O in Modelware

Number of clients 10 50 100 500
Ave. Reactive 43.3 476.98 250.49 620.59
Ave. Proactive 73.1 195.02 135.53 208.67
Improvements percentage 0% 60% 46% 66%

middleware architecture as different APIs, communication styles, data types,
and many others, even though the RPC semantic does not change. In conven-
tional architectures, evolving middleware into different platforms or domains
often results in non-modular modifications to the architecture so that the code
reusability of common functionalities is dramatically reduced.

The focus of this experiment is to measure how well Modelware supports
reusability in creating middleware platforms for three dramatically different ap-
plication domains: smart cards (Java Card), mobile devices (J2ME), and tradi-
tional environments (J2SE). We measure reusability as the ratio of the code size
(LOC) between reused components in the implementation library and the en-
tire middleware implementation. We distinguish between two types of usability:

Table 2. Reusability study of Modelware in supporting different application platforms

Platform: Standard desktop platform (J2SE)
Overall reusability: 91.36% (cross-domain 16.56%, intra-domain 74.8%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response,
servant.
Intra-domain reuse: Object reference, concurrency control, transport, type support,
two-way communication, protocol initiator and responder, OMG interfaces
Newly created:ORB interface impl, OMG interface adaptation for Modelware
components
Platform: Mobile devices (J2ME)
Overall reusability: 97.5% (cross-domain 24.15%, intra-domain 73.28%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response,
servant.
Intra-domain reuse: Object reference, concurrency control, type support except
float & double, two-communication, transport, protocol initiator, protocol responder,
OMG interfaces
Newly created: J2me version of the ORB interface implementation, OMG interface
adaptations as mentioned previously.
Platform: Embedded devices (Java Card)
Overall reusability: 97% (cross-domain 63.53%, intra-domain 34.27%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response,
servant.
Intra-domain reuse: Transport, protocol responder, Modelware hashtable,
Modelware vector
Newly created: Java card ORB interface implementation

Generic Middleware Substrate Through Modelware 331

inter-domain reusability, where components are reused in all three platforms,
and intra-domain reusability, where components are selected for a specific plat-
form. We have implemented three Modelware-based CORBA implementations:
the Java Card platform (872 LOC and 56.1k bytecode size), the J2ME platform
(1894 LOC and 219k bytecode size for the full configuration), and MORB (3346
LOC and 283k bytecode size for the full configuration). The J2ME version is
created and tested using the Nokia Series 60 emulator16. The Java Card version
is created and tested on the Sun Java Card toolkit 2.2.1. The Java Card im-
plementation is significantly smaller than the J2SE and J2ME versions because
Java Card applications always play a passive role in the master-slave model17.
Therefore, we only implement the request processing functionality for the Java
Card instance of Modelware.

In Table 2, we report our measurements of both inter-platform and intra-
platform reusability for these three implementations. For each implementation,
we also list the features being reused or created. Our experimental implementa-
tions show that different flavors of ORBs can be created with a high degree of
reusability. The code to be newly created to support new platforms ranges from
2% to 9% of the entire ORB code size.

6 Conclusion

We believe one of the main reasons for insufficient component reuse in system
software such as middleware is the presence of crosscutting concerns. We have
observed two major characteristics of this deficiency. Firstly, many middleware
abstractions, such as design patterns and usage idioms, live persistently across
evolution stages, but their implementations do not exist as development artifacts
that can be directly reasoned and reused. Second, many designs and algorithms
are repeatedly applied in conventional architectures. Unfortunately, due to their
crosscutting nature, no effective ways exist in explicitly representing, evolving,
and reusing them.

Our solution to overcome these difficulties is through Modelware in applying
the model-driven approach to the middleware architecture itself. The founda-
tion of our approach is to enable “multiviews” in the middleware architecture.
That is, we explicitly represent the intrinsic properties or the internal logic of the
middleware through platform independent models in the “base view” of the mid-
dleware architecture. The implementations of these abstract concepts, i.e., the
Platform Specific Model, are stored in the implementation library. The transfor-
mation between PIM and PSM models are in form of dependency descriptions.
In addition to the base view, we model and encapsulate crosscutting properties
of the middleware architecture in individual aspect views. Aspect views dilute
the density of the per-module design complexity by exploiting the orthogonal-
ities among middleware design concerns. In our case studies, we are able to
add new computing capabilities to Modelware through reusable aspect libraries.
16 Nokia Series 60 Platform. http://forum.nokia.com
17 Java Card: http://www.javaworld.com/javaworld/jw-03-1998/jw-03-javadev.html

332 C. Zhang, D. Gao, and H.-A. Jacobsen

We have also illustrated that supporting functional diversification in space with
Modelware only requires relatively small coding efforts.

We are currently continuing in evaluating Modelware approaches in the follow-
ing directions: we are working fervently in supporting the complete set of CORBA
functionalities through Modelware in order to conduct a more thorough compari-
son; we are working on facilitating the configuration process through tool support
and automated reasoning. At the same time, we are also interested in how Mod-
elware supports other flavors of middleware systems besides those based on RPC.
Modelware will be serving as an important platform for experimenting with the
properties of aspect oriented middleware – our long term research focus.

References

1. Chapter 5. Spring AOP: Aspect oriented programming with spring. In
www.springframework.org, Accessed 05/2005.

2. Stephane Bonnet and Olivier Potonnie. A model-driven approach for smart card
configuration. In GPCE, Vancouver, October 24-28 2004.

3. Bill Burke and Adrian Brock. Aspect-oriented programming and JBoss. In ON
Java.com, 05/28/2003.

4. Siobhn Clarke and Robert J. Walker. Composition patterns: An approach to de-
signing reusable aspects. In ICSE, pages 5–14, Toronto, Canada, May 2001.

5. Tal Cohen and Joseph Gil. AspectJ2EE = AOP + J2EE. In ECOOP, pages
219–243, 2004.

6. James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability
in software engineering. IEEE Softw., 15(6):37–45, 1998.

7. Frank Buschmann et al. A System of Patterns. John Wiley & Sons, 1997.
8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Addison-Wesley, 1995.
9. Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java

and AspectJ. In Proceedings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 161–173.
ACM Press, 2002.

10. William Harrison and Harold Ossher. Subject-oriented programming: a critique
of pure objects. In Proceedings of the eighth annual conference on Object-oriented
programming systems, languages, and applications, pages 411–428. ACM Press,
1993.

11. Frank Hunleth and Ron Cytron. Footprint and Feature Management using Aspect-
Oriented Programming Techniques. In Languages, Compilers, and Tools for Em-
bedded Systems (LCTES’02), 2002.

12. Elizabeth A. Kendall. Role model designs and implementations with aspect-
oriented programming. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 353–369. ACM Press, 1999.

13. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

Generic Middleware Substrate Through Modelware 333

14. Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for express-
ing the relationships between multiple views in requirements specification. IEEE
Trans. Softw. Eng., 20(10):760–773, 1994.

15. D. C. Schmidt. ACE: An Object-Oriented Framework for Developing Distributed
Applications. In the 6th USENIX C++ Technical Conference, Cambridge, MA,
April 1994. USENIX Association.

16. Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley & Sons, Ltd, 1 edition, 1999.

17. Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan Sandeep
Neema, and et al. CoSMIC: An MDA generative tool for distributed real-time and
embedded component middleware and applications. In OOPSLA 2002 Workshop
on Generative Techniques in the Context of Model Driven Architecture, Seattle,
WA, November 2002.

18. Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the tao
real-time object request broker. Computer Communications, 21(4), April 1998.

19. Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution
and persistence aspects with AspectJ. In OOPSLA, pages 174–190, 2002.

20. Petr Tuma and Adam Buble. Open CORBA Bench Marking. SPECTS 2001. URL:
http://nenya.ms.mff.cuni.cz/∼bench.

21. Uwe Zdun, Michael Kircher, and Markus Volter. Remoting patterns. In IEEE
Internet Computing, number 6, pages 60–68, November/December 2004.

22. Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Towards Just-in-time Mid-
dleware Platforms. In 4th International Conference on Aspect Oriented Systems
and Design, Chicago, IL, March 2005.

23. Charles Zhang and Hans-Arno Jacobsen. Quantifying Aspects in Middleware Plat-
forms. In 2nd International Conference on Aspect Oriented Systems and Design,
pages 130–139, Boston, MA, March 2003.

24. Charles Zhang and Hans-Arno Jacobsen. Refactoring Middleware with Aspects.
IEEE Transactions on Parallel and Distributed Systems, 14(11):1058–1073, Novem-
ber 2003.

25. Charles Zhang and Hans-Arno Jacobsen. Resolving Feature Convolution in Mid-
dleware Systems. In Proceedings of the 19th ACM SIGPLAN conference on Object-
oriented Programming, Systems, Languages, and Applications, September 2004.

Deep Middleware for the Divergent Grid

Paul Grace, Geoff Coulson, Gordon S. Blair, and Barry Porter

Computing Department, Lancaster University, Lancaster, UK
{gracep, geoff, gordon, porterbf}@comp.lancs.ac.uk

Abstract. Next-generation Grid applications will be highly heteroge-
neous in nature, will run on many types of computer and device, will
operate within and across many heterogeneous network types, and must
be explicitly configurable and runtime reconfigurable. We refer to this
future Grid environment as the “divergent Grid”. In this paper, we pro-
pose a “deep middleware” approach to meeting key requirements of the
divergent Grid. Deep middleware reaches down into the network to pro-
vide highly flexible network support that underpins a rich, extensible
and reconfigurable set of application-level “interaction paradigms” (such
as publish-subscribe, multicast, tuple spaces etc.). In our Gridkit mid-
dleware platform, these facilities are encapsulated in two key component
frameworks: the interaction framework and the overlay framework, which
are the subject of this paper. The paper also evaluates the two frame-
works in terms of their configurability (e.g. ability to be profiled for
different device types) and reconfigurability (e.g. to self-optimise as the
environment changes).

1 Introduction

As Grid computing continues to evolve, there is an accelerating trend towards di-
versity both in terms of application domains and, crucially, in terms of the un-
derlying networked infrastructures in use. For example, with the emergence of the
“pervasive Grid” [11], we can envisage a spectrum ranging from very large cluster
computers interconnected with high-speed networks through to tiny embedded de-
vices interconnected by often intermittent and low bandwidth wireless networks.

A more detailed analysis of heterogeneity at the infrastructure level of the
Grid reveals the following:

– At the network level. Beginning with dedicated intra-cluster networking, the
range of network types in use has grown to include: high-speed local net-
works; lower-speed wide-area networks; infrastructure-based wireless net-
works; adhoc wireless networks (themselves ranging from relatively static
to highly dynamic configurations); and specialised sensor networks.

– At the middleware level. Beginning with basic point-to-point interactions
(e.g. SOAP messaging and RPC), the range of middleware-level communi-
cations services in use is expanding to encompass a wide range of “interac-
tion paradigms” such as: reliable and unreliable multicast; workflow; media
streaming; publish-subscribe; generative communication; and peer-to-peer
based resource location or file sharing.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 334–353, 2005.
c© IFIP International Federation for Information Processing 2005

Deep Middleware for the Divergent Grid 335

We characterise these trends as the divergent Grid. As a more concrete il-
lustration of the divergent Grid, consider the following scenario which is cur-
rently being realised at Lancaster University [15]: A river and estuary are in-
strumented with a range of sensor devices e.g. to monitor temperature, water
levels, flow rates, pollution levels, coastal erosion etc. Some of these devices
(e.g. fixed sensors in tidal defence walls) are networked using standard wired
technologies such as Ethernet, while others employ various wireless technologies
(e.g. IEEE 802.15.4 or 802.11 radios; or longwave radios for underwater use).
Using this infrastructure, scientists in widely-dispersed locations selectively store
sensor data for future analysis, integrate and process live sensor data on their
workstations, cooperatively visualise this data in real-time (supported by a video
conferencing system), and use both stored and live data to computationally steer
long running environmental simulations on computational clusters.

Note that this divergent Grid scenario clearly involves highly heterogeneous
device and networking technologies, and also that it demands a wide range
of interaction paradigms (e.g. ad-hoc multicast for sensor data dissemination,
publish-subscribe for sensor data collection, multicast and streaming for collab-
oration, and secure channels for database access). Dealing with such extreme het-
erogeneity is a fundamental challenge for future Grid middleware, and one that
is demonstrably not addressed by existing platforms (as is also argued in [7]). In
this paper, we propose a platform called Gridkit that tries to address these defi-
ciencies. Gridkit adopts and builds on our previous approach to the development
of reflective middleware [4]: it utilises components, reflection and component
frameworks to yield a configurable, reconfigurable and evolvable architecture.

But the most novel contribution of Gridkit is that it explores the notion
of deep middleware in which the middleware platform reaches down into the
(heterogeneous) network to provide flexible communications services with which
to support a range of distributed interaction paradigms at the application level.
Deep middleware can either build on support from an active or programmable
network, or can leverage the notion of overlay networks [12]. In our previous
work [9] we have explored the former; in the present work we explore an overlay-
based approach which has the key advantage that it can be applied in ‘black
box’ network environments.

In outline, Gridkit has at its heart two layered component frameworks. The
higher layer is an interaction framework that takes plug-in interaction paradigms;
the lower layer is an overlay framework which takes plug-in overlay implementa-
tions. See figure 1. In previous work [15], we have provided an outline of the wider
Gridkit architecture which supports an API based on web-services and also in-

Interaction Framework

Overlay Framework

Fig. 1. The overall architecture

336 P. Grace et al.

cludes frameworks for Grid-based resource discovery, service discovery, resource
management, and security. In this paper we focus on the ‘heart’ of Gridkit: the
above-mentioned interaction and overlay frameworks. In particular, we demon-
strate how the deep middleware approach can support a rich, extensible and re-
configurable set of application-level interaction paradigms in and across a variety
of network types and on a variety of devices.

The remainder of the paper is structured as follows. Sections 2 and 3 respec-
tively discuss the interaction and overlay frameworks. Section 4 then presents a
study of the configurability of the two frameworks (how they can be instanti-
ated on different device types) and their reconfigurability. The reconfigurability
study focuses especially on self-managing functionality offered by the overlay
framework. Following this, we discuss related work in section 5 and present our
conclusions and plans for future work in section 6.

2 The Interaction Framework

2.1 Motivation

Grid Middleware that offers only a single interaction paradigm (e.g. RPC) cannot
cope with the diversity of application requirements needed by next-generation
Grid applications [7]. This is illustrated clearly in the environmental informatics
scenario of section 1 which, as explained, involves at least publish-subscribe,
multicast-based group interaction and media streaming.

One possible solution to this problem is to employ separate middleware im-
plementations for each interaction paradigm required. This solution is implicit
in the piece-meal nature of current Grid middleware: e.g. SOAP for messaging,
JMS for publish-subscribe, GridFTP for data streaming, and OGSA-DAI for
database access. However, this ad-hoc approach has numerous problems:

– being responsible for middleware composition and integration adds consid-
erable complexity to the load on the application developer;

– it is unlikely that all implementations of the same interaction paradigm will
support the same programming model, programming language and operation
syntax, which further increases the cognitive load on the developer;

– the middleware infrastructure becomes redundant and heavyweight due to
potentially common functionality being duplicated across multiple imple-
mentations (e.g. network transport, resource management, and security);

– individual interaction paradigm implementations may only operate in certain
environments and/or under certain network conditions (e.g. different publish
subscribe implementations are typically used for infrastructure-based and
for ad-hoc networks) this again leads to redundant deployment, this time of
individual interaction paradigms.

2.2 Overview of the Interaction Framework

To address these problems, Gridkit’s interaction framework provides a common
environment for an extensible set of so-called pluggable interaction paradigms,
or PIPs.

Deep Middleware for the Divergent Grid 337

The design of the framework is guided by the following principles:

1. the selection and use of PIPs by applications should be straightforward;
2. the programming model of each PIP should be independent of how it is

implemented over different (overlay) network types and conditions;
3. the configuration of PIPs, including their underlying overlay support, should

be managed automatically based on an (optional) declarative specification
of desired behaviour;

4. the configuration of PIPs should also be informed by the currently available
network infrastructure and environmental conditions.

IInntteerraaccttiioonn
FFrraammeewwoorrkk

RPC

IRPC

Streaming

IStreaming

Group

IGroup

Dynamic introduction of
plug-in components

implementing interaction
patterns

Multiple
dependencies

IPublish

Publish

NNeettwwoorrkk TTrraannssppoorrtt

OOvveerrllaayy FFrraammeewwoorrkk

IConnect

Fig. 2. The interaction framework

The overall architecture and context of the interaction framework is illustrated
in figure 2. Separating the interaction framework from the overlay framework has
the effect of promoting the reuse of overlays and thus conserving resources i.e. dif-
ferent interactions may re-use overlay configurations that are already in place (for
example, a topic-based publish-subscribe PIP and a reliable multicast PIP might
both share a multicast tree overlay - see section 3.2). Additionally, figure 2 shows
that a network transport framework is plugged into the overlay network frame-
work; this provides components (e.g. TCP, UDP etc.) that implement communi-
cations services that are used directly by overlays, and that are used directly by
PIPs that do not require sophisticated overlay support (e.g. RPC).

The interaction framework does not impose any specific structure on its plug-
ins except that it requires that each plug-in is encapsulated as a single compo-
nent. However, as our OpenCOM v2 component model [8] supports composite
components, this imposes no real constraint.

2.3 Interaction Framework APIs

In line with principles 1 and 2 set out above, we have made every effort to simplify
the API of the interaction framework. General experience in the development of
reflective middleware has taught us that highly configurable systems are often
a two edged sword: configurability is certainly a good thing, but too often its

338 P. Grace et al.

benefits are outweighed by the inconvenience and complexity of having to write
many lines of baroque code to achieve a desired configuration. In many cases, this
complexity is so great that developers are likely to ignore the available flexibility
and use only a small number of default configurations. This is especially relevant
in the case of the interaction framework as (unlike the overlay framework) it is
generally used directly by application developers.

Because of the variety of interaction paradigms and the need to support
future extensibility, it is unrealistic to define universal, fixed, interfaces to PIPs.
Instead, we adopt an approach to API provision that relies on the definition
of an (extensible) set of generic APIs. The expectation is that each generic
API will be exported by a potentially large family of underlying PIPs. In cases
where a PIP requires a modification of the generic API closest to its needs,
the framework recommends that interface inheritance be used wherever possible
to avoid a proliferation of top-level APIs. Avoiding a proliferation of top-level
APIs is crucial in giving applications some level of stability and consistency,
and in enabling them to accumulate transferable knowledge. As an example, a
new group communication PIP that addresses message ordering issues could not
directly use a group API that is silent on message ordering. However, the PIP
developer should extend this generic API rather than add an entirely new one.

In addition to providing recommendations for the structuring of PIP APIs,
we have attempted to simplify the way in which applications select and configure
PIPs. Our approach here employs a notion of so-called binding contracts that is
in turn inspired by the idea of ‘trading’ in RM-ODP [23]. More specifically, PIP
interfaces have attached to them sets of name-value pairs that embody PIP-
specific information such as the name of the PIP, its purpose, constraints on
its use, and the QoS it provides. Correspondingly, the receptacles (a receptacle
is a ‘required’ interface [8]) of application components that want to use PIPs
have predicates attached to them whose terms refer to the name-value pairs
attached to potentially-matching PIP interfaces. The binding contract elements
(i.e. name-value pairs and predicates) are attached to receptacles and interfaces
using native facilities of our component model (i.e. the ‘interface’ meta-model
as described in [3]).

Based on binding contracts, we provide a simple generic API to the inter-
action framework of the form connect(receptacle) to which the potential user
of a PIP submits its receptacle. Given this, the interaction framework selects,
instantiates, and configures a PIP instance based on the following information:

– the set of available PIPs that are currently registered with the framework;
– the predicates attached to the offered receptacle;
– the advice of a context engine [5] which supports additional name-value pairs,

the value of which varies dynamically according to the context of the host
machine (e.g. battery life, network connectivity etc.)

During the process of finding a suitable PIP, the predicate attached to the
user’s receptacle must evaluate to true when bound to the name-value pairs from
both the selected PIP interface and the context engine. Section 4 has specific
examples of the use of binding contracts and related machinery.

Deep Middleware for the Divergent Grid 339

Additionally, the interaction framework (optionally) supports dynamic mon-
itoring of binding contracts. Using this facility, any party to the binding contract
(including the context engine) can force a re-evaluation of the contract by al-
tering their respective ‘side’ of the contract. For example, the user can drive
reconfiguration of a PIP (e.g. by reconfiguring its underlying overlay stack; see
section 3) by altering the predicates attached to its receptacle. To detect such
changes, the component model’s ‘interception’ meta-model [3] is used to attach
a ‘dynamic contract evaluator’ to the receptacle-interface binding. This is exe-
cuted each time a call is made across the binding, and raises an exception if it
finds the binding contract to be no longer valid. This exception can either be
handled by the user or by the framework itself, e.g., to delete the PIP instance
or to attempt to reconfigure it. As an example, the context engine might change
a name-value pair to reflect the fact that a live Ethernet MAC layer no longer
exists, and the framework might, on that basis, change the underlying overlay
from IP-based flooding to an ad-hoc network based flooding. Again, see section 4
for examples and more detail.

3 The Overlay Framework

3.1 Background on Overlays

Overlay networks are virtual communication structures that are logically “laid
over” an underlying physical network such as the Internet or a wireless ad-hoc
networking environment. They are typically implemented by deploying appro-
priate application-level routing functionality at strategic places in the network
(in principle both at the network edges and in the core). Overlays have to date
mainly been motivated by two concerns: i) to alleviate the effects of slow or spo-
radic deployment of new services in the Internet (e.g. application-level multicast);
and ii) to directly provide application-level functionality that is out-of-scope for
the underlying network (e.g. large-scale peer-to-peer file sharing). Examples of
overlay types are: reliable multicast overlays such as SRM; content dissemina-
tion networks; unstructured peer-to- peer overlays such as Gnutella; structured
dynamic hashtable (DHT)-based peer-to-peer overlays such as Chord; resilient
overlay networks (RONs); gossip overlays; and the wide variety of routing over-
lays used in ad-hoc or wireless sensor networks. See [15] for a survey.

3.2 Overview of the Overlay Framework

Gridkit’s overlay framework supports the design, deployment and management
of plug-in overlay networks. In terms of design, the framework mandates that
per-host overlay plug-ins are structured in terms of three standard elements
(components). These (see figure 3) are: i) a control component that cooperates
with its peers on other hosts to build and maintain a virtual network topology,
ii) a forwarding component that routes messages over the virtual topology, and
iii) a state component that encapsulates key state such as nearest neighbours.
This tri-partite structure provides a useful pattern for developers, promotes the

340 P. Grace et al.

control stateforwarding

interfaces

receptacles

control stateforwarding

interfaces

receptacles

Fig. 3. Structure of an overlay plug-in

dissemination of experience and expertise in overlay development, and facilitates
deployment and management. Note also in figure 3 that each of the 3 elements
exposes an interface to the higher layer and a receptacle to the lower layer.

In terms of deployment, the overlay framework allows one to dynamically
instantiate new overlays in a straightforward and lightweight manner. This is
supported in a recursive fashion by using overlays to deploy overlays (PIPs are
also deployed in this way). For example, a flooding-based overlay (e.g. Gnutella
[14]) can be used to disseminate a message that (a filtered subset of) receiving
hosts act upon by deploying a node of a new overlay of some desired type (e.g.
an application-level multicast overlay). This is achieved by employing a stack
structure for overlay implementations, and adopting an associated message han-
dling regime that is inspired by the Ensemble communications framework [29].
In brief, the forwarding elements of overlays are organised such that when an
incoming message is not recognised, it is passed up to the forwarding component
of the overlay above. Given this arrangement, one can place a ‘dummy’ overlay
at the top of the overlay stack that responds to deployment request messages.
Such requests will necessarily reach the top of the stack as they will not have
been recognised by any of the lower forwarding components.

Apart from its use in deployment, the general notion of stacking overlays is
a powerful one, and there are numerous cases in which one overlay can usefully
be employed as a substrate for another. For example, one could layer a keyword
search overlay such as Gnutella over a DHT-based network such as Chord (as
DHT networks do not support keyword search). Or, one could layer a content
dissemination overlay such as TBCP [21] over a resilient overlay such as RON [2]
to enhance dependability. All such scenarios can be achieved very easily using
the overlay framework’s stacking structure.

As well as stacking whole overlays, the overlay framework also supports par-
tial stacking in which the control, forwarding, and state elements can be sep-
arately stacked. For example, we have designed a variant of Gnutella [17] that
builds a more structured network than the completely unstructured topology
constructed by standard Gnutella. This variant can be deployed simply as a
<control, state> pair, and an existing standard Gnutella forwarding component
in the layer below can be used directly. Another example of partial stacking could
be the stacking of a multicast overlay over a DHT-based overlay. Here, the multi-
cast overlay would only need to provide a forwarding component, as the control
and state components of the underlying DHT overlay could be used directly.

Deep Middleware for the Divergent Grid 341

MCast streaming keywork search

Chord key based routing probabilistic multicast

Fig. 4. Example configuration of the overlay framework

Partial stacking not only saves developer effort it also potentially conserves re-
sources, as functionality common to a set of stacked overlays can be reused, thus
saving end-system resources and potentially reducing network traffic.

Figure 4 illustrates an example configuration of the overlay framework that
involves two multi-layered overlay instantiations: first, a group overlay and
streaming overlay are both supported by an instance of the Chord DHT over-
lay; second, a keyword search overlay is supported by a probabilistic multicast
overlay. This demonstrates how multiple overlay networks, both related and
unrelated, can co-exist within a single middleware platform instance; and how
overlays can be configured on top of other overlays to construct higher-level,
more application-specific semantics.

As well as stacking, the overlay framework also promotes horizontal cooper-
ation between different overlays. For example, as explored in section 4, a gossip-
based overlay can be used to gossip about crashed nodes in a different overlay,
and thus be used to provide a general failure detection service for other over-
lays. Similarly, an overlay that provides a dependability service for the nodes of
other overlays could exploit a third overlay to search for suitable hosts on which
overlay nodes could be redundantly checkpointed. As a third example, separate
infrastructure-based and ad-hoc-based multicast overlays could cooperate side-
by-side to underpin a publish subscribe PIP that must simultaneously operate
in both network environments.

Finally, in terms of the management of deployed overlays, the overlay frame-
work employs plug-in ‘component configurators’ [19] that builds on another of
the component model’s reflective meta-models - this time the ‘architecture’ meta-
model [3]. But in addition, some management functions can be carried out by
overlays themselves. Within a single overlay, it is the responsibility of the control
part of the implementation to manage, maintain, and repair the overlay topol-
ogy. But it is also possible to use specialised overlays to manage other overlays.
Examples of this relating to failure detection and dependability have already
been given above and are pursued in section 4.

3.3 Overlay Framework APIs

The general approach of interfacing users to the overlay framework is identical to
that adopted by the interaction framework (see section 2.3): viz. the convention
of an extensible set of generic APIs that can each support a family of related

342 P. Grace et al.

Table 1. Generic overlay APIs

DHT Cast
Control join(networkId) join(grpId)

leave(networkId) leave(grpId)
Forwarding put (key, data) multicast(msg, grpId)

remove (key) anycast(msg, grpId)
value = get (key)

State nodes = neighbours() nodes = neighbours()
addneighbour(node) addneighbour(node)

underlying overlays. In addition, the framework uses the ‘connect()’ API and
binding contracts to select, configure and dynamically monitor overlays.

Our current set of generic APIs, which are taken almost directly from [10]
except that they are factored into control, forwarding and state categories, is
shown in table 1. This shows two generic APIs for DHT-based and for cast-
based overlays respectively. Following Dabek et al’s experience we have found
that these generic APIs can be used by a large family of overlay plug-ins. For
example, the generic DHT API can give access to Chord, Pastry, Tapestry etc.,
and the cast API can give access to multicast overlays, ad-hoc routing protocols
etc. The complete set of overlays that we have implemented is listed in section 6.

Finally, note that in the case of the overlay framework, the ‘connect()’ process
naturally recurses to drive the instantiation of stacks of overlays: i.e., if the initial
connect() call instantiates a new overlay plug-in, the instantiation of this might
in turn drive the instantiation of another below it. And so on.

4 Case Studies of Configuration and Reconfiguration

4.1 Configuration

In this section we demonstrate the configurability of Gridkit on different com-
puter and device types, showing how different PIPs can be automatically config-
ured and underpinned with overlay configurations in a way that is appropriate to
different environmental conditions. In particular, we discuss scenarios in which
we configure two different types of PIP on two different types of device: a PC and
a PDA. We also concretise the discussion on binding contracts in section 2.3 by
giving examples of the use of binding contracts and their associated machinery.

Consider a Gridkit installation that is described by table 2. This shows the
plug-ins that are currently registered with the interaction and overlay frame-
works, and the context on each of the two device types we are considering. It
also shows the current set of name-value pairs for the plug-ins and the per-device
context. RelMsg means reliable messaging; GrpMem means group membership
services; and Net means network type (i.e. fixed or ad-hoc).

Given this installation, consider the processing of a request on the interaction
framework of the form connect(publish-receptacle) for an IPublish generic API

Deep Middleware for the Divergent Grid 343

Table 2. An example Gridkit installation

Framework Generic API Item Name-value pairs
Interaction IPublish Publish RelMes: F

IGroup Group1 RelMes: F; GrpMem: T
Group2 RelMes: F; GrpMem: F

Overlay IGroupMessage ALM RelMes: F; Net: fixed
IGroupMessage ProbMcast RelMes: F; Net: adhoc
IGroupMembers Gossip RelMes: F; Net: fixed; Net:adhoc

Context N/A PC Net: fixed
PDA Net: adhoc

where there is a predicate of the form RelMes=F attached to publish-receptacle.
The steps involved in processing this request are as follows (please refer to
figure 5):

– Step 1: the connect(publish-receptacle) call is issued by the application on
the interaction framework as already described.

– Step 2: the interaction framework picks a PIP that exports the specified
generic API, and retrieves from the context engine the set of contextual
name-value pairs that are relevant to the type of this PIP - in this case it
picks Publish and retrieves Net: fixed if running on a PC, or Net: adhoc if
running on a PDA (the name-value pairs deemed relevant for a given PIP
are designated by the PIP developer when the PIP is first registered with
the framework).

– Step 3: a pattern-matching algorithm (similar to that used in [5]) is used to
select a per-PIP ‘configuration script’ on the basis of the receptacle predicate
and the name-value pairs from the context engine and from candidate PIPs
(again, this configuration script is provided when the PIP is first registered).

– Step 4: the script instantiates the PIP and then decides on a suitable over-
lay type to underpin the PIP; in this case it will pick the IGroupMessage
generic API underpinned by an Application Level Multicast (ALM) imple-
mentation [21] on the PC because ALM’s RelMes and Net values satisfy
both the publish-receptacle’s predicate of RelMes=F and the Net value pro-
vided by the context engine; it will, however, be underpinned by ProbMcast
on the PDA due to the fact that this exports Net: adhoc which matches the
Net value exported by the context engine; the script also derives a suitable
predicate for the overlay receptacle alm-receptacle (in this case the predicate
will be RelMes: F), and attaches this to the alm-receptacle.

– Step 5: the script issues a connect(alm-receptacle) call on the overlay frame-
work.

From this point on, steps 6, 7 and 8 are analogous to the steps already
described above except that they are executed by the overlay framework rather
than the interaction framework. The final results are shown in figure 6. Note
that the connect() process may be carried out multiple times by the overlay
framework in the case of a request that indicates a stack of overlays.

344 P. Grace et al.

Fig. 5. Steps involved in processing a connect() request

PDA Configuration

IPublish

Interaction

PPuubblliisshh

IGroupMessage
RelMes=false

PPrroobb.. MMCCaasstt
Overlay

IPublish

Interaction

PPuubblliisshh

AALLMM
Overlay

IGroupMessage
RelMes=false

PC Configuration

Fig. 6. Applying publish configurations on the PC and the PDA

Now consider a consider a request on the interaction framework for a Group
PIP with a receptacle predicate of RelMes=F and GrpMem=T. A similar process
to the above will be carried out with the Group1 PIP being selected (because of
the specification of GrpMem=T), and underpinned by ALM and Gossip over-
lays on the PC, and ProbMcast and Gossip overlays on the PDA (again due to
contextual differences). The Gossip overlay is used to gossip about group mem-
bership (as required by the GrpMem=T predicate). The outcomes are shown in
figure 7.

Interaction
IGroup

GGrroouupp

PPrroobb.. MMCCaasstt

PDA Configuration
Overlay

IGroupMessage
RelMes=false

IGroupMembers
GrpMem=true

GGoossssiipp

Interaction
IGroup

GGrroouupp

AALLMM

PC Configuration
Overlay

IGroupMessage
RelMes=false

IGroupMembers
GrpMem=true

GGoossssiipp

Fig. 7. Applying group configurations on the PC and PDA

Deep Middleware for the Divergent Grid 345

Note that the above processes rely on an ‘ontology’ of names (RelMes, Grp-
Mem etc) which are commonly understood across the two frameworks and the
context engine. Although it leads to a degree of ‘coupling’ between the frame-
works, this is a necessary evil in realising automatic configuration of PIPs/
overlays. In general it is not as much of a problem as it might initially seem, as
a natural convention emerges under which PIP developers build on a canonical
set of names used by the lower level frameworks.

Table 3. Memory footprint sizes of the four configurations

Configuration Static Memory Configuration
Footprint (KBytes) Time (ms)

Publish-Subscribe with ALM (PC) 171 616
Pub-Subscribe with ProbMcast (PDA) 223 3012
Group with ALM (PC) 221 591
Group with ProbMcast (PDA) 276 3776

Overhead Evaluation. For completeness we briefly present the times taken
to generate the above configurations and the memory footprint incurred. These
are presented in table 3. The experiments were carried out on the following
platforms. The PC was a Dell Optiplex workstation with a 3.0 GHz Pentium
4 processor and 1Gbyte of RAM with a fixed network connection and running
Windows XP. The PDA was a Compaq iPaq H360 2002 with a 233Mhz Stron-
gARM processor and 32Mbytes of RAM with an ad-hoc network connection and
running Windows Pocket PC. Details of the implementation environment of the
frameworks are given in section 6.

4.2 Reconfiguration

We now present a case study that demonstrates one way in which dynamic
reconfiguration of the overlay framework can benefit the overall performance
of Gridkit. As previously described, it is possible to simultaneously support
multiple overlays in a single overlay framework configuration. However, there is a
potential source of redundancy in multi-overlay configurations in that individual
overlays often provide (in their ‘control’ elements) their own proprietary network
monitoring and repair mechanisms which may have overlapping functionality. In
this case study, we investigate the potential for dynamically replacing individual
overlay monitoring mechanisms with a generic mechanism that can be shared
across overlays, thus reducing network messaging overhead.

We consider two overlays, each of which we have re-implemented to fit the
requirements of the overlay framework: Chord [28] is a DHT-based overlay that
performs key-based routing, and Scribe [6] is a tree-based overlay that performs
multicast/anycast routing of messages under different ‘topics’ atop a keybased
routing mechanism (e.g. Chord). In terms of overlay maintenance, Chord nodes

346 P. Grace et al.

continuously monitor and repair their network structure by sending control mes-
sages to their logical neighbours. Similarly, Scribe nodes periodically send ‘heart-
beats’ to their child nodes, and receive heartbeats from their parents. A detected
change in either network (due to the arrival of new nodes or node failures) trig-
gers the execution of a proprietary repair algorithm.

The architecture of our Chord and Scribe implementations is illustrated in
figure 8. It can first be seen that Scribe is stacked on top of Chord in the manner
discussed in section 3.2. The figure also shows two versions of the control ele-
ments of each overlay: an active and a passive version. In each case, the active
version encapsulates the overlay’s proprietary monitoring and repair algorithm
(as described above), whereas in the passive versions we have removed the mon-
itoring aspect of the algorithm and left only the repair aspect. The intention
is that the monitoring element, in each case, will be provided by a common
monitoring service.

Potential
Reconfigurations

Scribe
Active
Control

Scribe
Forward

Scribe
State

Scribe

Overlay Framework

Chord

Chord
State

Chord
Forward

Chord
Active
Control

Chord
Passive
Control

Scribe
Passive
Control

Fig. 8. Chord and Scribe overlays with alternative control elements

Our implementation of this common monitoring service (see figure 9) is based
on a gossip failure detection scheme proposed by [31]. The basic operation of
each gossip overlay node is to ‘gossip’ a given message to a specified random
subset (Kgossip) of its neighbours. On top of this overlay, we have implemented
a special-purpose monitoring overlay, the nodes of which periodically gossip a
heartbeat counter indicating their ‘alive’ status to local neighbours. Each node
monitors heartbeat activity, and if it hasn’t received a heartbeat update from a
given node in a given time period, it declares the node ‘dead’.

In operation, therefore, the intention is that the monitoring and gossip over-
lays are used to send messages across all nodes in both the Scribe and Chord
overlays about fails and joins, and this information is used to replace Scribe’s and
Chord’s proprietary monitoring mechanisms and to drive their passive control
elements.

To confirm the benefits (in terms of overall network overhead) of reconfig-
uring from an active to a passive control strategy, we set up an experimental
configuration that involved 10 instances of the overlay framework running on
5 workstations. One of these workstations, designated as the test host, was set
up to measure the total number of failure detection related control messages
originating from that host.

Deep Middleware for the Divergent Grid 347

Scribe
Passive
Control

Scribe
Forward

Scribe
State

Scribe
Gossip Failure
Detection

Gossip
State

 IDeliver
Gossip

FD

Gossip
Forward

Gossip
Control

Overlay Framework
Chord

Chord
State

Chord
Forward

Chord
Passive
Control

Fig. 9. Configuration of overlay framework with gossip failure detection

0
2
4

6
8

10
12
14

16
18
20

0 20 40 60 80 100 120

Time (secs)

m
es

sa
g

es
/s

ec

T1T0

Fig. 10. Investigation of control message throughput in the overlay framework

We then configured the overlay framework to switch from an active to a
passive control strategy when a threshold rate of 11 messages/sec of measured
control messages was exceeded. Given this set up, we proceeded as follows (please
refer to figure 10): We first instantiated a Chord overlay on all the experimental
hosts; this produced a control message rate of approximately 10 messages/sec.
Then, after 35 seconds (time T0) we instantiated a two Scribe trees on top
of Chord (these were configured so that the nodes on the test host acted as
parent to three child nodes in one tree, and one in the other). The Scribe trees
produced an additional 8 messages/sec; so at this point the combined number
of control messages (18) exceeded the configured threshold (11) and forced the
following reconfiguration to occur: i) the gossip and failure detection overlays
were instantiated (with a heartbeat/monitoring period of 500ms and a Kgossip

parameter of 5 neighbours); ii) each active control component was replaced by
the corresponding passive version; and iii) the passive control components were
connected to the failure detection component. That is, framework configuration
changed, at time T1, from the view of figure 8 to the view of figure 9. Under
these conditions, the test host measured a message rate of approximately 10
messages/sec which is a significant reduction of the prior rate of 18. Note also
that this rate will remain constant no matter how many overlays share the failure
detection service.

348 P. Grace et al.

Finally, we measured the overhead of the active-to-passive transition, broken
down into discrete phases. It can be seen from table 4 that there was a total
overhead (downtime) of 1.7 seconds while the transition is taking place; during
this time any PIPs that are using the framework would be blocked. However,
this is an ‘out-of-band’ operation that occurs only once, and once completed
does not further impact the performance of the middleware.

Table 4. Time to reconfigure the overlay framework

Operation Time(ms)
Configure Gossip Failure Detection 547
Replace 2 active control components 94
Connect FD to running overlays (Java to C++ bridge) 1141
Total Time 1782

It is important to emphasise that this failure detection approach cannot be
applied under all circumstances. In particular, it is only applicable to overlays
that are ‘fully connected’ in the sense that it is possible to reach all nodes from
any given node. This property is required to be able to deploy the Gossip over-
lay according to the scheme outlined in section 3.2 on all nodes that require
monitoring. Also, it might not necessarily be the case that the Gossip approach
leads to overlays being repaired as quickly and/ or effectively as their propri-
etary mechanisms achieve. Nevertheless it is a clear illustrative example of the
potential benefits of ‘horizontally’ composing overlays which is facilitated by our
framework.

5 Related Work

We are not aware of any other work that is specifically addressing the provision
of integrated support for pluggable overlay networks or interaction paradigms in
Grid environments. However, there is a considerable amount of related work in
the various sub-areas.

In terms of Grid middleware, there are platforms, notably ICENI [13], that
support the notion of software components. However, these platforms, so far
as we are aware, support components only at the application level: there is
no infrastructure level componentisation. In terms of wider, non-Grid-specific,
middleware, there are many platforms that take a component-oriented approach
at the infrastructure level, and feature plug-ins to extend system functionality.
Among these are DynamicTAO [19], UIC [26], ExORB [25], Arctic Beans [1]
and RAPIDware [27]. However, none of these support the notion of pluggable
interaction paradigms or overlay networks.

There is, of course, considerable research in the narrower field of overlay
networks themselves; but this work is largely orthogonal to our focus: we are
interesting in wrapping and applying overlay technologies rather than in devel-
oping new ones. In terms of generic support platforms for overlays, researchers

Deep Middleware for the Divergent Grid 349

at the University of Toronto have developed a generic platform called iOver-
lays [20] that supports the implementation of overlays. Essentially, iOverlays is
a low-level software cross-connect that forwards messages according to a script
that embodies the semantics of a particular overlay. It is thus orthogonal to
our interests. Our work also differs in focusing more on co-existence of, and
cooperation across, multiple overlay instances which is required to simultane-
ously support multiple PIPs in the same application. Also in the field of generic
overlay support, [10] has presented APIs for common overlay services such as
distributed key-based routing, distributed hashtables, distributed object lookup
and multicast behaviour. Such APIs offer the potential to simplify the devel-
opment of distributed systems based upon re-usable overlay services. This is a
novel approach that has influenced the design of our overlay framework (see
section 3.3). However, we believe that this approach does not go far enough; it
concentrates on DHT-based technologies and does not generalise to the many
types of overlays that are available (as discussed above). Also, it assumes static
layering of overlay types in contrast to our dynamic approach. Hence, we pro-
pose a more general approach whereby overlay networks can arbitrarily (albeit
sensibly) depend upon one another. For example, a publish-subscribe overlay
can be layered atop a DHT in one configuration, or a flooding-based overlay in
another (e.g. in a small scale ad hoc or wireless sensor network).

Parvalantzas et al. [24] has previously investigated middleware with extensi-
ble PIPs (then referred to as binding types), and this work has been an influence.
However, the present research fundamentally extends this earlier work. In partic-
ular, it builds on the availability of the overlay framework to considerably extend
the richness and scope of the PIPs that can be provided (e.g. into areas of re-
source discovery, peer-to-peer file sharing, efficient wide area publish-subscribe,
wide area multicast etc). Furthermore, we now accommodate alternative, per
infrastructure, PIP implementations, together with their runtime reconfigura-
tion, and also simultaneously support multiple PIPs. We also introduce new
mechanisms to support the developer in selecting, configuring and using PIPs.

Finally, there are now a number of established frameworks that support the
configuration and reconfiguration of pluggable network protocols. As we have
discussed previously, the design of the Gridkit framework is built upon this ear-
lier work; message dissemination through the framework is similar to the Cactus
approach [16] i.e. a message is forwarded to interested components only; and the
top-level configurator is derived from the Ensemble approach [29]. Hence, with
Gridkit we do not present a new approach for the development of such frame-
works, rather we apply the concept of pluggable frameworks: across a diverse
set of middleware services, in heterogeneous devices and environments. Hierar-
chical frameworks such as Ensemble [29], Horus [30], and x-kernel [18] provide
pluggable stack structures into which micro-protocols implementing smaller pro-
tocol functionality are plugged. These systems generally support a single inter-
action type (normally group communication), and the fine-grained nature of the
micro-protocol functionality makes meaningful configuration and reconfigura-
tion of protocols a complex task. Gridkit supports both coarse and fine-grained

350 P. Grace et al.

reconfigurability, and offers declarative methods to define configurations and re-
configurations. Cactus [16] is the closest framework to Gridkit in terms of its
structure and dissemination of messages through the framework; however, it
does not consider the potential benefits of dynamically reconfigurable interac-
tion types nor does it examine the benefits of supporting middleware services
with overlay networks. Finally, two alternative systems in this area are Appia
and SAMOA. Appia [22] supports the co-ordination of multiple channels (re-
lated to a common task) operating within the protocol stack; and SAMOA[32]
examines support for the concurrent execution of events across micro-protocols
in the framework. Neither of these features are addressed in our current Gridkit
implementation, and offer potential areas of future research.

6 Conclusions and Future Work

In this paper we have discussed two complementary component frameworks that
respectively support an extensible set of interaction paradigms and an extensible
set of overlay networks. The combination of the two frameworks enables a wide
range of pluggable interaction paradigms to be instantiated in a wide range of
network environments and to be reconfigured at runtime. The combination thus
addresses both of the major requirements of the “divergent Grid” as discussed
in the introduction.

To date we have implemented the two frameworks and populated them with
a substantial set of plug-ins. In the interaction framework, we have implemented
the publish-subscribe and group PIPs that are discussed in this paper in C++
and Java respectively. This multi-language integration is a property of the Open-
COM v2 component model [8] which we use to structure all our software. We have
also implemented IIOP and SOAP-based RPC PIPs (in C++) and a stream-
ing PIP (in Java). In terms of overlay plug-ins, Chord, Scribe and Application
Level Multicast (i.e. TBCP [21]) have been implemented in Java, and Gossip and
ProbMcast have been implemented in C++. The two frameworks themselves,
plus the context engine, are implemented in Java. Mostly, we have used the multi-
language integration feature for practical reasons to more easily accommodate
already-written software into the frameworks.

Although we have made considerable progress, a lot remains to be done. We
have addressed dynamic deployment of both overlays and PIPs according to the
approach discussed in section 3.2, and we have experimented with reconfigura-
tion. But there is a lot more territory to explore in the area of distributed recon-
figuration as discussed in section 4.2. Also, there are a lot of interesting issues in
cross-layer distributed reconfiguration that involves intelligent cross-coordinated
reconfiguration of both frameworks. For example, a publish-subscribe PIP might
be adequately underpinned by a TBCP overlay while most or all of its users are
situated in the fixed network; but if the situation evolves so that at some point
a significant number of users are situated in ad-hoc network environments, then
the optimal underpinning of the PIP needs to be reconsidered and should ideally
be supported by a coordinated federation of horizontally-composed overlays.

Deep Middleware for the Divergent Grid 351

Additional areas of challenge that we are addressing in a follow-on project are
the use of Model Driven Architecture to configure our frameworks and also to
provide constraint on their reconfiguration; and the use of autonomic techniques
so that the frameworks can not only adapt themselves to changing environmental
conditions but can also learn from prior adaptations and make better decisions
on that basis.

Acknowledgements

This work is funded by the EPSRC under the Open Overlays project (grant
reference GR/S68521/01). The authors would also like to acknowledge our col-
leagues on the project: Chris Cooper, David Duce, Musbah Sager, Wei Li, Lau-
rent Mathy, Wei Cai and Wai-Kit Yeung.

References

1. A. Andersen, G. Blair, V. Goebel, R. Karlsen, T. Stabell-Kul, and W. Yu. Arc-
tic Beans: Configurable and Reconfigurable Enterprise Component Architectures.
IEEE Distributed Systems Online, 2(7), November 2001.

2. D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. The Case for Resilient
Overlay Networks. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems, pages 152–157, Elmau, Germany, May 2001.

3. G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon,
T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski. The
design and implementation of Open ORB 2. IEEE Distributed Systems Online,
2(6), September 2001.

4. G. Blair, G. Coulson, and P. Grace. Research Directions in Reflective Middleware:
the Lancaster Experience. In Proceedings of the 3rd Workshop on Reflective and
Adaptive Middleware (RM2004), pages 262–267, Toronto, Canada, October 2004.

5. L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective
mIddleware System for Mobile Applications. IEEE Transactions on Software En-
gineering, 29(10):929–945, October 2003.

6. M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in communications (JSAC), 20(8):1489– 1499, October 2002.

7. J. Chin and P.V. Coveney. Towards Tractable Toolkits for the Grid: a Plea for
Lightweight, Usable Middleware. RealityGrid NeSC Tech Report UKeS-2004-01,
February 2004.

8. G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A Component
Model for Building Systems Software. In Proceedings of the IASTED Confer-
ence on Software Engineering and Applications (SEA’04), Cambridge, MA, USA,
November 2004.

9. G. Coulson, G. Blair, D. Hutchison, A. Joolia, K. Lee, J. Ueyama, A.T. Gomes, and
Y. Ye. NETKIT: A Software Component-Based Approach to Programmable Net-
working. ACM SIGCOMM Computer Communications Review (CCR), 33(5):55–
66, October 2003.

352 P. Grace et al.

10. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a Com-
mon API for Structured P2P Overlays. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS), pages 33–44, Berkeley, CA, USA,
February 2003.

11. N. Davies, A. Friday, and O. Storz. Exploring the Grid’s Potential for Ubiquitous
Computing. IEEE Pervasive Computing, 3(2):74–75, April-June 2004. see also:
http://ubigrid.lancs.ac.uk.

12. D. Doval and D. OMahony. Overlay Networks: A Scalable Alternative for P2P.
IEEE Internet Computing, 7(4):79–82, July-August 2003.

13. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington.
ICENI: Optimisation of Component Applications within a Grid Environment. Par-
allel Computing, 28(12):1753–1772, December 2002.

14. Gnutella Protocol Specification v0.6. http://rfc-gnutella.sourceforge.net.
15. P. Grace, G. Coulson, G. Blair, L. Mathy, W.K. Yeung, W. Cai, D. Duce, and

C. Cooper. GRIDKIT: Pluggable Overlay Networks for Grid Computing. In Pro-
ceedings of the International Symposium on Distributed Objects and Applications
(DOA04), pages 1463–1481, Cyprus, October 2004.

16. M. Hiltunen and R. Schlichting. A Configurable Membership Service. IEEE Trans-
actions on Computers, 47(5):573–586, 1998.

17. D. Hughes, I. Warren, and G. Coulson. AGnuS: The Altruistic Gnutella Server.
In Proceedings of the 3rd International Conference on Peer-to-Peer Computing
(P2P2003), pages 202–203, Linkoping, Sweden, September 2003.

18. N. Hutchinson and L. Peterson. The x-kernel: An Architecture for Implement-
ing Network Protocols. IEEE Transactions on Software Engineering, 17(1):64–76,
January 1991.

19. F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and R. Campbell.
Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the 2nd ACM/IFIP International Conference on Middle-
ware, pages 121–143, New York, NY, USA, April 2000.

20. B. Li, J. Guo, and M. Wang. iOverlays: A Lightweight Middleware Infras-
tructure for Overlay Application Implementations. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pages 135–154,
Toronto, Canada, November 2004.

21. L. Mathy, R. Canonico, and D. Hutchinson. An Overlay Tree Building Control Pro-
tocol. In Proceedings of the 3rd International COST264 Workshop on Networked
Group Communication, pages 76–87, London, UK, November 2001.

22. H. Miranda and L. Rodrigues. Communication Support for Multiple QoS Re-
quirements. In Proceedings of the 3rd European Research Seminar on Advances in
Distributed Systems (ERSADS99), Madeira Island, Portugal, April 1999.

23. ISO Reference Model for Open Distributed Processing. http://www.dstc.edu.au/
Research/Projects/ODP/standards.html.

24. N. Parlavantzas, G. Coulson, and G. Blair. An Extensible Binding Framework
for Component-Based Middleware. In Proceedings of the 7th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2003), pages 252–
263, Brisbane, Australia, September 2003.

25. M. Roman and N. Islam. Dynamically Programmable and Reconfigurable Mid-
dleware Services. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, pages 372–396, Toronto, Canada, November 2004.

26. M. Roman, F. Kon, and R. Campbell. Reflective Middleware: From Your Desk to
Your Hand. IEEE Distributed Systems Online, 2(5), August 2001.

Deep Middleware for the Divergent Grid 353

27. S. Sadjadi, P. McKinley, and E. Kasten. Architecture and Operation of an Adapt-
able Communication Substrate. In Proceedings of the 9th IEEE International
Workshop on Future Trends of Distributed Computing Systems (FTDCS’03), pages
46–55, San Juan, Puerto Rico, May 2003.

28. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings
of the ACM SIGCOMM 2001 Conference, pages 149–160, San Diego, CA, USA,
August 2001.

29. R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Adaptive
Systems Using Ensemble. Software Practice and Experience, 28(9):963–979, August
1998.

30. R. van Renesse, K. Birman, and S. Maffeis. Horus, a Flexible Group Communica-
tion System. Communications of the ACM, 39(4):76–83, April 1996.

31. R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-Based Failure Detection
Service. In Proceedings of the 1st IFIP International Conference on Middleware,
pages 55–70, Lake District, UK, September 1998.

32. P. Wojciechowski, O. Rutti, and A. Schiper. SAMOA: A Framework for a
Synchronisation-Augmented Microprotocol Approach. In Proceedings of the 18th
IEEE Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, April
2004.

Opportunistic Overlays: Efficient Content
Delivery in Mobile Ad Hoc Networks

Yuan Chen and Karsten Schwan

College of Computing, Georgia Institute of Technology, Atlanta GA 30332, USA
{yuanchen, schwan}@cc.gatech.edu

Abstract. Current content-based publish/subscribe systems assume
network environments with stable nodes and network topologies. For mo-
bile environments, one resulting problem is a mismatch between static
broker topologies and dynamic underlying network topologies. This mis-
match will result in inefficiencies in event delivery, especially in mobile
ad hoc networks where nodes frequently change their locations. This pa-
per presents a novel middleware approach termed opportunistic overlays,
and its dynamically reconfigurable support framework to address such
inefficiencies introduced by node mobility in publish/subscribe systems.
The opportunistic overlay approach dynamically adapts event dissemi-
nation structures (i.e., broker overlays) to changes in physical network
topology, in nodes’ physical locations, and in network node behaviors,
with the goal of optimizing end-to-end delays in event delivery. Runtime
adaptations include the dynamic construction of broker overlay networks
and changes of mobile clients’ assignments to brokers. Experimental re-
sults demonstrate that the opportunistic overlay approach is practically
applicable and that the performance advantages attained from the use
of opportunistic overlays can be substantial.

1 Introduction

Publish/subscribe is a widely used method for providing anonymous, inherently
asynchronous group communications in distributed settings. Past work has cre-
ated numerous publish/subscribe systems, in industry and in academia [1, 7]
With the increased availability of powerful mobile computing devices like laptops
and PDAs, and the widespread deployment and use of wireless data communica-
tions, there is a pressing need to extend such middleware to the mobile computing
domain. Moreover, certain features of publish/subscribe make it well-suited to
mobile environments, including asynchronous event delivery, anonymity, mul-
tipoint communication and content-based routing [8, 10] Current systems tar-
geting Internet-based communications, however, commonly assume distributed
execution environments in which clients do not move and where the network
topology remains relatively stable. Stated more technically, they assume stati-
cally deployed broker networks (i.e., overlays) mapped to static network topolo-
gies. A resulting problem for mobile environments is a mismatch between static
broker topologies and dynamic underlying network topologies. This mismatch
will result in inefficiencies in event delivery, a simple example being a shortest

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 354–374, 2005.
c© IFIP International Federation for Information Processing 2005

Opportunistic Overlays: Efficient Content Delivery 355

path in the original overlay and physical network turning into an inefficient path
when the same logical overlay is used with a different physical network topol-
ogy. Another example is when a node’s movement (either a client, or a broker
or an intermediate node) affects the underlying network topology and changes
the distance between a mobile client and its assigned broker, hence resulting in
sub-optimized event delivery.

This paper proposes the opportunistic overlay approach to managing overlays
for mobile nodes in mobile ad-hoc networks. The idea is to dynamically opti-
mize content-based event delivery by adapting event dissemination structures
(i.e., broker overlays) to changes in physical network topology, in nodes’ physi-
cal locations, and in network node behaviors. The term ‘opportunistic’ denotes
the fact that the solution is one in which each broker opportunistically acts to
improve its relations with both other brokers and with its clients. The key points
characterizing opportunistic overlays may be summarized as follows: (1) dynam-
ically constructing broker network topologies to match the underlying physical
network, (2) dynamically changing a mobile client’s broker assignment based on
the client’s physical location and the broker’s current capabilities, and (3) when
broker topologies or clients’ home brokers change, recalculating overlay routing
paths and then using the newly computed paths.

Opportunistic overlays are implemented with the JECho Java-based pub-
lish/subscribe infrastructure [7]. A unique attribute of this implementation is
that with JECho, dynamic topology adjustments can be coupled with runtime
techniques for event filtering, thereby also permitting the system to match event
rates and sizes to the currently available levels of bandwidth of physical com-
munication channels.

The performance evaluations reported in this paper use actual hardware, to
assess basic performance properties and penalties, and they use emulation and
simulation, to assess the effects of mobility and to better understand the scal-
ability of our approach. Results demonstrate that the performance advantages
attained from the use of opportunistic overlays can be substantial. For instance,
simulation results indicate that the delay of sending a message can be improved
by up to 100%. In a set of emulation experiments, the opportunistic overlay
approach is able to both optimize path lengths and address broker overloads.
Measurements on a small testbed comprised of three laptops running the AODV
protocol [11] show more than a sixfold improvements in the end-to-end delays
experienced by events in the flood watch application.

The remainder of this paper is organized as follows. We present the system
model, protocols, and algorithms used by opportunistic overlays in Section 2.
The prototype architecture and some implementation details are discussed in
Section 3. Section 4 presents evaluation results. Related work appears in Sec-
tion 5, followed by conclusions and future work in Section 6.

2 The Opportunistic Overlay Approach

We first outline the system model assumed by opportunistic overlays, followed by
descriptions of the adaptation protocols and algorithms underlying the approach.

356 Y. Chen and K. Schwan

2.1 System Model

Our system model adopts an overlay network approach. As illustrated in
Figure 1, an event system consists of producers, consumers, and a broker net-
work. The latter is an overlay across the physical network, composed of broker
processes connected via links. Each overlay link is a network path between a bro-
ker node pair in the physical network. Each producer/consumer (mobile client)
connects to one of the brokers (usually the nearest one) via one or multiple
wireless links. This broker is called the client’s home broker. A consumer also
provides a content-based subscription function termed modulator, which operates
on event contents to dynamically tailor them to the consumer’s current needs.
A consumer’s modulator executes in an intermediate broker’s address space on
behalf of the consumer. The intermediate broker can be any broker(typically
its home broker) on the overlay path between producers and the consumer. An
event generated by a producer is first sent to the producer’s home broker, then
routed from the producer’s home broker to the consumer’s home broker, pro-
cessed using the consumer’s modulator, and then delivered to the consumer via
some wireless network links.

An event system with four broker nodes (A, B, C and D), one producer M1,
and two consumers (M2 and M3) in a wireless ad hoc network is depicted in
Figure 2. Since a broker can reside on the same nodes as producers/consumers
or on separate nodes, in general, a link in the broker network is a multi-hop
wireless path on the underlying physical wireless network. Similarly, a produc-
er/consumer connects to its home broker via a multi-hop wireless path.

2.2 Basic Idea

The idea behind opportunistic overlays is to continually optimize event delivery,
by dynamically changing both broker networks and mobile clients’ home brokers.
Updates occur in response to changes in physical network topology and in nodes’

producer
broker

consumer

broker network

modulator

Fig. 1. System Model

broker

mobile consumer

wireless link

modulator

Physical Network

Overlay Network

A

B

D

C

M1

M2

M3

A

B

D

C

M1

M2

M3

Fig. 2. A Sample Event System in Mo-
bile Ad Hoc Networks

Opportunistic Overlays: Efficient Content Delivery 357

physical locations. Potential broker overloads are avoided by judiciously choosing
clients’ home brokers. The key points characterizing opportunistic overlays may
be summarized as follows:

Resource awareness. An opportunistic overlay is aware of the underlying net-
work topology used for transporting events from producers to consumers. It is
also aware of the respective locations of both and of their current state (e.g.,
CPU Load, Memory availability).

Dynamic construction of broker overlay networks. Dynamic broker net-
work topology construction uses a global state routing protocol [12]. Each broker
maintains a local view of the broker network topology. At runtime, an oppor-
tunistic overlay dynamically monitors client location, physical network topology,
and resources (e.g. latency, bandwidth, broker computation load). Periodically,
each broker updates its local view of broker network topology, by changing its
neighboring brokers and by propagating changes to its neighbors. Neighbor bro-
ker information is acquired by querying the network protocols’ routing tables
or via neighbor discovery operations [13]. When a broker receives propagated
information from its neighbors, it updates its broker topology accordingly.

Dynamic change of home broker. A mobile client periodically checks the
brokers in its vicinity via a ‘nearest broker search’. It identifies to its home broker
a found candidate broker that is closer to its current physical location. Upon
receiving such a report from a client, the home broker initiates a broker selection
protocol. This protocol uses an approach that combines shortest path selection
with load balancing methods. Specifically, the home broker first calculates the
path length from the producer to the candidate broker, and then determines
whether or not to change the client’s home broker based on both the network
distance and the candidate broker’s current capabilities. Preference is given to
the closer broker unless that broker is currently overloaded.

Dynamic overlay routing. Changes in broker network topology and in mobile
clients’ home brokers will result in rebuilding broker-level routing tables. Oppor-
tunistic overlays use source routing for event delivery. Whenever a broker’s local
view of broker topology changes or whenever a client receiving events from a
broker changes its home broker, new event paths are calculated using a shortest
path algorithm. We next discuss some of these protocols in more detail.

2.3 Dynamic Construction of Broker Networks

Broker network topologies are kept congruent with the underlying physical net-
work topology by periodically re-constructing global knowledge about the broker
network, using a global state routing protocol [12]. Toward this end, each broker
maintains its knowledge about the current broker network topology in a topology
table T. Periodically, each broker receives its neighboring broker’s T, updates
its own T, and then propagates found topology updates to its neighbors. Each
broker keeps track of the other brokers in its vicinity by querying the routing

358 Y. Chen and K. Schwan

table maintained by the wireless network routing protocol used in each broker
machine, or via a neighbor discovery protocol like the Expanding Ring Search
described in [13].

The broker topology update protocol can be summarized as follows.

Step 1: Broker Neighbor Discovery. Each broker periodically updates its
neighboring brokers using the Expanding Ring Search. If a neighbor broker moves
too far away from a broker, then the original overlay link between the broker
and that neighbor is removed from the broker network. If a broker moves into
the vicinity of another broker, a new broker link between them is created.

Step 2: Broker Topology Propagation. Once a broker completes updating
its topology table by neighbor discovery, the broker sends to its neighbors those
items in its topology table that have changed since the prior propagation period.
A sequence number is associated with each such update.

Step 3: Broker Topology Update. When a broker receives updated infor-
mation from its neighbor, it compares the sequence number of the incoming
message with its topology table’s corresponding items, replaces old items with
new ones, and marks the items changed if the incoming items have a higher
sequence number.

Step 4: Broker Routing Table Rebuilding. A broker’s topology table T
changes either due to its own execution of the periodic neighbor update or due
to the receipt of topology propagation from its neighbors. When such changes
occur, the broker rebuilds its routing table by recalculating its shortest path to
other brokers henceforth uses the new routing table for delivering events.

Figure 3 depicts an example. At the beginning, all four brokers (A, B, C and
D) have the same view of the global broker network topology A—B, B—C and
B—D. At some point, node 2 moves away from B and 1, and closer to C. As a
result, two old wireless links 2—B and 2—1 are removed and one new wireless

Broker Network

Physical Network Physical Network

Broker Network after C’s Update Period

A
B

D A

B

D A

B

D
A

B

D

A’s View B’s view C’s view D’s view

C
CC C

opportunistic path

static path

Physical Network

Broker Network after B’s Update Period

A

B

D A

B

D A

B

D
A

B

D

A’s View B’s view C’s view D’s view

C
CC C

opportunistic path

static path

Initial Topology Topology after Node 2’s Movement Topology after Node 2’s Movement

move

Fig. 3. An Example of Dynamic Broker Network Construction

Opportunistic Overlays: Efficient Content Delivery 359

link 2—C is created. Let’s assume C is the first to start its update period. C
adds D’s as its new neighbor. Then C updates it topology table accordingly
and propagates the change to its neighboring brokers B and D. After receiving
updated information from C, each of B and D updates its topology table by
adding the broker link C—D. B, C and D will rebuild their overlay routing
tables based on the new broker network topology A—B, B—C, B—D and C—
D. As a result of C’s routing table update, opportunistic overlays deliver events
from C to D using the wireless path C→2→3→D, compared with the static
broker approach’s C→5→B→5→C→2→3→D. Let’s assume B is the next to
start its update period. B removes D from its neighbor list and updates its
broker topology knowledge accordingly. B then sends its changes since previous
period to its neighbors A and C. Upon receiving updated information from B,
both A and C update their topology knowledge by removing broker link B—D.
A also adds the broker link C—D to its topology table. At this time, each of A,
B and C has the latest broker topology knowledge. D’s topology knowledge is
outdated, and D’s topology table will be updated either through C’s propagation
or via D’s own running of the neighbor updates protocol, whichever comes first.

Our current protocol assumes reliable network communication channels. We
leave it to future work to deal with issues like network partition, temporary
broker disconnection, reconnection, and related reliability issues.

2.4 Dynamic Home Broker Change

End-to-end latency depends (1) on the network distance between a producer’s
home broker and a consumer’s home broker, and also (2) on the distance between
producers/consumers and their home brokers. By dynamically constructing a
broker network, we aim to optimize the former. By dynamically changing home
brokers, we improve the latter. Toward these ends, opportunistic overlays act as
described next.

When a client subscribes to a broker network for the first time, it must
connect to some home broker that receives events (via the broker network) on
behalf of the client and delivers received events to the client via some wireless
network link. Intuitively, we should choose the nearest broker as the client’s home
broker, thereby optimizing the delay between the client and its home broker. In
ad-hoc mobile environments, therefore, home brokers must be chosen repeatedly,
whenever nodes substantially change their locations. The procedure used by
opportunistic overlays may be described as follows. Each client periodically (or in
response to changes indicated by the underlying physical network protocol [14])
executes a protocol that searches for the broker nearest its current location. If
the nearest broker is not its home broker, it notifies the current home broker of
its discovery. Upon receiving this news from its client, the home broker selects
new home broker based on average path length between producers and the client
and the cpu load of candidate brokers. If the home broker must be changed, the
modulator relocation protocol is performed.

An interesting aspect of our approach is overload control, which is important
because end-to-end event delay from a producer to a consumer depends not only

360 Y. Chen and K. Schwan

on the length of the network path, but also on event processing times at brokers.
Processing times are determined by how fast modulators can be executed on
home brokers which in turn depends on the home brokers’ loads and capabilities.
In mobile ad-hoc networks, with clients changing locations, broker loads are
subject to substantial runtime variation. One reason would be the sudden arrival
of large numbers of local users, exemplified by many mobile units converging at
a meeting. Another reason is the use of complex modulators by ’thin’ clients,
such as modulators that implement the flexible data transcoding required by
such clients [7]. In fact, the processing time of a modulator on moderately to
highly loaded brokers can exceed network delays by an order of magnitude.

The protocol followed to change home brokers can be summarized as follows.

Step 1: Nearest Broker Search. Each client searches the broker nearest to
its location, periodically, using the same algorithm in broker neighbor update as
described in Section 2.3. When a client finds the nearest broker that is not its
current home broker, it shares with its current home broker the newly discovered
broker along with its distance to that broker.

Step 2: Home Broker Selection. A client’s home broker is selected from its
current home broker and the newly discovered broker based on their distances
to the client and their CPU load.

Step 3: Modulator Relocation. The relocation protocol relocates a client’s
modulator from its current home broker (source broker) to a new broker (desti-
nation broker), asks all producers’ home brokers to compute paths to the new
home broker, and switches event delivery from the old to the new paths. The
relocation protocol guarantees event order, prevent event duplication or event
loss, and ensure consistent event state. For applications that do not need such
strict semantics, lighter weight protocols are used to loosen the requirements

Physical Network

Broker Network (B becomes consumer’s home broker)

Topology After Node 6’s Movement

Physical Network

Broker Network (C is consumer’s home broker)

Initial Topology

move

opportunistic path

static path

Fig. 4. An Example of Dynamic Home Broker Change

Opportunistic Overlays: Efficient Content Delivery 361

of event state consistency or modulator consistency or both. Additional detail
about the relocation protocols appears in [15].

An example of dynamic home broker change is shown in Figure 4. A consumer
originally receives events from broker C via the path producer→A→C→consumer
corresponding to the physical network path producer→A→2→C→6→consumer.
Broker C is the consumer’s home broker. The consumer’s modulator is also placed
on C and executes there. At some point in time, with node 6 moving away from
the consumer and node 5, during the consumer’s nearest broker discovery period,
it discovers that it is closer to B than C. When the consumer detects this, it sends
a home broker change request along with B’s information to C. C will choose
B as the consumer’s new home broker, since A→B→consumer is shorter than
A→C→consumer under the new network topology. C then performs the modu-
lator relocation protocol. After the change, the event delivery path from producer
to consumer becomes producer→A→1→B→3→5→consumer. In contrast, with-
out changing home brokers, the old overlay path producer→A→C→ consumer
corresponds to the physical network path producer→ A→2→C→4→B →3→5→
consumer, which is 2 hops longer than the path used by opportunistic overlays.

3 Software Architecture and Selected Implementation
Detail

3.1 Overview of JECho

Opportunistic overlays are realized with the JECho distributed event system [7].
JECho implements a publish/subscribe communication paradigm, providing ser-
vices to distributed, concurrently executing components via event channels. Us-
ing JECho’s modulators, individual event consumers can dynamically tailor event
flows to their own needs, thereby adapting to runtime changes in component
behaviors and needs and/or changes in platform resources. Modulators are im-
plemented as Java objects, executed in a source’s or broker’s address space on
behalf of clients.

3.2 Overview of Software Architecture

Opportunistic overlays are implemented as depicted in Figure 5. The architecture
makes it easy to implement alternate adaptation methods, and the architecture
itself is easy to reconfigure and extend.

The basic component layer provides the lower level functionalities of resource
monitoring and broker information management necessary for implementing dif-
ferent adaptations. Event-driven adaptations are implemented by defining a set
of actions to react to specific events received from basic components. By us-
ing services provided by basic components, adaptation code focuses on high
level protocol only without needing to handle lower level details. The interac-
tion between basic component layer and adaptation layer uses a set of consistent
program interfaces and system events. As a result, it is easy for different brokers
to define different adaptations based on their capabilities and requirements. In

362 Y. Chen and K. Schwan

OS and Network Protocols

Concentrator Modulator Manager

Broker
Manager

Client
Manager

BNT BIT BTT BRT
CIT

Resource
Monitor

System
Channel

Modulator Relocation

broker
topology
adaptor

home broker
adaptor

JECho

Basic Components

Adaptors

events

events

horizontal
migration

upstream
migration

downstream
migration

broker load
adaptor

call

OS/Network

call

call

Application Code

OS and Network Protocols

Concentrator Modulator Manager

Client
Manager

CIT
Resource
Monitor

System
Channel

events

events

Broker Client

Fig. 5. Opportunistic Overlays Software Architecture

fact, the implementation of an adaptation protocol within the current system is
straightforward, as exemplified by the home broker change adaptation that has
less than 50 lines Java code. It is also easy to reconfigure and extend the system
with new adaptations, such as those needed to handle physical network partition.
For future work, we are considering adding a policy layer that permits users to
define high-level policies concerning the adaptations being carried out [15].

3.3 Basic Component Layer

The basic component layer layer is composed of a resource monitor, broker man-
ager, and client manager. Components in this layer provide the core functionality
implementing the adaptation protocols described in Section 2.2. Each compo-
nent in this layer defines a set of program interfaces for other components to
access its services (i.e., a set of ‘get’ and ‘set’ functions). Each component noti-
fies other components and high level protocols by sending events containing the
relevant information to an internal ‘system’ channel. Other components receive
this information by registering their interests about certain events.

Resource Monitor. The Resource Monitor collects, aggregates, processes, and
delivers data about local resource availability and about its communication costs
to other brokers. Local resource information includes CPU load, memory avail-
ability, and modulator execution time.

Broker Manager. The Broker Manager maintains four tables, which are the
Broker Neighbor Table (BNT), the Broker Information Table (BIT), the Broker
Topology Table (BTT), and the Broker Routing Table (BRT). The set of pro-
gram interfaces provided by the Broker Manager to higher level protocols include
functions for accessing and changing broker-related information, and operations
that propagate its broker topology to neighboring brokers. The Broker Manager

Opportunistic Overlays: Efficient Content Delivery 363

is also responsible for sending notifications to higher level components when it
receives them.

Client Manager. The Client Manager maintains information about each client
for which the broker is currently acting as home broker, including its name,
IP address, physical location, as well as related path information (e.g., current
routing path and communication overhead of the path). This information is
stored in the Client Information Table (CIT).

3.4 Modulator Relocation Layer

Layered above the basic component layers are three modulator relocation oper-
ations: horizontal relocation, upstream relocation, and downstream relocation.
Relocation operations perform the task of relocating a client’s modulator from
current broker to another broker, and of changing event delivery paths accord-
ingly. Relocation operations are the basic functionality needed to support home
broker changes and dynamic load balancing.

3.5 Adaptation Protocol Layer

The adaptation protocol layer implements a variety of protocols, including ‘dy-
namic broker network construction’ and ‘dynamic home broker change’. Each
such protocol is implemented with a Java object called an adaptor. An adaptor
can register with the system event channel by specifying its interests in certain
events delivered by the Resource Monitor, Broker Manager, and Client Manager.
For the broker topology adaptor, interesting events are a time event and a bro-
ker propagation event. The interesting event for the home broker adaptor is a
broker discovery message received from a client. The code in the adaptor is im-
plemented in the event handler method “process()”, which is invoked whenever
an interesting event is received. This code implements changes, such as recon-
figuring the broker network, changing the home broker, or rebuilding a routing
table. Using adaptors and the services provided by basic components, system
developers can create potentially complex adaptation policies. Our prototype
implementation has three adaptors: a broker topology construction adaptor, a
home broker change adaptor and a broker load balancing adaptor. Each adaptor
performs the task for which it is named.

3.6 Client Component

The final element of opportunistic overlays are client-resident components that
interact with the broker overlay. These include a Resource Monitor and Client
Manager.

4 Performance Evaluation

4.1 Simulation

Simulation techniques are used to evaluate the opportunistic overlay approach
under various wireless network configurations. In all experiments reported in

364 Y. Chen and K. Schwan

this section, the network consists of 100 mobile nodes that randomly roam in
a 1000 x 1000 meter square. The random waypoint mobility model [16] is used
with a pause time of 10 seconds. The radio transmission range of each node is
250 meters. Each simulation spans 600 seconds of simulated time.

Currently, our simulation study is limited to high level overlay routing, for
which link layer details and physical layer characteristics are not modeled ex-
plicitly. Since aspects like control overheads or link contention are not taken into
account, a high routing packet load, for instance, does not interfere as much with
data transmissions as it might in reality. Also, there are no transmission errors
and delays associated with overlay routing packets (i.e., broker network topology
propagation and broker neighbor discovery). Future work should address these
limitations by constructing a more comprehensive simulator with a MAC layer
model (e.g., IEEE 802.11 MAC). The point of this section’s simulation results
is to compare the relative performance of the opportunistic approach to overlay
routing vs. static approaches.

Performance of the Broker Network. The first set of experiments evaluate
the average lengths of network paths across broker overlays with vs. without op-
portunistic overlay protocols. Measurements consider only brokers, not clients.
40 nodes among 100 nodes are randomly chosen as brokers. We vary the experi-
mental configurations with different broker topology update intervals. The path
length from broker B1 to broker B2 is the corresponding physical network dis-
tance of the shortest broker path between B1 and B2, which is computed based
on B1’s local knowledge of current broker topology. The average path length
from each broker to all other brokers is computed and averaged over all brokers.
In order to establish a basis for comparison, we also measure the average length
of the physical network path between each pair of brokers. In addition, the over-
heads of broker topology update with different update intervals are evaluated.

Timeline of Path Length. Figure 6 shows how path length changes in a
simulation with an update interval of 50 seconds and mobility speeds between 1

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600

P
at

h
Le

ng
th

Time(second)

Static
Opportunistic

Network

Fig. 6. Timeline of Path Length among
Brokers

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
at

h
Le

ng
th

Update Period(second)

Static
Opportunistic

Network

Fig. 7. Average Path Length among
Brokers versus Update Period

Opportunistic Overlays: Efficient Content Delivery 365

m/s and 20m/s. As shown in the figure, the opportunistic approach can deliver
events more efficiently than the static approach at almost all time points. At the
beginning, both the static and the opportunistic approaches have similar path
lengths, since the initial broker network matches physical network topology. As
time passes, the path lengths of the static approach increase rapidly because
the initial broker topology cannot reflect changes in physical network topology
caused by node mobility. Compared with the static approach’s 6.06 hops and
the network’s 2.36 hops, the opportunistic approach has an average path length
of only 4.17 hops.

Average Path Length versus Broker Update Period. Figure 7 shows the
average path length versus the update interval, the latter varying from 10 to 100
seconds. As expected, with increased update intervals, path length increases since
larger update intervals imply slower reactions to changes in physical network
topology. However, as shown in the figure, the change in path length is not rapid
with the increase of update periods, e.g. 4.43 hops with an interval of 100 seconds
versus 3.32 hops with one of 10 seconds. Even with a relatively low update period
of 100 seconds, the opportunistic approach still outperforms the static approach
significantly, 4.43 hops vs. 6.06 hops.

Update Overhead versus Broker Update Period. The overheads of bro-
ker network updates are shown in Figure 8. Overhead is computed as the aver-
age bandwidth requirement of each broker for propagating its broker topology
knowledge to its neighbors, the argument being that network resources tend to
be scarce in pervasive systems. As shown in the figure, a total of 2.4 Kbps band-
width is used with an update period of 50 seconds. This constitutes moderate
bandwidth usage in modern network infrastructures.

Performance of Event Delivery between Mobile Clients. Most relevant
to our work, of course, is the end-to-end performance experienced by end users,
i.e., clients. In the following experiments, we randomly choose 20 brokers, 10
event producers, and 60 event consumers from 100 mobiles nodes. In this set of

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 U
pd

at
e

O
ve

rh
ea

d(
K

bp
s)

Update Period(second)

Fig. 8. Update Overhead versus Update
Period

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500 600

P
at

h
Le

ng
th

Time(second)

Static
Static-Opportunistic

Opportunistic-Opportunistic
Best

Fig. 9. Timeline of Average Path Length
between Producers and Consumers

366 Y. Chen and K. Schwan

experiments, the broker network update interval is fixed at 20 seconds, and we
vary mobile clients’ home broker discovery periods as well as mobility speed. Four
different approaches are evaluated in terms of the resulting average path lengths
between each pair of producer and receiver: (1) the static approach changes
neither the broker network topology nor the home broker of mobile clients; (2)
the static-opportunistic approach change mobile client’s home broker only; (3)
the opportunistic-opportunistic changes both the broker network topology and
mobile client’s home broker; and (4) the best approach keeps updating the broker
network whenever the physical network changes and calculates shortest broker
paths based on up-to-date physical network topology data. Although the best
approach is not practical, we have included it to establish a basis for comparison.

Timeline of Path Length. Figure 9 shows the performance results of a sim-
ulation with a home broker discovery period of 10 seconds. We can see that the
opportunistic-opportunistic approach performs best among the three realistic
approaches, shortening the delivery paths up to 5 hops compared with the static
approach. Even the static-opportunistic approach can improve event delivery
significantly compared with the static approach.

Average Path Length versus Nearest Broker Discovery Period. Studies
assessing path lengths versus home broker discovery periods are reported in
Figure 10. With increased closest broker discovery periods, path lengths increase
slightly. As discussed in Section 2, the mobile client can find the nearest broker by
querying its routing table or by using an expanding ring protocol. Either way, the
costs are small compared with the overheads of broker update operations. More
frequent closest broker discovery results in more frequent home broker changes,
hence more frequent modulator relocations. Additional simulation results not
reported here due to space limitations demonstrate the fact that modulator
relocation costs are much smaller than the overheads of broker topology change
(see [15] for more detail).

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
at

h
Le

ng
th

Nearest Broker Discovery Period(sec)

Static
Static-Opportunistic

Opportunistic-Opportunistic
Best

Fig. 10. Average Path Length between
Producers and Consumers versus Near-
est Broker Discovery Period

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 20 15 10 5 1

A
ve

ra
ge

 P
at

h
Le

ng
th

Mobility (m/s)

Static
Opportunistic-5

Opportunistic-50
Opportunistic-100

Optimal

Fig. 11. Average Path Length be-
tween Producers and Consumers versus
Mobility

Opportunistic Overlays: Efficient Content Delivery 367

Average Path Lengths versus Mobility. Average path lengths at different
mobility speeds is shown in Figure 11. The figure shows that more frequent
nearest broker discovery achieves shorter event delivery paths. In particular,
when the nodes move at a very fast speed, increasing the discovery frequency
can improve the performance significantly.

Simulation Conclusions. Multiple insights result from the simulation exper-
iments described in this section. First, client or broker mobility in ad-hoc net-
worked systems demand dynamic changes to the overlay networks used for event
propagation. Without runtime overlay adjustments, event delivery paths and
therefore, average event delays increase substantially and may not remain viable
for realistic systems and applications. Interestingly, even relatively ‘slow’ over-
lay adjustments performed by the opportunistic overlay approach attain much
improved results compared to static solutions (e.g., with 100 second update in-
tervals, the opportunistic approach results in an average of 4.43 hops for packets
vs. the static approach’s 6.06 hops). Second, end-to-end delays in packet deliv-
ery to clients are improved further when overlay adjustments are complemented
with changes in the assignment of home brokers to clients. Since it is cheaper
to change home brokers than to reconfigure broker overlays, the former changes
can be (and should be) more frequent than the latter. Finally, change frequencies
are strongly correlated with mobility speeds.

4.2 System Emulation

In order to evaluate the effects of load balancing, we have conducted a set of ex-
periments on an ad-hoc wireless network emulator. The mobility emulator runs
on a Linux cluster of 20 nodes with MobiEmu [17] running on each node. The
cluster network is a gigabit Ethernet switch. MobiEmu is a software platform for
testing and analyzing ad-hoc network protocols and applications. With control
software running on each node, MobiEmu mimics dynamic connectivity among
nodes by dynamically installing or removing packet filters for specific MAC ad-
dresses. Since we focus on load balancing in this set of experiments, we use the
‘best-case’ ad-hoc routing provided by MobiEmu software. These protocols al-
ways deliver packets via shortest network paths. More detail about this system
appears in [17].

The emulated mobile network consists of 20 mobile nodes, of which 5 nodes
are event brokers, 5 are event producers and 15 are event consumers (5 brokers
reside at event receiver nodes). In our experiments, mobile nodes move in a
space of 750m x 500m and use random waypoint mobility with a pause time
of 30 seconds and speeds between 1m/s and 20m/s. Due to the relatively small
network size, the broker update period is set to 5 seconds and the nearest broker
discovery period to 1 second. We vary the average load of the broker network
and measure the maximum load during execution.

Results appear in Figure 12. As shown in the figure, when broker load is
relatively light (i.e., less than 30%), there are no overloaded brokers and both
approaches behave the same, where the nearest broker to a mobile client is al-
ways chosen as the client’s home broker. With increased system load, without

368 Y. Chen and K. Schwan

0%

50%

100%

150%

200%

250%

300%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ax

 B
ro

ke
r

Lo
ad

Average Load

Opportunistic w/o Overload Control
Opportunistic with Overload Control

Fig. 12. Maximum Broker Load versus
Average System Load

 3

 3.5

 4

 4.5

 5

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 P
at

h
Le

ng
th

Average Load

Static
Opportunistic with Overload Control

Fig. 13. Path Length versus System
Load

overload control, some brokers become overloaded. The load balancing algorithm
ameliorates this problem, because a client’s home broker will not be moved to
an overloaded node, even if that node is closer than the old one. The positive
outcomes of load management reported in these measurements are moderate,
of course, since in random waypoint mobility, nodes move independently. Load
balancing is more important and will have more significant effects when nodes
move in groups, as exemplified by conference participants moving from one pre-
sentation venue to another, for instance.

Figure 13 depicts path length versus system load. When system load is less
than 70%, the opportunistic approach always chooses the nearest broker as home
broker, and the delivery path can be more than 1 hop shorter than in static
approach. With increased system load, load balancing selects broker with lighter
loads on relatively longer paths, resulting in increased path lengths. However,
the opportunistic approach continues to outperform the static approach even
when system load reaches 100%.

The simple conclusion from these measurements is that realistic implementa-
tions of dynamic overlay networks for MANET should not ignore broker loads,
especially when overlays perform meaningful application-level processing actions.

4.3 Testbed

The last set of experiments demonstrate the practical utility of our approach, by
running a sample application on an actual wireless testbed. The testbed consists
of 3 laptops A, B and C. Wireless connectivity is provided by Orinoco 802.11b
cards. These cards are set to ad-hoc mode on channel 8. No WEP encryption
is used. All three laptops use the UoB JAODV version 0.2, an AODV imple-
mentation in Java [11]. In order to simulate network connectivity changes, we
dynamically set filters at the MAC layer. In a network consisting of 3 nodes A,B
and C, there are four possible network topologies without network partitions:
A-B-C, A-B-C-A , A-C-B and B-A-C.

The experiments being performed run a flood watch application on the
testbed, comparing the event delivery latency of the opportunistic with the static

Opportunistic Overlays: Efficient Content Delivery 369

A B C

A

B C

A C B

B A C

A B C

A B C

A

C

A C B

B A C

B

A-B-C(0-200) A-B-C-A(200-400) A-C-B(400-600) B-A-C(600-800)

ph
ys

ic
al

st
at

ic
op

po
rt

un
is

tic

static path
opportunistic path

presend client

A B C A B C A B C

Fig. 14. Experiment Configuration

0

1000

2000

3000

4000

5000

6000

7000

ABC ABCA ACB BAC

Fig. 15. Average Latency (100% data) Fig. 16. Average Latency (10% data)

approach using the 4 different network topologies. The application consists of
two programs and works as follows. PreSend reads precipitation data from a
file and places normalized precipitation data on event channel. A client program
subscribes to the channel and provides a modulator that calculates water depth
from precipitation data and terrain topology data using a runoff model. The
client is typically interested in flood information in some specific area, which
can be defined by a two-dimensional bounding box. Flood data that is outside
the bounding box will be filtered (i.e., removed) before data is sent to the chan-
nel. The output of full-size flood data is a double array of 100 x 100.

In our experiment, PreSend is running on laptop A and the client program
runs on laptop C. Broker programs run on both A and B. The physical net-
work topology changes every 200 time units. Experiment configuration is shown
in Figure 14. The initial physical network topology is A-B-C. B is C’s home
broker. Both approaches use the same event delivery path A→B→C. After 200
time units, the network topology changes to A-B-C-A, so that the opportunis-
tic approach chooses A as C’s home broker and relocates its modulator from B

370 Y. Chen and K. Schwan

to A, hence resulting the shorter delivery path A→C. During the time interval
of 400 to 600, the network topology is A-C-B, where the opportunistic overlay
approach still uses A→C as delivery path corresponding to the same physi-
cal network path A→C. The corresponding physical network path of A→B→C
used by static approach becomes A→C→B→C. In the final interval, the network
topology changes to B-A-C, where the opportunistic approach still uses the same
path A→C, and the static approach’s path A→B→C now corresponds to the
physical network path A→B→A→C, with overlap at A.

Figure 15 shows the latency comparisons with four topologies when the client
is interested in all data. As shown in the figure, the opportunistic approach can
deliver data up to 6 times faster than the static approach. The static approach
has its worst performance in the configuration of B-A-C (6000ms compared
with to the opportunistic approach’s 1000ms), where data delivery following
the path A→B→A→C results not only in a longer path but also in additional
network bandwidth usage at A, since at the physical layer, every event is actually
delivered twice at A.

When a client is interested in only 10% of the area data, the opportunistic
approach coupled with its use of modulators shows additional improvements.
Results depicted in Figure 16 show that by relocating C’s modulator from B to
A, the opportunistic approach not only delivers data following a shorter path
but also delivers less data, hence improving the application’s performance signif-
icantly: the average latency is less than 200ms under all network configurations.

The key result of the testbed experiments presented here is that it is impor-
tant to dynamically adjust the middleware overlays used in pervasive systems.
The opportunistic overlay approach described and evaluated in our research is
one method for runtime overlay management and by using it, significant perfor-
mance improvements can be attained compared to non-adaptive approaches.

5 Related Work

5.1 Content-Based Event Systems

Publish/subscribe systems [1, 18, 4–7] have been investigated for many years, but
most implementations have focused on systems where nodes don’t move, broker
networks remain fixed, and broker network topologies are defined at deployment
time. As a result, their fixed event dissemination structures make them unsuit-
able for applications in mobile environments where physical network topology
and node locations change continuously. In addition, most publish/subscribe
systems perform event filtering with predicate-based subscriptions; they do not
support the general event processing needed for the complex data conversions
occurring in multimedia, business, or scientific applications. Opportunistic over-
lays are realized with the JECho pub/sub infrastructure [7]. JECho generalizes
the capabilities of other event systems, by using consumer-provided functions,
termed event modulators [7]. The intent is to address the severe resource lim-
itations existing in many mobile and embedded systems, by permitting event

Opportunistic Overlays: Efficient Content Delivery 371

consumers to deploy application-specific functions that manipulate event con-
tent into event sources and/or brokers, so as to precisely meet their current
needs, and to avoid needless data transfers. Generic function-based subscription
makes the opportunistic overlay system more feasible for developing applications
in pervasive systems and mobile environments.

Previous research on event-based middleware for wireless networks has ad-
dressed applications in which mobile nodes make use of the wireless network to
connect to a fixed network infrastructure [19, 20, 10, 21, 14, 10, 8, 14]. The oppor-
tunistic overlays presented in this paper differ from these systems in that they are
designed for mobile ad hoc networks, support dynamic reconfiguration of event
event dissemination structure and offer behaviors transparent to applications.

[22] presents an algorithm for topological reconfiguration in content-based
publish/subscribe due to changes in underlying connectivity. Compared with
opportunistic overlays, reconfiguration in [22] involves only link removal or in-
sertion, and no details are given on how to apply the proposed approach to
handle changes in mobile environments. In addition, the approach assumes a
tree-based topology between dispatchers, which makes it hard to achieve robust-
ness, since a single link failure partitions the tree. Another approach to dynamic
broker network configuration is described in [23]. The idea is to place ‘close’
to each other brokers that manage similar subscriptions. This is complementary
to our work, which focuses on resource awareness, where reconfiguration in the
opportunistic overlays is based on nodes’ physical locations and the underlying
physical network topology. Similar to the approach in [22], the topology used in
[23] must remain acyclic, whereas the opportunistic overlay approach supports
general broker overlay topologies.

5.2 Content-Based Event Systems in Mobile Ad-Hoc Networks

Steam [24] is an event-based middleware service designed for ad-hoc wireless
networks. It targets application scenarios where nodes are more likely to interact
when they are in close proximity to each other. We consider more general uses
of publish/subscribe in ad-hoc networks. Further, Steam uses an implicit event
model without intermediate broker nodes.

[25] presents a distributed protocol to construct optimized publish/subscribe
trees in ad-hoc wireless networks. The protocol builds multicast trees directly on
top of lower level radio broadcast primitives. Our work relies on the underlying
network infrastructure’s ability to provide basic network connectivity. Another
difference is that their approach assumes a relatively stable environment with
occasional reconfigurations followed by periods of stability. Opportunistic over-
lays do not make that assumption, and they can actually handle high levels of
mobility as shown by our experimental results.

[26] proposes a publish/subscribe system for MANET that integrates an ex-
tended ODMRP (On-Demand Multicast Routing Protocol [27]) with content-
based subscriptions. Similar to [25], ODMRP-PUB/SUB delivers events by cre-
ating multicast groups. The difference is that ODMRP-PUB/SUB uses a mesh-
based approach instead of the tree-based one used in [25]. Since a consumer’s

372 Y. Chen and K. Schwan

subscription is a general function applied to events in our system, the approach
of combining a multicast protocol and subscription aggregation/match is not
readily applicable in our case. Further, ODMRP-PUB/SUB focuses on the rout-
ing between brokers and does not address the issue of delivery from brokers to
producers/consumers. The purpose of ODMRP- PUB/SUB is to optimize net-
work throughput, while our opportunistic method focuses on providing timely
event delivery.

5.3 Overlay Multicast Protocols in Mobile Ad-Hoc Networks

AMRoute [28] and PAST-DM [13] are two ad-hoc multicast protocols that use
the overlay approach. AMRoute uses a static virtual mesh and has low efficiency
due to the increasing mismatch between virtual topology and physical network
topology, as shown in [13]. PAST-DM addresses the efficiency problem by dy-
namically adapting the virtual topology to changes in the physical network.
That brokers need to process events distinguishes our system from multicast
systems where nodes perform data routing and participate as relays. Although
opportunistic overlay approach uses a similar dynamic virtual overlay construc-
tion technique as PAST-DM [13], the dynamic routing path in opportunistic
approach involves not only path changes in event routing, but also subscription
code relocation, which makes the existing dynamic delivery technique in PAST-
DM is not readily applicable to our system. In addition, the processing of events
will consume a broker’s computational resources, which implies that brokers’
computational capabilities need to be taken into account.

Finally, in PAST-DM, all member nodes are considered to be equivalent
peers and participate in overlay routing. In contrast, opportunistic overlays con-
ceptually divide nodes into brokers which are organized into an overlay broker
network, and clients(producers/consumers) which send/receive events via the
broker network. This model is more suitable for content-based routing since over-
lay routing through ‘thin’ nodes with very limited resources will present burden
on such nodes and may result in inefficiency of content delivery in mobile sys-
tems. Dynamic reconfiguration using by opportunistic overlays adapts both the
overlay broker network and the connections between brokers and clients.

6 Conclusions and Future Work

This paper presents an approach to optimizing content-based event delivery in
mobile ad-hoc networks. In response to changes in physical network topology and
to node mobility, the opportunistic overlay approach dynamically changes bro-
ker network topology, clients’ assignments to brokers, and event delivery paths,
with the goal of optimizing end-to-end delays in event delivery. Opportunistic
overlays are prototyped with the JECho pub/sub system [7]. Comprehensive
performance evaluations are performed via simulation, emulation, and with rep-
resentative applications on a physical testbed. Experimental results for mobile
ad hoc networks demonstrate that the opportunistic overlay approach can signif-
icantly improve event delivery delays compared to static approaches, even with

Opportunistic Overlays: Efficient Content Delivery 373

high levels of mobility. Results also show that the overheads of dynamic adap-
tation are moderate. Using a flood watch application and a wireless testbed,
the opportunistic overlay approach is practically applicable in an actual ad hoc
wireless network.

Future work should address some deficiencies of our current implementation,
as well as generalize upon the basic concept of opportunistic overlays. First, our
current implementation assumes a reliable network environment and therefore
does not consider dynamic disconnection, reconnection, and network partition.
Future work will add application-specific failure recovery to broker overlays. Sec-
ond, we will extend the opportunistic approach to optimize performance metrics
other than end-to-end latency, including network bandwidth and power usage.
We may also explore optimizing multi-dimensional performance metrics. A fi-
nal topic of interest is a performance study that uses a more comprehensive
simulator with a MAC layer model (e.g., IEEE 802.11 MAC).

References

1. Strom, R., Banavar, G., et.al: Gryphon: An information flow based approach to
message brokering. Technical report, IBM TJ Watson Research Center (1998)

2. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressive-
ness in an internet-scale event notification service. In: Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Distributed Computing(PODC
2000), Portland, Oregon (2000) 219–227

3. Cugola, G., Nitto, E.D., Fuggetta, A.: The ”jedi” event-based infrastructure and
its application to the development of the opss wfms. In: IEEE Transactions on
Software Engineering in 2001. (2001)

4. Segall, B., Arnold, D.: Elvin has left the building: A publish/subscribe notification
service with quenching. In: Proceedings of A UUG97. (1997)

5. Fiege, L., Mühl, G., Gärtner, F.C.: A modular approach to build structured event-
based systems. In: Proceedings of the 2002 ACM Symposium on Applied Comput-
ing (SAC’02). (2002) 385–392

6. Eisenhauer, G., Bustamante, F.E., Schwan, K.: Event services in high performance
systems. Cluster Computing 4 (2001) 243–252

7. Zhou, D., Schwan, K., Eisenhauer, G., Chen, Y.: Supporting distributed high
performance application with java event channels. In: Proceedings of the 2001 In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2001). (2001)

8. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. In:
Proceedings of the 2nd ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE’01). (2001) 27–34

9. Cugola, G., Jacobsen, H.A.: Using Publish/Subscribe Middleware for Mobile Sys-
tems. ACM SIGMOBILE Mobile Computing and Communications Review 6
(2002) 25–33

10. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in content-
based publish/subscribe middleware. In: ACM/IFIP/USENIX International Mid-
dleware Conference (Middleware 2003). (2003) 103–122

11. : Uob-jadhoc aodv implementation, rfc 3561. http://www.aodv.org/ (2004)
12. Chen, T.W., Gerla, M.: Global state routing: A new routing scheme for ad-hoc

wireless networks. In: Proceedings of IEEE ICC’98. (1998)

374 Y. Chen and K. Schwan

13. Gui, C., Mohapatra, P.: Efficient overlay multicast for mobile ad hoc networks.
In: Proceedings of IEEE Wireless Communications and Networking Conference.
(2003)

14. Chen, Y., Schwan, K., Zhou, D.: Opportunistic channels: Mobility-aware event de-
livery. In: ACM/IFIP/USENIX International Middleware Conference (Middleware
2003). (2003) 182–201

15. Chen, Y.: Opportunistic Overlays: Efficient Content Delivery in Mobile Environ-
ments. PhD thesis, Georgia Institute of Technology (2005)

16. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
Mobile Computing 353 (1996)

17. Zhang, Y., Li, W.: An integrated environment for testing mobile ad-hoc networks.
In: Proceedings of the Third ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’02). (2002)

18. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332–383

19. Cugola, G., Nitto, E.D., Picco, G.P.: Content-based dispatching in a mobile envi-
ronment. In: Proceedings of WSDAAL 2000. (2000)

20. Sutton, P., Arkins, R., Segall, B.: Supporting disconnectedness - transparent in-
formation delivery for mobile and invisible computing. In: CCGrid 2001 IEEE
International Symposium on Cluster Computing and the Grid. (2001)

21. Caporuscio, M., Inverardi, P., Pelliccione, P.: Formal analysis of clients mobil-
ity in the siena publish/subscribe middleware. Technical report, Department of
Computer Science, University of L’Aquila (2002)

22. Picco, G.P., Cugola, G., Murphy, A.L.: Efficient content-based event dispatching
in the presence of topological reconfiguration. In: Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS 03). (2003) 234–243

23. Virgillito, A., Beraldi, R., Baldoni, R.: On event routing in content-based publish/-
subscribe through dynamic networks. In: Proceedings of the Ninth IEEE Workshop
on Future Trends of Distributed Computing Systems (FTDCS 2003), IEEE (2003)
322–328

24. Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc networks.
In: In Proceedings of the 1st International Workshop on Distributed Event-Based
Systems (DEBS’02). (2002)

25. Huang, Y., Garcia-Molina, H.: Publish/subscribe tree construction in wireless ad-
hoc networks. In: Proceedings of the 4th International Conference on Mobile Data
Management(MDM 2003). (2003) 122–140

26. Yoneki, E., Bacon, J.: An adaptive approach to content-based subscription in
mobile ad hoc networks. In: Proceedings of The First International Workshop on
Mobile Peer-to-Peer Computing (MP2P’04). (2004) 92–97

27. Lee, S.J., Su, W., Gerla, M.: On-demand multicast routing protocol in multihop
wireless mobile networks. MONET 7 (2002) 441–453

28. Liu, M., Talpade, R.R., McAuley, A.: AMRoute: Adhoc Multicast Routing Pro-
tocol. Technical Report 99, The Institute for Systems Research, University of
Maryland (1999)

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 375 – 389, 2005.
© IFIP International Federation for Information Processing 2005

I-RMI: Performance Isolation in Information
Flow Applications

Mohamed Mansour and Karsten Schwan

College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280

{mansour, schwan}@cc.gatech.edu

Abstract. A problem with many distributed applications is their behavior in
lieu of unpredictable variations in user request volumes or in available
resources. This paper explores a performance isolation-based approach to
creating robust distributed applications. For each application, the approach is to
(1) understand the performance dependencies that pervade it and then (2)
provide mechanisms for imposing constraints on the possible ‘spread’ of such
dependencies through the application. Concrete results are attained for J2EE
middleware, for which we identify sample performance dependencies: in the
application layer during request execution and in the middleware layer during
request de-fragmentation and during return parameter marshalling. Isolation
points are the novel software abstraction used to capture performance
dependencies and represent solutions for dealing with them, and they are used
to create (2) I(solation)-RMI, which is a version of RMI-IIOP implemented in
the WebSphere service infrastructure enhanced with isolation points. Initial
results show the approach’s ability to detect and filter ill-behaving messages
that can cause an up to a 85% drop in performance for the Trade3 benchmark,
and to eliminate up to a 56% drop in performance due to misbehaving clients.

1 Introduction

Modern middleware and programming technologies are making it ever easier to
rapidly develop complex distributed applications for heterogeneous computing and
communication systems. Typical software platforms are Microsoft’s .NET, Sun
Microsystems’ Java 2 Enterprise Edition (J2EE) specification, and vendor
implementations of these specifications like IBM’s WebSphere, BEA’s WebLogic,
and open source efforts like JBoss. Businesses use these platforms to link different
enterprise components across the wide spectrum of hardware and applications that are
part of their daily operation. Science and engineering applications benefit from their
rich functionality to capture data from remote sensors and instruments, access shared
information repositories, and create remote data and collaboration services.

The software platforms identified above are mapped to hardware infrastructures in
which end clients are concerned with data capture or presentation (Tier 1), supported
by two server-level tiers that implement application and storage services, respectively.
The J2EE architecture follows this 3-tier model by defining three container types
to host each of the tiers, where containers offer sets of standard services to cover

376 M. Mansour and K. Schwan

non-functional requirements like transactions, messaging, and security. The goal is for
developers to be able to focus on business logic and processes rather than having to
deal with dependencies on client or server hardware and software systems.

A barrier to creating the system-independent services envisioned by application
development platforms is the level of performance robustness of the distributed
applications created with them, in lieu of unpredictable variations in user behavior or
in the resources available for satisfying user requests. Recognition of this fact has
resulted in a multiplicity of techniques for dealing with behaviors like bursty request
volumes, including dynamic load balancing and migration, server replication, and
similar runtime methods [2, 6, 26]. For media-rich or data-intensive applications,
bursty loads can be combated by reducing the fidelity of media content, skipping
media frames, or using application-specific techniques for reducing computation and
communication loads [36].

Our interest is to use application- or environment-specific techniques like those
listed above to create more performance-robust distributed applications. The goal is to
better isolate applications from each other with respect to their performance
behaviors. The consequent technical contributions of this paper are the following.
First, experimental evidence demonstrates the importance of performance isolation
toward creating well-behaved distributed applications. Specifically, we show that the
unusual behavior of even a single client can substantially diminish a data-intensive
J2EE server’s ability to provide suitable levels of service to its other clients. Second,
we propose an approach to achieving performance isolation that (1) exposes system
resource information to the middleware layer, (2) enriches the middleware layer with
methods for analyzing and adapting application behavior, isolation points and
adaptation modules, (3) permits the middleware layer to execute these solutions when
or if necessary, the latter based on (4) user-defined SLAs (Service Level
Agreements). A final contribution is the description of a general architecture for
performance-isolated messaging both for J2EE applications and for the popular
publish/subscribe programming model.

The concrete artifact produced by and evaluated in this research is I(solation)-RMI,
a version of RMI-IIOP enhanced with functionality that enables applications to detect
and react in meaningful ways to violations of performance isolation SLAs. Our initial
results attained with I-RMI are encouraging. For the well-known Trade benchmark,
for example, we are able to sustain high throughput in the presence of resource-
intensive requests (a 85% improvement over traditional RMI-IIOP). We also report
the complete elimination of side-effects (an up to 56% drop in throughput) resulting
from slow clients. These results are achieved by using a sliding window algorithm at
two different isolation points.

In summary, the idea of performance isolation is to understand the causes of
performance dependencies in distributed applications and then provide middleware-
based solutions that prevent their ‘spread’ through the distributed client/server system.
In the remainder of this paper, the next section elaborates on the motivation behind
our work as well as gives a detailed overview of I-RMI design and implementation. In
Section 3 we list the software platforms and applications we experimented with.
Experimental results are presented in Section 4. Conclusions and future work are
given in Section 5.

 I-RMI: Performance Isolation in Information Flow Applications 377

2 I-RMI - Motivation, Design, and Implementation

2.1 Motivation

There is a plethora of work addressing runtime performance management in
distributed server systems, ranging from system-level solutions like process/load
migration or request throttling [26, 27, 32], to application-level tradeoffs in the quality
of server responses produced for clients vs. server response time [10, 18], to the
creation of new middleware or system abstractions that support the runtime adaptation
of applications and systems in response to changes in user requirements or platform
resources [7, 13, 15, 20, 24, 25].

The premise of our research is that modern distributed applications created with
development platforms like those based on the J2EE standard are sufficiently complex
to make it difficult, if not impossible, to design application-wide methods for
optimizing their runtime behavior. Instead, we address the simpler problem of
curtailing or limiting the spread of performance problems across distributed
client/server subsystems. Examples of this problem occur in the enterprise system run
by one of our industrial partners: (1) a backup job run by an administrator during
system operation can generate a sufficient level of I/O to slow down file system
operations for another subsystem running on the same machine, or (2) the logging of
operational data contained in files to a backend database slows down other
subsystems that use or produce this file data. One result of such slowdowns is that
they cause other subsystems’ request queues to build up, including those from the
front ends used by clients, potentially leading to operational failures (e.g.,
inappropriately long response times) or revenue loss (e.g., clients going to alternate
sites). The problem, of course, is that performance degradation in one part of the
system (i.e., the storage subsystem) leads to performance degradation elsewhere. In
other words, the system does not adequately deal with or isolate the performance
dependencies inherent to this distributed application.

Our approach to limiting performance dependencies in distributed enterprise
applications like those described in [5, 35] is to enhance middleware with
functionality that offers improved levels of performance isolation, thereby creating
a performance analogue of the firewalls used in computer security: (1) by
examining middleware to identify points along the code path that are vulnerable to
performance dependencies, termed isolation points, and (2) by re-coding these
points and enhancing them with a generic and extensible API that permit developers
to define runtime reactions to violations of application-specified measures of
performance exhibited by applications, represented as adaptation modules. The
outcome is the creation of performance ‘firewalls’ that prevent the spread of
performance problems across different components of distributed applications. Our
implementation approach addresses the broad class of web service-based
applications, by associating instrumentation and support for performance firewalls
with the RMI/IIOP implementations used in interactions between web, application,
and backend servers.

378 M. Mansour and K. Schwan

2.2 Architecture and Implementation

Isolation Points
Isolation points (IP) are associated with identified performance vulnerabilities,
enhancing them with a monitoring and control architecture [23] [34]. An isolation
point uses resource monitoring to detect performance issues and reacts through its
enforcement mechanism to prevent their further spread. The specific actions taken are
determined by user- or developer- defined policies.

I(solation)-RMI
I(solation)-RMI (I-RMI) is a version of RMI-IIOP enhanced with several isolation
points. Our current implementation uses the three isolation points listed below to
cover intra- and inter- process interaction. The monitoring and adaptation methods
used at these points utilize well-established techniques. The goal is to create an
implementation of I-RMI suitable for the information-flow architectures prevalent in
today’s enterprise computing systems rather than developing new techniques. I-RMI
currently defines three isolation points as shown in Fig. 1, an interesting aspect being
that they are backed by occurrences in enterprise software observed by our industrial
partners. We note here that as with related abstractions developed in earlier work [14,
20, 28], the changes made by isolation points occur at the middleware level and can
be realized and carried out without requiring modifications to application code.

Fig. 1. Overview of I-RMI

Slow Client
The idea of isolation points applies both to client-server- and event-based distributed
applications. Consider the structure of typical enterprise information systems
described in [21]. Events generated at the edge of a system trigger chains of message
passing and processing inside the system, where each processing step augments,
personalizes, or otherwise transforms the original event. An example of such a system
is deployed at one of our industrial partners, a major airline company, which feeds
ticket reservation events into a revenue estimation system. Each event results in 20-30
subsequent calls to other modules inside this system. The application uses
asynchronous messaging to decouple senders from receivers.

 I-RMI: Performance Isolation in Information Flow Applications 379

Message-based distributed applications have to be constructed and administered so
that the rates of delivering messages into queues do not exceed the rates of extracting
messages from queues and processing them. Jitter in rates [9] can both lead to queue
buildup and put pressure on servers’ available memory resources. This in turn can
deteriorate server performance and its ability to meet target performance levels. A
concrete set of examples studied in this paper addresses data-intensive applications,
our intent being to explore the uses of J2EE infrastructures for manipulating the large
data items implied by future applications in tele-medicine or -presence, remote
collaboration, remote access to rich data sources [3], and data mining. For example,
for the multimedia or document management applications described in Liferay Portal
[1], we expect message sizes to be quite large, and any additional delays in processing
queued messages by remote clients can result in substantial server-level performance
degradation.

The ‘slow client’ isolation point added to RMI-IIOP is intended as a generic
mechanism for handling the case described above. This point is inserted in the call
path before call argument marshalling. The logic we inject into the path monitors
queue behavior (system or application-level queues) indirectly, by monitoring the
respective incoming and outgoing request rates1. By combining estimates of queue
lengths with resource utilization on the local and remote nodes, the injected code can
detect situations where a slow node is causing serious queue buildup that might lead
to performance degradation on the server. A sliding window is used to measure these
rates, one window per causally connected incoming and outgoing APIs, one window
for local resource information, and a third window for resource information on each
remote machine. The specific action taken to reduce queue buildup is decided at
runtime by user-supplied logic. Possible actions include: decreasing the sizes of call
parameters to reduce the processing required on the target server, rerouting the call to
another host, rejecting the call and having the sender deal with this exception, etc.

Poison Messages
Our next scenario is derived from an airline enterprise information system (EIS).
System administrators strive to provide consistent performance levels for the
operation of their system. An occasional surge in resource usage, traced back to a
particular uncommon request type, can cause other subsystems’ requests to build up,
including those from the front ends used by clients, ultimately threatening operational
failure (e.g., inappropriately long response times) or revenue loss (e.g., clients going
to alternate sites). Such uncommon request/message types are termed Poison
Messages.

The poison message isolation point addresses this class of isolation problems. We
monitor a server’s steady state throughput (see Fig. 2) using request counting methods
similar to [13]. When a sudden drop in throughput (L1) and at the same time, a sharp
increase in resource utilization is detected, we identify a potential ‘poison’ state. A
snapshot (S1) of every request currently executing in the J2EE is taken and stored.

1 Understanding the causal relations between incoming and outgoing requests is necessary in

order to translate request rates into meaningful queue behaviors. The detection of such causal
relations is beyond the scope of this work. Aguilera et al [2] articulate possible ways to
automatically detect such relations.

380 M. Mansour and K. Schwan

When the server later recovers and throughput rises (L2) again, we take another
snapshot (S2) of all requests currently executing in the server. The set difference (S1 –
S2) represents a list of requests that are potential suspects. This procedure is repeated
every time we encounter such abnormal behavior and eventually, the suspect list
narrows down to a few request types. The specific action against the potential
suspects is left to the user to define, possible actions are reject or re-route to another
server.

L1

L2

time

throughput

t1 t2 t3 t4

Fig. 2. Dynamically detecting poison messages at runtime

Our current implementation identifies requests only by their API names. To deal
with server overload caused by changes in request parameters, the implementation has
to be extended to also scan and analyze request parameters [37]. Additional detection
logic is necessary if poison state is caused by a sequence of messages.

‘QoS Crosstalk’ due to Parallel Concurrent Streams
Tennenhouse describes `QoS crosstalk` as the effect of multiple concurrent streams
on server performance [31]. We include an isolation point in I-RMI to manage and
minimize such crosstalk effects. This section describes its implementation and
demonstrates the potential of poor performance isolation in the presence of multiple
concurrent request streams with varying request sizes. Such request streams are
common in information flow applications between front-end Web/UI servers and
backend business process servers.

The RMI-IIOP implementation we use dedicates a separate reader thread per client
connection. When a server is subjected to invocations from multiple clients, all of the
corresponding reader threads are activated, as they all receive notifications of data
being available on their underlying sockets. It is up to the underlying kernel thread
scheduler to decide which thread to run next. Assuming a round-robin scheduler and
equal buffer sizes on all connections, it is common for streams with very small
request sizes to receive better treatment compared to streams with large request sizes.
Note that this analysis also applies to writer threads.

Behaviors like those explained in the previous paragraph can be unacceptable for
certain application deployments or client connections. Known control methods
addressing them include changing the socket buffer sizes for certain connections,
altering threads priorities, or both. Setting the right buffer size for each connection
requires that such a value be calculated uniformly for all connections. Toward these
ends, we insert an isolation point at the IIOP reader thread level, and we re-implement
parts of RMI-IIOP to use a single reader thread and non-blocking I/O. The single

 I-RMI: Performance Isolation in Information Flow Applications 381

reader thread provides a single point of control where the ‘right’ buffer sizes can be
calculated and applied. The resource monitor is responsible for tracking how many
parallel streams are active. The enforcement logic dynamically adjusts the buffer sizes
for each connection to achieve the desired relative weights. This modified
implementation is backwards compatible and also scales better than the original
implementation.

3 Representative Applications and Experimental Results

To demonstrate the importance of performance isolation in the J2EE environment, we
select WebSphere as a representative software platform. We use the Trade3
application [16] developed by IBM as our test bed. The Trade3 benchmark models an
online stock brokerage application and is built to cover most of J2EE’s programming
model, including JSPs, EJBs, transactional aspects and database access. We deployed
the Trade3 benchmark with the UI web component on a separate machine from the
backend EJB components, WebSphere dynamic caching was not enabled in our
experiments.

Experimental Setup
Experiments are run in Georgia Tech’s enterprise computing laboratory, using
Version 5.1 of IBM WebSphere J2EE server running on an x345 IBM server
(hostname: dagobah), a dual 2.8GHz Xeon machine with 4GB memory and 1GB/s
NIC, running RedHat Linux 9.0. The server runs against Version 8.1 of DB2 which
runs on a separate machine with an identical configuration. Clients, secondary servers
and load generators run on an IBM BladeCenter with 14 HS20 blade servers installed
(hostnames awing1-awing14). Each blade has dual 2.8GHz Xeon processors with
1GB RAM and 1 Gb/s NIC card running RH Linux 9.0. We use the Tomcat 5.0.25
servlet container for hosting the front end of the Trade3 benchmark. Httperf [22] is
used to generate the workload for the trade benchmark.

3.1 ‘Slow Client’ Isolation Point

Consider the distributed application shown in Fig. 3. The external source injects
events into the system, by sending messages to a primary server where they are
queued for processing. A worker thread selects messages from the queue and sends
them to the secondary server. The primary server also provides auxiliary services to
an external client. The external event source generates a 512KB message every 10ms.
A client makes repeated requests to the server; each request carries a return parameter
of 1MB, the server caches the 1MB object and uses it to serve all client requests.

The average round trip time for the client is listed in Table 1. In the first case,
“Unloaded”, the secondary client runs with a very light load. Under these conditions,
the average queue length is under 3 units, and the client average RTT is 35 ms/call.
The second scenario, “Stress Load”, imposes a heavy workload on the secondary
server. We use the stress utility to run 8 CPU intensive threads. This results in a
significant drop in the ability of the secondary server to process its requests and
subsequently, creates queue buildup on the primary server. As a result of this buildup,

382 M. Mansour and K. Schwan

Fig. 3. Abstract view of nodes in an operational information system (OIS)

Table 1. Average round trip time for client calls

Scenario Average RTT
[from client side]

Unloaded secondary server 35 ms/call
Secondary server stress loaded 80 ms/call
Secondary server stress loaded
+ Primary server uses I-RMI

35 ms/call

available free memory drops on the primary server and garbage collection is triggered
more often (JVM memory was set to max. to 120MB). This results in an increase in
client average RTT to 80ms/call and a 56% drop in throughput. These can be
attributed to increased garbage collection on the primary server (see Table 2) due to
memory pressure resulting from queue buildup.

To demonstrate I-RMI effectiveness in controlling such effects, we repeat the
above experiment using I-RMI on the primary server. Fig. 5 shows the rate of calls
coming in and going out of the primary server. Rates are measured by dividing the
number of calls that occurred during the last N seconds, where N is the width of the
sliding window we use. At T=10000 the secondary server is subjected to CPU stress
load, and queue buildup is evident from the difference between the rates of incoming
and outgoing calls. The increased garbage collection (GC) activity (as shown in
Fig. 4) leads to a drop in the server’s ability to service events from the external event
source. As the CPU utilization crosses a predefined threshold (1.0 in this experiment),
the isolation logic decides to cancel calls outgoing to the secondary server (occurring
at about T=14,000). This results in the apparent increase in the rate of outgoing calls.
The application is unaware of the short circuit applied by the isolation logic, still
thinking that its calls are being completed. Note that this example uses the simplistic
approach of call elimination, to focus on the performance isolation properties of our
approach. Realistic systems will use any number of techniques, including request
rerouting, queuing for later submission, application-specific reductions in request
volume [12] and others.

Table 2. Number of times primary server garbage collects per 100 client calls

Scenario GC
Unloaded secondary server 6
Secondary server stress loaded 102

 I-RMI: Performance Isolation in Information Flow Applications 383

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

Time (secs)

G
ar

ba
ge

 C
ol

le
ct

io
n

Fig. 4. Garbage collection at Primary Server

0

10

20

30

40

50

60

70

0 5 10 15 20 25
Time (secs)

R
at

e
of

 c
al

ls

(c
al

ls
/w

in
do

w
)

input rate outgoing rate

Fig. 5. Call rates measured at the primary server

3.2 ‘Poison Message’ Isolation Point

To demonstrate the effect of a poison message, we run a steady state workload against
the Trade3 benchmark. The workload generator (httperf) simulates 4 concurrent
sessions with 0.1 seconds think time. The resulting server average request execution
times are shown in Fig. 6, respectively (from T=0 to T=50). The small spikes at T=(3,
10, 24, …) are due to garbage collection on the server. At T=59, we manually call a
special API added to the benchmark application. This API allocates 10KB byte arrays
in a tight loop for 4 seconds. The effects of this API are evident in the graphs as a
sudden sharp increase in the average execution times for requests, a drop in server
throughput, and a dramatic increase in garbage collection activity on the server
(Fig. 7). The rising edge at T=59 triggers our detection algorithm, and it takes a
snapshot of all requests currently in the server. As the poison API finishes and server
load levels return to normal, the falling edge at T=63 triggers the detection algorithm
and it takes another snapshot of all API currently executing on the server. The
difference between these two snapshots correctly reveals the poison API in this
simple example. Subsequent calls to this API are filtered by the isolation point.

384 M. Mansour and K. Schwan

0

50

100

150

200

250

0 50 100
Time (secs)

A
vg

. e
xe

cu
tio

n
tim

e
(m

s/
ca

ll)

Fig. 6. Average call execution time (ms/call)

0

2

4

6

8

10

0 50 100
Time (secs)

G
ar

ba
ge

 C
ol

le
ct

io
n

Fig. 7. Garbage collection frequency at the Primary Server

3.3 ‘QoS Crosstalk’ Isolation Point

In this experiment, we demonstrate QoS effects in WebSphere and how I-RMI can
provide some control over such behavior. All times reported here represent the time
needed to read data for a request at the IIOP level. Request assembly time increases
proportionally with message size in the case of one client communicating with the
server. In the presence of a second client sending messages of constant 2K size, the
time needed to assemble the large request message more than doubles. In Fig. 8, the
lower curve shows message assembly times for a client, and the top curve shows
message assembly times for the same client in the presence of a secondary request
stream of size 2KB/request. This is attributed to the fact that the server processes both
streams with equal priority. We ameliorate the above behavior by controlling the
socket buffer size for each connection. A larger buffer enables us to read more data
per system call. We note here that this approach works only if there is data available
at the server socket for reading. This observation indicates the need to associate
additional system-level knowledge with isolation points.

In Fig. 9, we plot assembly time against message size for a request stream running
against a 2K/request secondary stream. The different lines represent different socket
buffer size settings. The top curve labeled '1x' represents equal buffer sizes for both

 I-RMI: Performance Isolation in Information Flow Applications 385

0
100
200
300

400
500
600

100 200 300 400 500

Message size (KB)

A
ss

em
bl

y
tim

e
(m

illi
se

co
nd

s)

Single Client Tw o Clients

Fig. 8. Time to assemble a request for one vs. two clients

0

100

200

300

400

500

600

100 200 300 400 500

Message size (KB)

A
ss

em
bl

y
tim

e
(m

illi
se

co
nd

s)

1x 2x 4x 8x 16x 32x

Fig. 9. Time to assemble a request at different buffer sizes

streams. For the next curve, labeled '2x', we set the socket buffer size for the main
stream to be twice that of the secondary stream and so on. A larger buffer size clearly
reduces the time needed to assemble a large request and therefore, reduces the effects
of parallel request streams.

Our implementation replaces the one-reader-thread-per-connection IIOP model in
WebSphere with a single reader thread using non-blocking socket I/O. A single reader
thread constitutes a single point at which an enforcement mechanism can be realized.
Its presence also removes dependencies on the underlying thread scheduler. Care is
taken to prevent blocking of this single reader thread. Processing the socket data and
handling it to the ORB for assembly is done in a non-blocking manner through
utilization of intermediate hand-off queues. The experiments shown in Figs. 8 and 9
are based on a partial implementation, not employing a dynamic resource monitor,
using pre-defined buffer sizes for each connection, and without a decoupling queue
between the reader thread and the ORB.

3.4 Discussion of Experiments

Beyond the performance results attained with the isolation points used and evaluated in
this section, note that they are representative of the three different kinds of isolation
points needed for building performance isolation firewalls for distributed service
implementations. (1) The poison message IP monitors and controls behaviors that
involve the APIs exposed by the application components on a single node. (2) The

386 M. Mansour and K. Schwan

slow client IP monitors cross-node communications. (3) The QoS crosstalk IP concerns
interactions with the underlying OS/hardware platform. More generally,
implementations will use multiple IPs of these kinds, and there will be interactions
between the policies implemented by multiple IPs, within each node and across nodes.
The experiments shown in this section, therefore, constitute only a first step toward
creating performance-robust distributed applications and application components.

4 Related Work

Performance isolation is not a new idea [4] and in addition, prior work has developed
many methods for dealing with performance problems in server applications. The
latter include request deletion in web servers [27], request prioritization or frame
dropping in multi-media or real-time applications [30], and the creation of system-
level constructs supporting these application-level actions [25, 33]. Essentially, such
methods are specific examples of the more general methods for dynamic system
adaptation developed during the last decade [29, 38]. They share with adaptive
techniques the use of runtime system monitoring and of dynamically reacting to
certain monitoring events, but they differ in that the policy-level decisions made in
response to certain events are focused on limiting performance dependencies rather
than on exploiting them to optimize the behavior of the distributed system exhibiting
these dependencies.

This paper advocates an isolation-based approach to performance management, but
differs from prior work in that it also considers performance dependencies that exist
across different layers of abstraction existing in current systems, such as dependencies
across system-level communication protocols and the middleware-level messaging
systems that use them. The specific results attained in this paper for Java RMI-IIOP
and J2EE-level method calls are related to earlier work done by our group on the IQ-
RUDP [15] data transport protocol, which coordinates middleware-level and
transport-level adaptations to better meet application needs. What is new here,
however, is that we consider explicit characteristics of the more complex Java
middleware environments, including Java’s garbage collection techniques.

Hardware, kernel, and application-level protection and isolation have been studied
extensively for single Java virtual machines [8]. [17] applies the concept of a Java
resource accounting interface to isolate applications inside a JVM at the granularity of
isolates to J2EE platforms. In comparison, our work focuses on performance isolation
at single request granularity (even within the same application), and we identify three
kinds of performance dependences embedded in the middleware implementation of
J2EE and WebSphere. Since detection logic is placed into middleware prior to
application execution, resource reservation approaches like those described in [17]
can be used as an enforcement mechanism, where thresholds are set dynamically by a
resource monitor. Note that some of the scenarios present in this paper are not
addressed by the isolate mechanism, such as when the vulnerability point is in the
lower levels of the middleware before the message is parsed and dispatched to its
target application (isolate).

Finally, we point to recent work in performance management for cluster-based web
services [19]. A central router classifies and schedules incoming requests to maximize
a user-defined utility function based on performance measurements collected from the

 I-RMI: Performance Isolation in Information Flow Applications 387

cluster. While traffic classes represent high-level business value, requests in each
class can still have very different operational footprints and can therefore, still
experience the performance vulnerabilities presented in this work.

5 Conclusions and Future Work

This paper builds on previous work in the autonomic and adaptive system domains to
address end-to-end performance issues in service-oriented software architectures. The
specific issue addressed is performance isolation, which refers to the ability to isolate
service components from each other with respect to the performance dependencies
pervading distributed applications and the systems on which they run. Performance
isolation is a necessary element of any solution that seeks to attain end user-desired
Service Level Objectives or Agreements (SLAs), preventing the violation of SLAs
through circumstances beyond the explicit control of individual services.

To attain performance isolation, our research offers novel middleware abstractions,
termed isolation points, which both capture performance dependencies and provide
functionality that deals with them. The paper first demonstrates the prevalence of
performance dependencies in enterprise applications created with J2EE RMI-IIOP-
based software platforms and that these dependencies can lead to the spread of
performance problems through entire enterprise applications. For example, if a
‘poison message’ causes one server to slow down, this server will act as a slow client
to its callers, causing their performance to degrade and propagating undesirable
performance effects across the entire distributed application. Second, isolation points
(IPs) are created to dynamically capture and react to performance dependencies,
thereby providing middleware mechanisms for managing and preventing them. Third,
a concrete product of this work is I-RMI, which is RMI-IIOP enhanced with isolation
points representative of the three different types of IPs required for performance
isolation in distributed enterprise applications: (1) IPs guarding service APIs, (2) IPs
for inter-node interactions, and (3) IPs for interactions with underlying operating
systems and hardware. I-RMI has been integrated and used with IBM’s WebSphere
J2EE infrastructure. When using standard J2EE benchmarks, we are able to eliminate
performance degradations of up to 56% observed in traditional RMI-IIOP in one case,
and up to 85% in another case.

Future work will consider solutions in which multiple IPs cooperate to address
potentially complex performance dependencies, across sets of distributed services and
service nodes. In addition, we will address the fact that performance dependencies
and the need for performance firewalls implemented with IPs are not specific to Java.
They appear both in the synchronous call-reply model of RMI and in the message-
oriented asynchronous middleware of operational information systems like the one
used by our industrial partners [11].

References

1. Liferay: Open source enterprise portal, 2005.
2. Aweya, J., Ouellette, M., Montuno, D.Y., et al. An adaptive load balancing scheme for

web servers. International Journal Network Management, 12 (1). 3--39.

388 M. Mansour and K. Schwan

3. Barclay, T., Slutz, D.R. and Gray, J. TerraServer: A Spatial Data Warehouse Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, 2000.

4. Barham, P., Dragovic, B., Fraser, K., et al. Xen and the art of virtualization Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), 2003.

5. Bernadat, P., Lambright, D. and Travostino, F. Towards a Resource-safe Java for service
guarantees in uncooperative environments IEEE Workshop on Programming Languages
for Real-Time Industrial Applications, 1998.

6. Cardellini, V., Casalicchio, E., Colajanni, M., et al. The state of the art in locally
distributed Web-server systems. ACM Computing Surveys, 34 (2). 263--311.

7. Cowan, C., Cen, S., Walpole, J., et al. Adaptive methods for distributed video presentation.
ACM Computing Surveys, 27 (4). 580--583.

8. Czajkowski, G. Application isolation in the Java Virtual Machine Proceedings of the 15th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications (OOPSLA '00), 2000.

9. Diot, C. Adaptive Applications and QoS Guaranties (Invited Paper) Proceedings of the
International Conference on Multimedia Networking (MmNet '95), 1995.

10. Fox, A., Gribble, S.D., Chawathe, Y., et al. Cluster-Based Scalable Network Services
Symposium on Operating Systems Principles (SOSP 97), 1997.

11. Gavrilovska, A., Oleson, V. and Schwan, K. Adaptable Mirroring in Cluster Servers 10th
International Conference on High-Performance Distributed Computing (HPDC-10), 2001.

12. Gavrilovska, A., Schwan, K. and Oleson, V. A Practical Approach for 'Zero' Downtime in
an Operational Information System The 22nd International Conference on Distributed
Computing Systems (ICDCS-2002), 2002.

13. Gheith, A. and Schwan, K. CHAOSarc: kernel support for multiweight objects,
invocations, and atomicity in real-time multiprocessor applications. ACM Transactions
Computer Systems, 11 (1). 33--72.

14. Hamilton, G., Powell, M.L. and Mitchell, J.G. Subcontract: A Flexible Base for
Distributed Programming Proceedings of the Fourteenth ACM Symposium on Operating
System Principles, 1993.

15. He, Q. and Schwan, K. IQ-RUDP: Coordinating Application Adaptation with Network
Transport Proceedings of the 11 th IEEE International Symposium on High Performance
Distributed Computing (HPDC'11), 2002.

16. IBM. WebSphere Application Server, Trade3 benchmark.
17. Jordan, M.J., Czajkowski, G., Kouklinski, K., et al. Extending a J2EETM Server with

Dynamic and Flexible Resource Management International Middleware Conference
(Middleware 2004), 2004.

18. Krishnamurthy, B. and Wills, C.E. Improving web performance by client characterization
driven server adaptation Proceedings of the eleventh international conference on World
Wide Web (WWW '02), 2002.

19. Levy, R.M., Nagarajarao, J., Pacifici, G., et al. Performance Management for Cluster
Based Web Services IFIP/IEEE Eighth International Symposium on Integrated Network
Management (IM 2003), 2003.

20. Loyall, J.P., Schantz, R.E., Zinky, J.A., et al. Specifying and measuring quality of service
in distributed object systems 1st International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), 1998.

21. Mansour, M., Wolf, M. and Schwan, K. StreamGen: A Workload Generation Tool for
Distributed Information Flow Applications Proceedings of the 2004 International
Conference on Parallel Processing (ICPP'04), 2004.

22. Mosberger, D. and Jin, T. httperf - a tool for measuring web server performance.
SIGMETRICS Performance Evaluation Review, 26 (3). 31-37.

23. Oreizy, P., Gorlick, M., Taylor, R., et al. An Architecture-Based Approach to Self-
Adaptive Software IEEE Intelligent Systems, 1999.

 I-RMI: Performance Isolation in Information Flow Applications 389

24. Plale, B. and Schwan, K. dQUOB: Managing Large Data Flows Using Dynamic
Embedded Queries Proceedings of the Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC'00), 2000.

25. Poellabauer, C., Schwan, K., West, R., et al. Flexible User/Kernel Communication For
Real-Time Applications In Elinux Proceedings of the Workshop on Real Time Operating
Systems and Applications, 2000.

26. Powell, M.L. and Miller, B.P. Process migration in DEMOS/MP Proceedings of the 9th
ACM symposium on Operating Systems Principles (SOSP '83), 1983.

27. Provos, N. and Lever, C. Scalable Network I/O in Linux Proceedings of the USENIX
Technical Conference, FREENIX track, 2000.

28. Pyarali, I., Schmidt, D.C. and Cytron, R. Techniques for enhancing real-time CORBA
quality of service. Proceedings of the IEEE, 91 (7). 1070-1085.

29. Rosu, D., Schwan, K. and Yalamanchili, S. FARA: A Framework for Adaptive Resource
Allocation in Complex Real-Time Systems he 4th IEEE Real-Time Technology and
Applications Symposium (RTAS '98), 1998.

30. Sundaram, V., Chandra, A., Goyal, P., et al. Application performance in the QLinux
multimedia operating system Proceedings of the 8th ACM International Conference on
Multimedia 2000, 2000.

31. Tennenhouse, D.L. Layered Multiplexing Considered Harmful. Rudin, H. and Williamson,
R. ed Protocols for High-Speed Networks, 1989.

32. Welsh, M., Culler, D. and Brewer, E. SEDA: an architecture for well-conditioned, scalable
internet services Proceedings of the eighteenth ACM symposium on Operating systems
principles (SOSP '01), 2001.

33. West, R. and Schwan, K. Dynamic Window-Constrained Scheduling for Multimedia
Applications Proceedings of the IEEE International Conference on Multimedia Computing
and Systems (ICMCS '99), 1999.

34. White, S.R., Hanson, J.E., Whalley, I., et al. An Architectural Approach to Autonomic
Computing 1st International Conference on Autonomic Computing (ICAC 2004), 2004.

35. Wiseman, Y., Schwan, K. and Widener, P. Efficient End to End Data Exchange Using
Configurable Compression 24th International Conference on Distributed Computing
Systems (ICDCS 2004), 2004.

36. Wolf, M., Cai, Z., Huang, W., et al. SmartPointers: personalized scientific data portals in
your hand Proceedings of the 2002 ACM/IEEE conference on Supercomputing
(Supercomputing '02), 2002.

37. Xie, T. and Notkin, D. Checking Inside the Black Box: Regression Testing Based on
Value Spectra Differences IEEE International Conference on Software Maintenance
(ICSM 2004), 2004.

38. Yuan, W. and Nahrstedt, K. Process group management in cross-layer adaptation
Multimedia Computing and Networking 2004, 2004.

Matrix: Adaptive Middleware for Distributed
Multiplayer Games

Rajesh Krishna Balan1, Maria Ebling2, Paul Castro2, and Archan Misra2

1 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
2 IBM Research Watson, 19 Skyline Drive, Hawthorne, NY 10532, USA

Abstract. Building a distributed middleware infrastructure that provides the low
latency required for massively multiplayer games while still maintaining consis-
tency is non-trivial. Previous attempts have used static partitioning or client-based
peer-to-peer techniques that do not scale well to a large number of players, per-
form poorly under dynamic workloads or hotspots, and impose significant pro-
gramming burdens on game developers. We show that it is possible to build a
scalable distributed system, called Matrix, that is easily usable by game develop-
ers. We show experimentally that Matrix provides good performance, especially
when hotspots occur.

1 Introduction

Online gaming is a rapidly growing market segment estimated to reach 100 million
players and a USD $5 billion market value by 2008 [9]. A popular form of multi-
player gaming is the rapidly growing [24] class of massively multiplayer online games
(MMOG) such as Everquest [19] and Final Fantasy XI [20], where hundreds or even
thousands of players from across the world interact in a real-time shared virtual world.

To support these virtual worlds, most MMOGs currently use a centralized server
model, with players connecting to a single game server that handles the entire game
world. However, each server can handle at most 30,000 clients [7] whereas games like
Final Fantasy XI claim to have at least one million registered players [21]. To handle
more players, some MMOGs [7] use multiple servers that are statically assigned differ-
ent parts of the game world even though this approach is known to be unresponsive to
unexpected workload variations or dynamic localized hotspots in the game.

To overcome this limitation, static partitioning schemes either significantly over-
provision the number of servers used for the game and/or impose artificial limits on the
number of players that can be in any part of the map. Unfortunately, overprovisioning
incurs extra costs and artificial limits may detract from the gaming experience. It would
be better instead, to use a distributed system that can handle arbitrary game loads by dy-
namically and automatically adjusting the number of servers used by the game in a scal-
able and efficient manner. This system could either be used on its own or in combination
with static partitioning schemes (as a mechanism to handle unexpected load changes).

Building this dynamic distributed system for MMOGs, however, is a non-trivial
problem. To preserve the interactive feel of a MMOG, the client response latency must
be low [3]. But, maintaining complete consistency between distributed nodes requires

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 390–400, 2005.
c© IFIP International Federation for Information Processing 2005

Matrix: Adaptive Middleware for Distributed Multiplayer Games 391

increasingly larger amounts of time as the amount of traffic and number of nodes in
the system increases (due to increased player activity). However, a lack of consistency
could lead to an unsatisfactory experience for the game player. The challenge lies in
satisfying these conflicting latency and consistency goals, especially for a system with
a large number of nodes and a high volume (O(Gbps)) of network traffic.

The key insight that allows us to overcome this problem is the observation that
MMOGs are an example of a nearly decomposable system [18]. Such a system is one
in which the number of interactions among subsystems, in some geometric space, is
of a lower order of magnitude than the number of interactions within an individual
subsystem. For MMOGs, this behaviour typically manifests itself through a “radius” or
“zone of visibility” associated with each game player. It is usually sufficient to update
players with only those events that occur in their zone of visibility. For example, if a
tank is destroyed in a battlefield game, it is enough to only send this information to
other tanks that can see the victim, rather than to all the tanks in the game.

Using this insight, we built a scalable low-latency distributed middleware infras-
tructure, called Matrix, that provides pockets of locally-consistent state. This weaker
form of consistency allows Matrix to provide low latency responses, while still giving
adequate consistency to game clients even when the number of nodes in the system
increases. Matrix also provides low latency mechanisms to handle infrequent global
interactions. Another key Matrix design goal was ease of use. We achieved this by pro-
viding a clean and clear layering that hides the consistency maintainence details within
an easy-to-use API (not shown due to space constraints). This API allows Matrix to
be used with only minimal changes to existing MMOGs. The layering also allows Ma-
trix to support the distributed operation of various MMOGs without actually needing
to understand the game logic. Finally, unlike static partitioning techniques, Matrix can
dynamically add and remove servers as necessary to handle transient hot-spots and dy-
namic loads caused by players joining and leaving the game.

We validated both Matrix’s system-level performance as well as its effectiveness at
satisfying real game players. In particular, we show that Matrix’s overhead is reason-
able and also that it outperforms a statically partitioned system when unexpected load
patterns occur. Due to space constraints, we present a summary of these results.

In Section 2, we describe Matrix’s design criteria while Section 3 presents the de-
sign and implementation of Matrix. Section 4 presents a summary of the evaluation
while Section 5 presents related work.

2 Matrix Design Criteria

In this section, we describe the two key design criteria (and their corresponding im-
plications) used to build the Matrix middleware. In particular, Matrix was specifically
designed to allow MMOG game developers to focus mainly on their game’s core logic
and delegate the task of scalably distributing their games to Matrix.

2.1 Attractive and Easy for Game Developers

The first key criteria was to make Matrix attractive for game developers to use. Most
game companies usually focus on core game-specific technologies, such as 3D graphics

392 R.K. Balan et al.

modeling, and typically have very little in-house distributed systems expertise. Hence,
being able to leverage a distributed game middleware that scales and maintains adequate
consistency as the user population grows would be of great benefit for them. To appeal
to developers, Matrix has the following characteristics:

No Change in Security Model: A primary concern for online game developers is
cheating and denial-of-service (DoS) attacks. In particular, they are quite resistant to
any middleware that will lower their ability to tackle these issues. This concern natu-
rally eliminates the use of peer-to-peer mechanisms, which fundamentally change the
client-server interaction and security model. Matrix thus uses the same game developer
preferred client-server architecture, as shown in Section 3, allowing the developer to
reuse existing anti-cheating and anti-DoS mechanisms.

Separation of Concerns: To make developing distributed games easier, Matrix pro-
vides a clean “separation of concerns” programming model where Matrix would handle
the distributed computing aspects of a game such as consistency, scalability, resource
provisioning and fault-tolerance, leaving the MMOG developer to focus on the core
game logic.

Support Multiple Gaming Platforms: Game developers frequently develop games
for multiple gaming platforms; having to write new Matrix routines for each platform
would hinder adoption. Our APIs do not require any new Matrix-specific routines for a
new platform.

Simplicity: Building and debugging a large distributed system is a tricky endeavour. As
such, Matrix intentionally uses the simplest possible algorithms and APIs. The simple
algorithms allow Matrix to be easier to debug and maintain, and the API allows existing
games to be quickly and easily modified for use with Matrix.

2.2 Supports Game Requirements

The second key criteria was that Matrix must support the performance requirements of
massively multiplayer games. In particular Matrix must provide:

Low Response Latency: Response latency, the time between a game client’s action
and the observed reaction in the game world, is a crucial factor influencing a player’s
overall gaming experience. Matrix ensures that this latency is as low as possible by
not unnecessarily buffering packets and by using an O(1) route lookup mechanism to
determine where to send packets (explained further in Section 3.2).

Localized Consistency: It is vital that Matrix ensure that the MMOG players are con-
sistent with nearby objects, thus allowing these players to correctly interact with these
objects. Because MMOGs are nearly decomposable, it is unnecessary to provide global
consistency. Matrix thus provides fast, yet effective, localized consistency mechanisms
(explained further in Section 3.1).

Automatically Handle Load Spikes: Load spikes are caused when a large number of
players simultaneously decide to visit the same location in an MMOG. It is important
that Matrix is automatically able to handle these load spikes without a significant in-
crease in latency. It would also be useful, to conserve resources, if Matrix is able to

Matrix: Adaptive Middleware for Distributed Multiplayer Games 393

dynamically change its server usage based on the current game load. We describe how
we achieve this in Section 3.2.

3 Matrix Design and Implementation

In this section, we describe Matrix’s design and implementation, focusing primarily on
the overall architecture and major technology components.

3.1 Providing Localized Consistency

To build an easy to use localized consistency mechanism, we observed that all games
have some notion of geometric space that allows distances between game objects to be
computed using a game-specific distance metric. If Matrix was aware of an individual
game’s spatial coordinates and its radius of visibility (the range over which local con-
sistency is typically required), it could confine the propagation of any game state update
to an easily computable region, without having to maintain game-specific relationship
trees or other data structures. Matrix uses this insight to require game developers to
merely forward all game packets, appropriately tagged with the spatial coordinates (in
the game world) of the packet’s origin and destination, to the local Matrix server. Ma-
trix uses these spatial tags, together with the game’s radius of visibility, to route these
packets to the other game servers that manage objects within this radius of visibility
(and thus need to maintain consistency).

Matrix assigns unique portions of the MMOG’s spatial map to different servers.
Each server is only responsible for clients located within its assigned partition. For-
mally, Matrix partitions the overall space Z of an MMOG into N non-overlapping par-
titions, {P1,P2, . . . ,PN}, and assigns each partition Pi to a distinct server Si. To handle
load spikes, the number of servers N, and the specific partition managed by any server
Si can change dynamically.

Because games have a non-zero radius of visibility, changes in the MMOG state
at any point, σi, handled by server Si, that is within the radius of visibility of a client
located on server S j, must be consistently applied at both servers Si and S j. In general,

(a) Overlap Region between 3 Matrix Servers (b) Matrix Architecture

Fig. 1. Matrix Components

394 R.K. Balan et al.

given a spatial partition and a radius of visibility R, every point σ in Z has a set of
servers associated with it, called the consistency set of σ or C(σ). This set contains
all the servers whose partitions overlap the circle (or sphere) of radius R centered at σ
and therefore need to be aware of any update or activity in σ. If d(x,y) represents the
distance-metric between points x and y,

C(σ ∈ Pi) = {S j| j �= i ∧ ∃σ′ ∈ Pj s.t. d(σ,σ′) ≤ R} (1)

From Equation 1, we observe that if R is infinite, all updates must be globally prop-
agated, making localized consistency impossible. However, if R is small compared to
the size of partition Pi, most of the interior points of Pi will have empty consistency sets.
Only the relatively small number of periphery points, whose C(σ) �= /0 (i.e, whose radius
of visibility extends into adjoining partitions) will require consistency to be maintained
between servers. Games usually have limited player visibility radii and Matrix effi-
ciently utilize this sparseness by forming groups, called “overlap regions”, of all points
that have identical non-empty consistency sets (shown in Figure 1a).

Intuitively, an overlap region denotes a portion of the map, such that an update at
any point in that overlap region requires all the servers in that overlap region to be
informed of the update. Overlap regions allow Matrix servers to quickly determine the
consistency set for any game packet they receive by merely doing a table lookup (of the
set of overlap regions).

Matrix assumes that most players in a game have the same radius of visibility. The
Matrix API does allow game servers to specify different visibility radii for exceptions,
and internally creates distinct sets of overlap regions, each for a different R. We decided
to use overlap regions instead of other geometric data structures, like spanners [4],
to determine the consistency set of any object because overlap regions do not require
costly (in terms of latency) hop-by-hop lookups and they work well even when the map
space changes dynamically (which happens during splits and reclamations).

3.2 Matrix Architecture

Figure 1b shows the Matrix architecture, that satisfies the design criteria in Section 2. A
MMOG is deployed using Matrix with the MMOG developers providing game clients
and game servers and the Matrix infrastructure providing Matrix servers and a Matrix
coordinator (MC). The architectural components interact as follows:

3.2.1 Game Clients
The clients are used by game players to play the MMOG. Each client interacts with a
game server and provides it with updates on the player’s activity and receives updates
on nearby activity. Game clients must be able to switch servers dynamically because
the MMOG may be on multiple servers, each handling a unique portion of the MMOG
world. The client is informed of these switches by its current game server and is unaware
of Matrix.

3.2.2 Game Servers
The game server is the software that stores the state of the game world and coordinates
the activity of the players in the game. In most commercial games, they are also the only
point of contact between game clients and the game world to protect against cheating

Matrix: Adaptive Middleware for Distributed Multiplayer Games 395

and unauthorized collusion; problems that are particularly acute in multiplayer games.
The game server must be designed for use in a multiserver environment. In particular,
it must identify players using globally unique IDs (such as callsigns) instead of locally
generated IDs. Game servers are usually located on the same physical machine as a
Matrix server (to minimize the network latency). In our current implementation, the
Matrix server is a separate process from the game server. In the future, we may compile
the Matrix server into the game server (as a separate library) to improve performance.

When a game server starts, it sends Matrix the visibility radius of clients in the game
(to allow overlap regions to be correctly computed). The game server then forwards all
client packets (after spatially tagging them) to its Matrix server for further processing.
The game server also periodically reports its current load to Matrix. If the server is
overloaded, Matrix will split the game world between the overloaded server and a newly
created game server and inform both the new and overloaded game servers of their new
map ranges. The overloaded game server will then forward all game specific state (e.g.,
map objects such as trees, buildings, etc.) to the new game server via Matrix. Finally, the
overloaded game server will redirect any clients (and their corresponding state) that are
not in its new map range to the appropriate game server (Matrix provides the identity of
the appropriate game server). Moving these clients to other game servers will decrease
the load on the overloaded game server. However, if it is still overloaded, Matrix will
split the still overloaded game server again until it has shed enough load.

3.2.3 Matrix Servers
Matrix servers, the heart of our distributed middleware, provide the necessary consis-
tency, reliability and latency semantics for MMOGs. Each Matrix server is aware of the
map range currently managed by the game server connected to it. On receiving spa-
tially tagged game packets from its game server, the Matrix server checks its overlap
tables, provided by the MC, to see if any peer Matrix servers are within that packet’s
consistency set. If so, the packet is forwarded to these peer servers which then forward
the packet, after verifying the packet’s range, to their own game servers for processing.
Because Matrix handles packet routing, individual game servers do not need to know
about other game servers serving the MMOG.

Matrix splits map partitions using purely local decisions to improve scalability and
minimize latency. On detecting that its game server is overloaded (through explicit load
messages from the game server or via system performance measurements), a Matrix
server will first check, using some non-Matrix external entity, for an available Matrix
server. If a server is available, it will split its current map, keeping control of a sub-
portion of the map, while transferring responsibility for the remaining portion to a new
Matrix server. Currently, Matrix uses a simple “split-to-left” splitting technique where
each map is split into two equal pieces with the left piece handed off to the new server.
Though simple, this algorithm still provides good performance as shown in Section 4.

The new Matrix server will then create a new game server and orchestrate the trans-
fer of the global state, from the original (overloaded) game server to this newly-created
game server. The overloaded game server will then switch game clients to this new
server to ease its load. The amount of state associated with switching game clients is
minimal (based on experience with the games used to test Matrix) and Matrix has effi-
cient mechanisms (not described due to space constraints) to transfer this state. Newly

396 R.K. Balan et al.

started game servers also need to obtain the static state of the game, like the map tex-
tures, that can be hundreds of megabytes in size. However, because this state is static, it
can be pre-cached on all new servers, requiring only pointers to the cached state to be
sent.

The Matrix server that performed the split will be the parent of the newly created
Matrix server. When a Matrix server detects that its game server is underutilized (again,
through explicit load notifications or via system performance measurements), it first
checks if it has any children. If it does and if their load levels are low enough, the parent
Matrix server will reclaim the partition and game state held by the child. All the game
clients on the child’s game server will be transfered to the parent’s game server, after
which the child Matrix server and game server will be removed from the game and
returned to the resource pool. Matrix uses simple heuristics (not described) to prevent
oscillations and ensure stability in the splitting / reclamation process.

3.2.4 Matrix Coordinator (MC)
The MC creates the overlap tables used by Matrix servers to route spatially tagged
packets. When a new Matrix server is used for the game, it informs the MC of the
current map range and radius of visibility. The MC then computes the overlap regions
for all the Matrix servers in the game using geometric algorithms to calculate bounding
boxes between spatial regions; a particularly easy computation, using well known axis-
aligned bounding box computation algorithms, if the map partitions are rectangular in
shape. The MC will then inform each Matrix server of their overlap regions along with
the set, C(σ), of Matrix servers that should be informed about an event in that region.
The MC recomputes and redistributes overlap regions every time a new Matrix server
is used or whenever an existing Matrix server is reclaimed (the MC is informed of the
new map ranges whenever reclamations occur).

We used a central MC to minimize the latency of the packet forwarding process. In
the common case where players are only interacting with nearby objects, each Matrix
server can do an instant O(1) lookup to determine the consistency set for any game
packet using the overlap regions provided by the MC. Even in uncommon cases involv-
ing non-proximal interactions, the Matrix server can consult the MC to determine the
consistency set for that particular interaction. Matrix could use alternate lookup meth-
ods (such as DHTs [22]), but that would result in increased latency (e.g., DHT schemes
usually need O(log(N)) lookups for N Matrix servers). Although a centralized approach
can lead to performance bottlenecks, the MC is only used when the MMOG world par-
titioning changes due to splits or reclamations (which should occur infrequently for
a stable game). This centralized approach can scale to large server populations as the
MC is not used in the latency-critical packet forwarding process (except for the rare
non-proximal interactions). The MC can also be made reliable using well understood
replication techniques.

4 Evaluation Highlights

Due to space constraints, we present just one detailed result showing that Matrix can
handle dense hotspots automatically. The detailed evaluation results will appear in a
longer version of this paper.

Matrix: Adaptive Middleware for Distributed Multiplayer Games 397

This Figure shows Matrix responding to a 600 client hotspot. The left graph shows how
the total number of clients were shared among the various servers. Note that a server
is overloaded when it has 300+ clients. The right graph shows the receive queue length
of the various servers. Matrix used up to four server to handle the load caused by the
hotspots. However, Matrix reclaimed those extra servers as shown by the reclamation
points on the left graph when the load eased. The second reclamation took longer as the
child server took longer to become underloaded (< 150 clients).

Fig. 2. Hotspot caused by 600 clients

4.1 Behaviour Under Load and Hotspots

Matrix was designed to gracefully react to unexpected heavy loads and dense hotspots.
We tested this by subjecting Matrix to loads far higher than what a static partitioning
scheme could handle.

Figure 2 shows an experiment in which a hotspot of 600 clients (for a real shoot-
ing game called Bzflag [16]), far higher than a static partitioning could handle (results
not shown), was introduced at around the 10 second mark for about 75 seconds, after
which the entire hotspot gradually disappeared (indicated by 200 clients disappearing
at fixed intervals). The hotspot was reintroduced at a different position in the world at
170 seconds, for about 50 seconds, and then gradually removed. Matrix relieved the
initial spike in the receive queue caused by 600 clients joining (shown at time=10 in
Figure 2) by spawning server 2 (at time=10) and giving it half the map. However, this
did not ease the load as the hotspot was on the map portion retained by server 1. Hence,
server 1 spawned another server, server 3, (at time=10) and split its current map with
it (servers 1 and 3 have 1/4 of the map each with server 2 having the rest). Server
3’s map range contained the hotspot and a large number of clients were switched to it
easing server 1’s load. However, server 3 now experienced a load spike (at time=60).
This process continues recursively until the load on all the servers is acceptable. As
clients leave the game, servers become underloaded and Matrix reacts by consolidating
the load onto a smaller number of servers. For example, after 200 clients left the game
(at time=75), server 3 became underloaded and reclaimed its “child” server (server 4).
Matrix was similarly able to handle the subsequent appearance and disappearance of
another hotspot (introduced at t=170) located at a different part of the map.

This result clearly demonstrates that Matrix, unlike static partitioning schemes, is
able to deploy additional servers to react quickly and effectively to sudden load changes.

398 R.K. Balan et al.

This is significant, as game developers no longer have to a-priori over-provision their
servers to prevent them from crashing (which would mar the game’s reputation) under
unexpected load spikes. These spikes could occur when particular areas in the game
become popular suddenly, like the town hall during a town meeting, or by a massive
influx of new game players (E.g., due to an advertising campaign or a reference on
Slashdot).

4.2 Summary of Other Results

In addition to Bzflag, we also tested Matrix with a role playing game called Dai-
monin [23] and a popular shooting game called Quake 2 [11]. For these three games, we
showed that Matrix is able to outperform static partitioning schemes when unexpected
loads or hotspots occur. In particular, Matrix is able to automatically use extra servers
to handle the load while the static partitioning schemes just fail.

We also conducted microbenchmarks that showed that Matrix’s overheads, in terms
of switching latency and bandwidth usage, were acceptable. In particular, the overhead
of using a central coordinator was negligible and the amount of traffic sent between
Matrix servers corresponded directly to the size of the overlap regions.

We then conducted a simple user study, using Bzflag, that showed that Matrix is
completely transparent to real game players. Even under heavy load, requiring Matrix to
add servers, game players did not perceive any significant Matrix-induced performance
degradation.

Finally, we performed a simplistic asymptotic analysis of Matrix. This analysis reaf-
firmed the microbenchmarks and suggested that a) Matrix can scale to a large player
population (> 1,000,000 players and 10,000 servers) only if the number of players
in the overlap regions is small relative to the total number of game players, and b)
that Matrix scalability is ultimately limited by the maximum I/O capacity of individual
servers.

5 Related Work

There have been previous attempts at using scalable “grids” of servers to build a dis-
tributed architectures for MMOGs [5,17]. However, these solutions are still mostly in
a formative stage. Peer-to-peer (p2p) architectures have also been proposed as a solu-
tion for MMOGs [12]. In these systems, players form localized groups and exchange
messages directly with other players in the group, thereby allowing the system to scale.
However, these mechanisms are unable to effectively handle hotspots and they do not
clearly separate the game from the infrastructure, requiring each game to be intimately
designed with the p2p network in mind. They also allow players to directly exchange
game messages with one another, compounding the problems associated with collusion
and cheating.

Commercial MMOG systems, such as Everquest [19] and Final Fantasy XI [20],
carefully partition the game world between different servers to reduce the communi-
cation overhead between servers. To handle hotspots, they allocate multiple tightly-
coupled (completely consistent) servers to handle the same partition, an approach that
is neither efficient nor very scalable. Instead, Matrix techniques can be used by these

Matrix: Adaptive Middleware for Distributed Multiplayer Games 399

systems, together with careful static partitioning, to efficiently and effectively handle
hotspots and load fluctuations.

The notion of radius of visibility has been used extensively in the field of computer
graphics where only objects in the immediate field of view are rendered. However, we
are applying this technique to the domain of multiplayer games. The use of localized
consistency has also been used in previous systems to achieve lower latency updates
at the expense of complete correctness. These include distributed shared memory sys-
tems [2,13], databases [1,6], and network protocols [10]. However, unlike these pre-
vious systems, multiplayer games are nearly decomposable. This allows Matrix to use
localized consistency to reduce latency without sacrificing any correctness.

Finally, there have been a number of algorithms to split virtual worlds among dif-
ferent servers. These include algorithms optimized for reducing inter-server communi-
cations [14,15] and for preserving locality [8]. Our work complements these solutions
and Matrix can use these algorithms to perform more optimal splits.

6 Conclusion

In this paper, we have shown that it is possible to build, using localized consistency and
on-demand mechanisms, an easy to use distributed middleware architecture that is able
to satisfy the latency and scalability requirements of MMOGs. We have implemented
Matrix and used its simple API to allow three games (BzFlag, Quake2 and Daimonin)
to use Matrix. The Matrix design is specially attractive because of its layered approach;
by completely shielding the game from the actual mechanisms used to implement con-
sistency, reliability and map partitioning, Matrix allows a game developer to use it with
almost no modifications to the game client, and relatively simple modifications to the
server code.

References

1. Adya, A. and Liskov, B. Lazy consistency using loosely synchronized clocks. Proceedings
of the 16th Annual ACM Symposium on Principles of Distributed Computing (PODC ’97),
Santa Barbara, CA, Aug. 1997.

2. Agarwal, A., Chaiken, D., Johnson, K., Kranz, D., Kubiatowicz, J., Kurihara, K., Lim, B.-H.,
Maa, G., and Nussbaum, D. The MIT alewife machine : A large-scale distributed-memory
multiprocessor. Proceedings of Workshop on Scalable Shared Memory Multiprocessors.
Kluwer Academic, 1991.

3. Armitage, G. Lag over 150 milliseconds is unacceptable. http://gja.space4me.com/
things/quake3-latency-051701.html , May 2001.

4. Basch, J., Guibas, L. J., and Hershberger, J. Data structures for mobile data. Proceedings of
the eighth annual ACM-SIAM symposium on Discrete algorithms, pages 747–756, 1997.

5. Bauer, D., Rooney, S., and Scotton, P. Network infrastructure for massively distributed
games. Proceedings of the 1st workshop on Network and System Support for Games
(Netgames), pages 36–43, Bruanschweig, Germany, May 2002.

6. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., and Silberschatz, A. Update propa-
gation protocols for replicated databases. SIGMOD Record (ACM Special Interest Group on
Management of Data), 28(2):97–108, 1999.

400 R.K. Balan et al.

7. Butterfly.net. The Butterfly Grid. http://www.butterfly.net/, Sept. 2000.
8. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., and Amza, C. Locality aware dynamic

load management for massively multiplayer games. Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming (PPoP), Chicago, IL, June
2005.

9. DFC Intelligence. Challenges and Opportunities in the Online Game Market - Executive
Summary. http://www.dfcint.com/game article/june03article.htm, June 2003.

10. Golding, R. A. A weak-consistency architecture for distributed information services. Com-
puting Systems, 5(4):379–405, Fall 1992.

11. Id Software. Quake 2 Source Code. http://www.idsoftware.com/business/
techdownloads/, Apr. 2002.

12. Knutsson, B., Lu, H., Xu, W., and Hopkins, B. Peer-to-peer support for massively multi-
player games. Proceedings of the 23rd Conference of the IEEE Communications Society
(Infocomm), Hong Kong, China, Mar. 2004.

13. Lenoski, D., Laudon, J., Joe, T., Nakahira, D., Stevens, L., Gupta, A., and Hennessy, J. The
DASH prototype: Implementation and performance. Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 92–103, Gold Coast, Australia,
May 1992.

14. Lui, J. C. S. and Chan, M. F. An efficient partitioning algorithm for distributed virtual envi-
ronment systems. IEEE Transactions on Parallel and Distributed Systems, 13(3):193–211,
2002.

15. O’Connell, K., Dinneen, T., Collins, S., Tangney, B., Harris, N., and Cahill, V. Techniques
for handling scale and distribution in virtual worlds. Proceedings of the 7th ACM SIGOPS
European Workshop, Connemara, Ireland, Sept. 1996.

16. Riker, T. Bzflag source code and online documentation. http://www.bzflag.org/, June
2003.

17. Shaikh, A., Sahu, S., Rosu, M., Shea, M., and Saha, D. Implementation of a service platform
for online games. Proceedings of the 3rd workshop on Network and System Support for
Games (Netgames), Portland, Oregon, Sep 2004.

18. Simon, H. A. The architecture of complexity. Proceedings of the American Philosophical
Society, 106:467–482, 1962.

19. Sony Entertainment. Everquest Live. http://eqlive.station.sony.com/ , Mar. 1999.
20. Square Enix. Final Fantasy XI Online. http://www.playonline.com/ff11us/

index.shtml, Oct. 2003.
21. Square Enix. Final Fantasy XI Online Press Release. http://www.playonline.com/

ff11us/polnews/news1430.shtml , Jan. 2004.
22. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A scal-

able peer-to-peer lookup service for internet applications. Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160. ACM Press, 2001.

23. Toennies, M. Daimonin source code. http://daimonin.sourceforge.net/ , Sept. 2003.
(Version 0.96alpha1).

24. Woodcock, B. S. Graphing the growth of mmogs. http://pw1.netcom.com/∼sirbruce/
Subscriptions.html, Mar. 2004.

Overlay Networks – Implementation
by Specification

Stefan Behnel and Alejandro Buchmann

Databases and Distributed Systems Group,
Darmstadt University of Technology (TUD), Germany

{behnel, buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. Implementing overlay software is non-trivial. Current projects
build overlays or intermediate frameworks on top of low-level networking
abstractions. This leaves implementing the topologies, their maintenance
and optimisation strategies, and the routing to the developer.

We take a novel approach to overlay implementation by modelling
topologies as a distributed database. This approach, named “Node
Views”, abstracts from low-level issues like I/O and message handling.
Instead, it moves ranking nodes and selecting neighbours into the heart of
the overlay software development process. It decouples maintenance com-
ponents in overlay software and allows implementing them in a generic,
configurable way for pluggable integration in frameworks.

1 Introduction

Recent years have seen a large body of research in decentralised, self-maintaining
overlay networks like P-Grid [1], Chord [2], ODRI [3] or Gia [4]. They are com-
monly regarded as building blocks for Internet-scale distributed applications.

Contrary to this expectation, current overlay implementations are built with
incompatible, language specific frameworks on top of low level networking ab-
stractions. This complicates their design and hinders the comparison and in-
tegration of different topologies. Apart from a recently proposed API for the
specific case of structured overlay networks [5], there is little standardisation
effort in the rest of the overlay area. And a common API does by no means
simplify the design of the overlay implementation itself.

Currently, programmers who want to use overlays for their applications must
decide in advance, at a very early design phase, which of the distinct overlay
implementations they want to use and must invest time to understand its specific
usage. This effectively prohibits testing the final product with different topologies
or delivering versions with specialised overlays. Therefore, the actual usefulness
of overlays for application design is currently very limited.

This paper explores the design space of overlay design frameworks and the
abstractions they provide. It proposes an integrative high-level approach at a
data management level rather than the networking and messaging level. Similar
to the way standard DBMS’s have decoupled and modularised today’s server ap-
plications, the presented approach allows for a separation of concerns in overlay
software and for pluggable, decoupled components in overlay design frameworks.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 401–410, 2005.
c© IFIP International Federation for Information Processing 2005

402 S. Behnel and A. Buchmann

Section 2 investigates the major functionality blocks of overlay software and
matches them with the current framework support. Section 3 then presents the
Node Views abstraction that facilitates a higher level design of overlay topolo-
gies and decoupled components. The SQL-like language that we designed for
topology implementation is outlined in section 4. We describe the status of our
implementation in section 5.

2 Functionality of Overlay Software

Overlay networks form a layer for organisation and communication in distributed
applications. This section describes their different levels of functionality as illus-
trated in figure 1.While the development process of overlay software deals with
all of them, only few level are well supported by design aids and frameworks.

The lowest two levels comprise the general operating system support for
Internet-level network I/O and edge-level message passing. These levels are
not specific to overlays and are usually hidden by higher layers.

A number of overlays, such as Bamboo [6], are implemented on top of generic
event-driven state machines like SEDA [7] that model message processing in
Internet servers. While EDSMs were not designed for overlay development, they
still provide a good abstraction level for scalable event processing (see 2.2).

Overlay routing protocols then deal with local routing decisions for scal-
able end-to-end message forwarding. They are distributed algorithms, executed
at each member node, with the purpose of forwarding messages at the overlay
level from senders to receivers. Routing is left out of figure 1 for clarity reasons.
While situated at the message processing layer, it actually uses the topology
rules as explained in the next section.

2.1 Overlay Software from the Topology Perspective

Where current frameworks focus on message forwarding and the protocol design
part of overlay software, we propose raising the abstraction level to topology
design. This is motivated by four more functional levels in overlay software.

Local topology rules play a major role in overlay software which makes
them a very interesting abstraction level. The global topology of an overlay is
established by a distributed algorithm that each member node executes. The
topology rules on each node implement this algorithm by accepting neighbour
candidates or objecting to them. Overlays traditionally implement these rules

Functionality Support in current frameworks
Topology Selection

Node
views

Topology Adaptation
Topology Maintenance (Macedon)
Topology Rules
Message Processing iOverlay,

Macedon

Flow-Graphs, EDSMs, . . .
Message Passing Serialisation, RPC, CORBA, . . .
Network I/O Sockets, TCP/UDP, . . .

Fig. 1. Framework Support for Overlay Software

Overlay Networks – Implementation by Specification 403

implicitly as part of their routing and maintenance algorithms, which is why
frameworks currently ignore this level.

There are two sides to topology rules. Node selection allows an application
to show interest in certain nodes and ignore others based on their status, at-
tributes and capabilities. Generally, applications are only interested in nodes
that they know (or assume) to be alive, usually based on the information when
the last message from them arrived. But not even all locally known live nodes
are interesting to the application that can select nodes for communication based
on quality-of-service requirements. Furthermore, if a heterogeneous application
uses multiple overlays, its participants do not necessarily support all running
protocols. Each node must see the others only in overlays that they support.

Node categorisation is the second part. Where node selection is the black-
and-white decision of seeing a node or not, categorisation determines how nodes
are seen. Nearly all overlay networks know different kinds of neighbours: close
and far ones, fast and slow ones, parents and children, super-nodes and peers,
or nodes that store data of type A, B or C. Node categorisation lets a node
sort other nodes into different buckets to distinguish them. Overlay routing and
other overlay tasks are then implemented on top of the node categorisation.

In current structured overlay networks [1,2,3,6], topology rules are stated
apart from the implementation as a local invariant whose global properties are
either proven by hand or found in experiments. It is a hard problem but also
an interesting question to what extent the process of building routing protocols
from local rules and inferring the guarantees they provide can be automated.

Topology maintenance is the perpetual process of repairing the topol-
ogy whenever it breaks the rules. Above all, this means integrating new nodes
(i.e. selecting and categorising them) and replacing failed ones. Support for this
functionality is very limited among the current frameworks, despite its obvious
importance for self-maintaining overlays.

Topology adaptation is the ability of a given overlay topology to adapt
to specific requirements. As opposed to the error correction of topology mainte-
nance, adaptation handles the freedom of choice allowed by the topology rules.
The rules therefore draw the line between maintenance and adaptation. An ex-
ample is Pastry where evaluations have shown [8] that redundant entries in
the routing table can be exploited for adaptation to achieve better resilience and
lower latency. Topology adaptation usually defines some kind of metric for choos-
ing new edges out of a valid set of candidates. Building the “right” sub-groups
of nodes in hierarchical topologies also fits into this scheme.

Current overlays are designed with some kind of adaptation in mind, whereas
the available frameworks do not provide support for its implementation. What is
needed here is a ranking mechanism for connection candidates. Overlays usually
aim to provide an “efficient” topology. The term efficiency, however, is always
based on a specific choice of relevant metrics, such as end-to-end hop-count
or edge latency, but possibly also the node degree or the expected quality of
query results. The respective metric determines the node ranking which in turn
parametrises the global properties of the topology.

404 S. Behnel and A. Buchmann

Topology selection is the choice of different topologies that an overlay
application can build on. Supporting multiple topologies obviously makes sense
for debugging and testing at design-time. However, it is just as useful at run-
time if an application has to adapt to diverse quality-of-service requirements,
such as different preferences regarding reliability, throughput and latency. A
given topology may excel in one or the other and this specialisation allows it
to provide high performance while keeping a simple design. Topology selection
allows an application to provide optimised solutions for different cases.

Topology adaptation and selection play the most important role for QoS sup-
port in overlays. However, selection obviously relies on the integration of different
overlay implementations to make their topologies available to a single applica-
tion. This is especially necessary to avoid duplication in effort when maintaining
multiple topologies and switching between them. It is not efficient, for example,
to have an application maintain several overlays if each of them independently
sends pings to determine the availability of nodes. Integrative approaches like
Node Views (as presented in section 3) become crucial here.

2.2 Frameworks and Middleware for Overlay Implementation

There have been a number of recent proposals for overlay frameworks and
middleware. Macedon [9] and iOverlay [10] are under development and eval-
uation in the corresponding projects. Other frameworks, like SEDA [7] or JXTA
(http://www.jxta.org), have also been used for overlay implementations, al-
though they do not provide any higher-level support for topologies and other
overlay specific tasks.

iOverlay essentially provides a message switch abstraction for the design of
the local routing algorithm. The neighbours of a node are instantiated as local
I/O queues between which the user provided implementation switches messages.
This generally simplifies the design of overlay algorithms by hiding the lower
networking levels. However, there is no further support for topology rules, main-
tenance or adaptation.

Macedon is a state machine compiler for overlay protocol design and forms
the most interesting approach so far. Event-driven state machines (EDSMs)
have been used over decades for protocol design and specification. Macedon
extends this approach to an overlay specific, C++ based language from which
it generates source code for overlay maintenance and routing. In a number of
different proof-of-concept overlay implementations, this was shown to be very
useful for implementing and testing algorithms for routing and maintenance.

Overlays must operate autonomously. This means that they must configure
themselves and automatically adapt to a changing environment. However, this
is not only a matter of designing a routing protocol. Each node in an overlay
needs to take local decisions. The sum of these local decisions is the distributed
algorithm that maintains the overlay. What are these local decisions based on?

iOverlay bases them on the currently available connections. It does not pro-
vide means for selecting the “right” connections or categorising them, neither
does it support ranking connection candidates for adaptation and fall-back mech-

Overlay Networks – Implementation by Specification 405

anisms. Similarly, Macedon does not support candidate nodes or adaptability of
topologies. Modelling adaptivity in state machines is even likely to be rather
complex and can lead to state explosion. Consequently, in all of these incompat-
ible and language dependent frameworks, the designer is forced to model local
decisions in framework specific source code.

2.3 Local Decisions and Data About Nodes

The local decisions, that each participant in a distributed algorithm takes, rely
on the local view of that node. The local view is a node’s combined knowledge
about the other nodes in the system, above all its neighbours in the topology.

To establish a local view, each node has to keep data about other nodes. Exam-
ples are addresses and identifiers, measured or estimated latencies and references
to data stored on these nodes. Furthermore, it is generally of interest when a
node was last contacted (time-stamps or history) to determine if it is alive.

Data about remote nodes is gathered from diverse sources. Some data can
be determined locally (IP address, ping latency, . . .), while other information
is received in dedicated messages - either directly from the node it describes or
indirectly via hearsay of intermediate nodes. There is often more than one way
of finding equivalent data. Latencies, for example, can be measured (ping) or
estimated [11,12]. A node A knows that a node B is alive if A received a ping
response or other message from B, if it heard about it from other nodes (gossip),
etc. Different quality-of-service levels in an overlay application can trade load
against certainty by selecting different sources.

Topology rules, maintenance, adaptation and selection mainly deal with man-
aging data about nodes. The topology rules put constraints on the data about
possible neighbour nodes. Maintenance needs to keep data about fall-back can-
didates that may currently not be neighbours. It also deals with gathering data
about nodes that joined or finding conflicts between local and remote views.
Adaptation does a ranking between candidate nodes before it decides about
the instantiation as neighbours or fall-backs. Topology selection then switches
between different views, i.e. ranking metrics and sets of neighbours.

A data abstraction is obviously a good way of dealing with this diversity of
sources, data characteristics and data management tasks. It allows an overlay to
lift dependencies on specific algorithms and to take advantage of the different
characteristics of different implementations as the need arises.

3 Node Views, the System Model

We propose to design overlay frameworks as data management systems using
the well-known Model-View-Controller pattern [13]. The model is an active
local database on each node, a central storage place for all data that a node
knows about remote nodes. Once the data is stored in a single place, software
components no longer have to care about any data management themselves.
They benefit from a locally consistent data store and from notifications about
changes.

406 S. Behnel and A. Buchmann

The major characteristics of the overlay topology are then defined in views of
the database. They represent sets of nodes that are of interest to the local node
(such as its neighbours). Different views provide different ways of selecting and
categorising nodes, and different ways of adapting topologies. Topology selection
is then mainly a matter of selecting the right set of views.

As the views form the most important overlay specific part of the imple-
mentation, they are also the most crucial part for an abstract and framework-
independent specification. Their definition is the main goal of the Slosl language
that is briefly presented in the next section.

The controllers are tiny EDSM states that operate on the views. They are
triggered by events like incoming or leaving messages, timers or changes in the
views and update the database according to the view definitions. They are the
actual maintenance components that perform simple tasks like updating single
attributes of nodes when new data becomes available or sending out messages
to search new nodes that match the current view definitions. Note that the
controllers do not aim to provide a global view for the model. They continuously
update and repair the restricted and possibly globally inconsistent local view.
The node database decouples them from other parts of the overlay software and
the node views provide them with simplified, decoupled layers and a common
interface to make them generic, reusable components in frameworks.

Another very important part of the architecture is an expressive event system
for view events and messages. A notification about changes in views is fired
whenever nodes enter or leave a view, or when visible node attributes change.
Views filter notifications and software components only react to events from the
views that they are subscribed to.

Components like message handlers or routers are still part of the overlay spe-
cific implementation, but they can now respond to specific events and use node
views for their decisions. Defining messages as hierarchical structures allows com-
ponents to subscribe to data fields instead of monolithic messages. This further
helps in writing generic components. Database and views decouple them from the
maintenance components and simplify their design considerably. Even more so,
as this architecture can provide powerful operations like topology selection and

Node
database

Controllers

configure

update tr
ig

ge
r

View
definitions Views

Nodebase for define

Overlay Routing

Overlay Application

provides/activates uses

Messages

Messages

Fig. 2. Components of the System Model

Overlay Networks – Implementation by Specification 407

adaptation with a single view selection command. The abstract view definition
becomes the central point of control for the characteristics of the overlay.

4 SLOSL, the View Specification Language

For the view definitions that implement topology rules and adaptation,
we developed Slosl, the SQL-Like Overlay Specification Language [14]. We
present it here using a simple example, an implementation of the Chord graph [2].

1 CREATE VIEW c h o r d f i n g e r t a b l e
2 AS SELECT node . id , node . r i n g d i s t , bd i s t=node . r i n g d i s t −2i

3 RANKED lowest (backups+i , node . msec la tency / node . r i n g d i s t)
4 FROM node db
5 WITH l o g k = log (|K |) , backups = 1
6 WHERE node . suppor t s chord = true AND node . a l i v e = true
7 HAVING node . r i n g d i s t in (2i : 2i+1)
8 FOREACH i IN (0 : l o g k)

The statements CREATE VIEW, SELECT, FROM and WHERE behave
as in SQL. The WHERE clause specifically implements node selection based
on node attributes. Note that Slosl is not concerned with the source of the
information that node attributes contain. It only constrains and categorises the
presentation of locally available data. The remaining clauses do the following:

WITH. This clause defines variables or options of this view that can be set at
instantiation time and changed at run-time. Here, log k will likely keep its
default value, while backups allows adding redundancy at runtime.

HAVING–FOREACH. This pair of clauses aggregates the selected nodes into
buckets to implement node categorisation. In the example, the (constant)
node attribute ring dist refers to the logical distance between the local node
and the remote node. The HAVING expression states that it must lie within
the given half-open interval (excluding the highest value) that depends on
the bucket variable i.

The FOREACH part defines the available node buckets by declaring this
bucket variable over a range (or a list, database table, . . .) of values. It defines
either a single bucket of nodes, or a list, matrix, cube, etc. of buckets. The
structure is imposed by the occurrence of zero or more FOREACH clauses,
where each clause adds a dimension. Nodes are selected into these buckets
by the optional HAVING expression.

The example shows a case where the SELECT clause gives nodes a new
attribute bdist representing their position inside the bucket. Calculating
attribute values is particularly useful for HAVING expressions that allow a
node to appear in multiple buckets of the same view.

RANKED. To support topology adaptation, the nodes in the
chord fingertable view are chosen by the ranking function lowest as
the backups + i top node(s) of each bucket that provide the lowest value

408 S. Behnel and A. Buchmann

for the given expression. Rankings are often based on the network latency,
but any arithmetic expression based on node attributes can be used. The
expression in the example implements a simple tradeoff between the network
latency and the distance travelled in the ID space. Other overlays may require
more complex expressions or user defined functions in the ranking expression.

5 Implementation, Current and Future Work

We are developing two different proof-of-concept implementations of this archi-
tecture as overlay execution environments. A first, light-weight prototype was
written in Python, while our current work builds on the PostgreSQL database.
It is targeted as a reference system rather than a high performance one. Once
the APIs have become stable enough, we can let the architecture benefit from
standard approaches used in Internet servers and application server designs.

As a major step towards simplified, abstract overlay development, we have
designed a graphical editor (fig. 3) based on our system model. It allows the
framework independent specification of overlay systems and outputs abstract
overlay specifications in OverML [14], a new XML specification language for
node attributes, Slosl statements, messages and EDSM flow descriptions.

Attributes/Messages Slosl statements Event flows

Fig. 3. The Slosl Overlay Workbench

For the future, we hope for diverse implementations of OverML compatible
frameworks as well as mappings to existing frameworks. The high abstraction
level easily allows specialised environments for simulation and analysis, testing
and debugging, and different deployment scenarios – without changes to the
overlay specification. Deployment environments can use a rather lightweight or
custom database. An interesting topic to investigate here is (partial) source
code generation from Slosl statements. This should allow customised overlay
implementations for very efficient deployment.

Simulators and debuggers may prefer a single global database to enable trac-
ing, verifying and visualising the system state. Recent proposals for scalable
simulation environments [15] already take a layered approach. Simulations are
carried out at a higher abstraction level and are then mapped to the network
link level. We propose the database layer as a comfortable abstraction level.

Overlay Networks – Implementation by Specification 409

Future work will also include better mechanisms for view and query optimisa-
tion. Our current PostgreSQL implementation maps Slosl statements to rather
complex, generic SQL queries. Building on the large body of literature on query
modification and optimisation, we can imagine a number of ways to investigate
for pre-optimising these statements. This is most interesting for views of views
and for merging view definitions when sending them over the wire (like in gossip
overlays [16] or hierarchical environments [17]).

6 Conclusion

This paper presented Node Views, a novel approach to overlay design frameworks
that enables support for topology rules, maintenance, adaptation and selection
at a very high level. Based on an active database, it allows for a separation of
topology implementation, maintenance and message handling. This facilitates
the development of generic components which enables pluggable development
and integration of overlay systems.

The Slosl language lifts the abstraction level for overlay design from messag-
ing and routing protocols to the topology level. Its short, SQL-like statements
meet the requirements for design-time specification, topology implementation
and run-time adaptation of highly configurable overlay systems.

The current state of our implementation does not allow a performance com-
parison between the available hand-optimised overlay implementations andSlosl
based ones. In any case, the high abstraction level of Node Views will likely lead
to slower systems in direct comparisons - but in a couple of hours implementation
time compared to weeks for writing a traditional overlay from scratch.

Even compared to the days it takes to understand and start using one of the
available overlay systems, Slosl wins by being much easier to read and allowing
overlays to gain orders of magnitude in configurability, adaptability and inte-
gration. The Slosl Overlay Workbench makes overlay software easy and fast
to write and shifts more of the development time towards testing and optimis-
ing the topology itself and choosing the right maintenance strategies. As with
any other high-level language, long-term optimisations of OverML compatible
platforms will improve the performance of overlays using them.

The Node Views approach encourages completely new ways of designing and
testing overlays. Modifying compact Slosl statements allows the designer to
easily test and compare the impact of different selection and ranking functions
on an application. Switching between different views and controllers, at design-
time or run-time, enables overlay applications to adapt to the broad range from
static to dynamic environments and to diverse quality-of-service requirements.

References

1. Aberer, K.: P-Grid: A Self-Organizing access structure for P2P information sys-
tems. In: Proc. of the Sixth Int. Conference on Cooperative Information Systems
(CoopIS 2001), Trento, Italy. (2001)

410 S. Behnel and A. Buchmann

2. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proc. of the 2001
ACM SIGCOMM Conference, San Diego, California, USA (2001)

3. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of struc-
tured peer-to-peer systems: Routing distances and fault resilience. [19]

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like p2p systems scalable. [19]

5. Dabek, F., Zhao, B., Druschel, P., Stoica, I.: Towards a common API for structured
peer-to-peer overlays. [18]

6. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proc. of the USENIX Annual Technical Conference, Boston, MA, USA (2004)

7. Welsh, M., Culler, D., Brewer, E.: SEDA: An architecture for well-conditioned,
scalable internet services. In: Proc. of the 18th ACM symposium on operating
systems principles, Banff, Alberta, Canada (2001)

8. Zhang, R., Hu, Y.C., Druschel, P.: Optimizing routing in structured peer-to-peer
overlay networks using routing table redundancy. In: Proc. of the 9th Int. Work-
shop on Future Trends of Distributed Computing Systems (FTDCS’03), San Juan,
Puerto Rico (2003)

9. Rodriguez, A., Killian, C., Bhat, S., Kostić, D., Vahdat, A.: MACEDON: Method-
ology for automatically creating, evaluating, and designing overlay networks. In:
Proc. of the USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation (NSDI2004), San Francisco, CA, USA (2004)

10. Li, B., Guo, J., Wan, M.: iOverlay: A lightweight middleware infrastructure for
overlay application implementations. In: Proc. of the Int. Middleware Conference
(Middleware2004), Toronto, Canada (2004)

11. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: Proc. of the 2004 ACM SIGCOMM Conference, Portland,
Oregon, USA (2004)

12. Eugene Ng, T.S., Zhang, H.: Predicting internet network distance with coordinates-
based approaches. In: INFOCOM 2002, New York, USA (2002)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

14. Behnel, S., Buchmann, A.: Models and languages for overlay networks. In: Proc. of
the 3rd Int. VLDB Workshop on Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P 2005), Trondheim, Norway (2005)

15. Birck, H., Heckmann, O., Mauthe, A., Steinmetz, R.: The two-step overlay network
simulation approach. In: Proc. of SoftCOM, Split, Croatia. (2004)

16. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: Build-
ing an efficient and stable P2P DHT through increased memory and background
overhead. [18]

17. Darlagiannis, V., Mauthe, A., Steinmetz, R.: Overlay design mechanisms for het-
erogeneous, large scale, dynamic P2P systems. Journal of Network and Systems
Management, Special Issue on Distributed Management 12 (2004)

18. The 2nd International Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley,
CA, USA (2003)

19. The 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), Karlsruhe, Germany (2003)

Adaptive Load Diffusion for Stream Joins

Xiaohui Gu and Philip S. Yu

IBM T. J. Watson Research Center,
Hawthorne, NY 10532

{xiaohui, psyu}@ us.ibm.com

Abstract. Data stream processing has become increasingly important
as many emerging applications call for sophisticated realtime process-
ing over data streams, such as stock trading surveillance, network traf-
fic monitoring, and sensor data analysis. Stream joins are among the
most important stream processing operations, which can be used to de-
tect linkages and correlations between different data streams. One major
challenge in processing stream joins is to handle continuous, high-volume,
and time-varying data streams under resource constraints. In this paper,
we present a novel load diffusion system to enable scalable execution of
resource-intensive stream joins using an ensemble of server hosts. The
load diffusion is achieved by a simple correlation-aware stream partition
algorithm. Different from previous work, the load diffusion system can
(1) achieve fine-grained load sharing in the distributed stream processing
system; and (2) produce exact query answers without missing any join
results or generate duplicate join results. Our experimental results show
that the load diffusion scheme can greatly improve the system through-
put and achieve more balanced load distribution.

1 Introduction

Many emerging applications call for sophisticated realtime processing over data
streams, such as stock trading surveillance, network traffic monitoring, and sen-
sor data analysis. In these applications, data streams from external sources
flow into a stream processing system (e.g., [5,11,12]) where they are processed
by different continuous query processing elements called operators. One of the
most important continuous query operators is sliding-window join between two
streams S1 and S2, called stream join. The output of the stream join contains
every pair of tuples (i.e., data records) (s1, s2), s1 ∈ S1, s2 ∈ S2 that satisfy a join
predicate. To handle infinite streams, each stream is associated with a sliding
window to limit the scope of stream joins. Indeed, for many applications, we only
need to correlate each newly arrived tuple with recently arrived tuples on the
other stream. The stream join can be used to detect linkages and correlations
between different data streams, which has many interesting applications. For
example, let us consider two data streams consisting of phone call records and
stock trading records, respectively. A sliding-window join between the suspicious
phone calls and anomalous trade records over the common attribute “trade iden-
tifier” can be used to generate insider trading alerts. Other application examples

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 411–420, 2005.
c© IFIP International Federation for Information Processing 2005

412 X. Gu and P.S. Yu

of stream joins include (1) correlate similar images between two news video for
hot topic detection; and (2) associate measurements (e.g., temperature, chemical
concentration) from different sensors for environment monitoring and problem
diagnosis.

In many cases, stream applications require immediate on-line results, which
implies that query processing should use in-memory processing as much as pos-
sible. However, given high stream rates and large window sizes, even a single
sliding-window join operator can have large memory requirement [7]. Moreover,
some query processing such as video analysis can also be CPU-intensive. Thus,
a single server may not have enough resources to produce accurate join results
while keeping up with high input rates. There are two basic solutions to address
the challenge: shedding some workload by providing approximate query results
[8,7], or offloading part of workload to other servers. Our research studies the lat-
ter approach, focusing on providing load diffusion scheme to efficiently execute
stream joins using a cluster of servers connected by high-speed networks.

Distributed stream processing has recently received much research attention.
In [10], Shah et al. studied intra-operator load distribution for processing a sin-
gle windowed aggregation operator on multiple servers. However, their solution
was not based on the sliding-window stream join model. In [9], Xing et al. pro-
posed a dynamic load distribution framework that can provide coarse-grained
load balancing at inter-operator level. However, the inter-operator load distribu-
tion alone is not sufficient since it does not allow a single operator to collectively
use resources on multiple servers. In [4], we propose an optimal component com-
position scheme for distributed stream processing systems that can achieve both
QoS support and load balancing. In [2], Balazinska et al. proposed a contract-
based load management framework that can migrate workload among different
stream processing sites based on pre-defined contracts. Different from the above
work, this work focuses on supporting fine-grained load distribution, called load
diffusion for sliding-window stream joins. For producing exact join results, the
load diffusion system preserves a correlation constraint that correlated tuples
must be sent to the same server.

In this paper, we present a novel load diffusion middleware system to dynam-
ically distribute stream join workload among a cluster of servers. Our principle
goal is to provide scalable stream joins by efficiently utilizing all available re-
sources in the server cluster. To achieve the goal, we propose a simple correlation-
aware stream partition algorithm called single stream partition (SSP). The SSP
algorithm dynamically spreads the tuples of one stream called the master stream
among all hosts for load diffusion, and replicates the other stream called the slave
stream for preserving the correlation constraint. To adapt to dynamic stream en-
vironments, the SSP algorithm can adaptively switch the master stream and the
slave stream according to the stream rate changes. We formally prove the correct-
ness of the SSP algorithm and analyze its properties. The adaptation strategy
is then derived based on the formal analysis.

We implement the load diffusion scheme as a middleware proxy service. The
load diffusion proxy virtualizes a cluster of stream processing servers into a

Adaptive Load Diffusion for Stream Joins 413

unified stream processing service. Analogous to previous middleware systems
(e.g., [1]), the load diffusion middleware aims at providing a managed and trans-
parent stream processing service, which hides complicated system management
details from upper-level application developers. The major operation performed
by the load diffusion proxy is to route tuples to proper servers according to
the load diffusion algorithm and the load conditions of different servers. We
have implemented the proposed load diffusion algorithms and conduct extensive
experiments on a distributed stream processing simulation testbed. The exper-
imental results show that the load diffusion scheme can greatly improve the
system throughput and achieve more balanced load distribution compared to
previous approaches.

The rest of the paper is organized as follows. Section 2 introduces the system
model. Section 3 presents the correlation-aware stream partition algorithms.
Section 4 presents an experimental evaluation. Finally, the paper concludes in
Section 5.

2 System Model

2.1 Stream Processing Model

We now briefly describe the basic model of sliding-window stream joins illus-
trated by Figure 1 (a). A data stream, denoted by Si, consists of a sequence of
tuples denoted by si ∈ Si. In a stream Si, a variable number of tuples arrive in
each time unit. We use ri to denote the average arrival rate of the stream Si.
In a dynamic stream environment, the stream rate ri can change over time. We
assume that each tuple si ∈ Si carries a time-stamp si.t to denote the time when
the tuple arrives on the stream Si. We use Si[Wi] to denote a sliding window
on the stream Si, where Wi denotes the length of the window in time units.
At time t, we say si belongs to Si[Wi] if si arrives on Si in the time interval
[t − Wi, t]. The basic stream join operator considered in this paper is sliding-
window symmetric join between two streams S1 and S2 over a common attribute
A, denoted by Ji = S1[W1]
�A S2[W2]. The output of the join consists of all

(b) Distributed stream join architecture

S1

S1 [W1], W 1 = 4

P2

P1

time

tuple S1 S1 S1 S1 S1 S1 S1 S1 S1

1 2 3 4 5 6 7 8 9

S2

S2 [W2], W2 = 2

S2 S2 S2 S2 S2 S2 S2 S2 S2

1 1 2 2 3 3 4 4 5time

tuple

expired

(a) Sliding-window joins

Stream processing server
cluster

Minicomputer

Load
diffusion

proxy

Server Server Server

Server Server Server

J1,1 J3,1
J3,3

J1,2

v1

v2

v3
v5

v6

J3,2

S1

S2

S1,1

S1,2

S2,1

S2,2

v4

Fig. 1. The load diffusion system model

414 X. Gu and P.S. Yu

pairs of tuples (s1, s2) such that s1.A = s2.A and s2 ∈ S2[W2] at time s1.t (i.e.,
s2.t ∈ [s1.t − W2, s1.t]) or s1 ∈ S1[W1] at time s2.t (i.e., s1.t ∈ [s2.t − W1, s2.t]).
Each processing between the two tuples s1 and s2 is called one join operation.
Each join operator maintains two queues Q1 and Q2 for buffering incoming tuples
from the streams S1 and S2, respectively. When a new tuple si ∈ Si, 1 ≤ i ≤ 2
arrives, it is inserted into the corresponding queue Qi if Qi is not full. Otherwise,
the system either drops the newly arrived tuple or replace an old tuple in the
buffer with the newly arrived tuple. The tuples in both queues Q1 and Q2 are
processed according to the temporal order, i.e., if s1.t ∈ Q1 < s2.t ∈ Q2, s1 is
processed first. Each queue Qi, i = 1, 2 maintains a pointer pi to refer to the
tuple currently processed by the join operator.

The sliding-window join algorithm processes a tuple s1 ∈ Q1 with the fol-
lowing steps: (1) update Q2 by removing expired tuples. A tuple s2 is expired
if (a) it arrives earlier than s1.t − W2 and (b) it has been processed by the join
operator (i.e., p2 points to a tuple arrived later than s2); (2) produce join results
between s1 and S2[W2], denoted by s1
�A S2[W2] by comparing s1.A and s2.A,
∀s2 ∈ S2[W2]; (3) update the pointer p1 to refer to the next tuple in Q1; (4)
decide which tuple to process next by comparing s1.t and s2.t, where s1 and
s2 are the tuples pointed by p1 and p2, respectively. A symmetric procedure is
followed for processing a tuple s2 in the queue Q2 of the stream S2.

2.2 System Architecture

The distributed stream processing system consists of a cluster of servers con-
nected by high-speed networks. Each server node, denoted by vi, has a limited
memory capacity Mi for buffering tuples, and a certain CPU processing speed
that can process on average Ni join operations per time unit. Data streams
are pushed into the distributed stream processing system from various exter-
nal sources such as temperature sensors, stock tickers, and video cameras. The
distributed stream processing system appears to a client as a unified stream
processing service to serve a large number of continuous query processing over
high volume data streams. The push-based stream environment has two unique
features: (1) the tuples of a single stream can arrive in a bursty fashion (i.e., a
large number of tuples can arrive in a short period of time); and (2) tuples are
pushed into the system where data arrivals cannot be controlled by the system.
The distributed stream processing system needs to efficiently utilize all available
resources to achieve the best possible throughput for keeping up with the high
arrival rates.

The architecture of the distributed stream processing system, illustrated by
Figure 1 (b), consists of a load diffusion proxy and an ensemble of servers. The
load diffusion proxy serves as a gateway of the distributed stream processing sys-
tem to distribute stream processing workload across all servers. For each stream
join request, the load diffusion proxy selects a number of servers to instantiate the
join operator. The load diffusion proxy intercepts input streams and re-directs
them to proper servers responsible for handling the stream joins. Due to the
memory and CPU speed limits, a single server can only accommodate a certain

Adaptive Load Diffusion for Stream Joins 415

data arrival rate in order to keep the unprocessed data in the memory. When
tuples arrive too fast, the server has to drop tuples using some load shedding
technique (e.g., [8]). However, dropping data can affect the accuracy of stream
join results. Thus, the goal of our load diffusion scheme is to avoid dropping data
as much as possible by spreading stream join workload across multiple servers.

The load diffusion proxy realizes fine-grained and balanced workload distri-
bution using stream partitions. The stream partition algorithm can continuously
split a high-volume stream into multiple substreams, each of which are sent to
different servers for concurrent processing. Conceptually, the load diffusion proxy
decomposes a resource-intensive join operator into multiple sub-operators exe-
cuted on different servers. Each sub-operator only processes a subset of tuples on
the original input streams. For example, in Figure 1 (b), the load diffusion proxy
splits the stream S1 into two substreams S1,1 and S1,2 that are sent to the server
v1, and v2, respectively. Each substream has lower stream rate than the original
stream. Different from load distribution for traditional distributed computing
environments, our load diffusion scheme needs to send correlated data to the
same server, which is called the correlation constraint. By observing the correla-
tion constraint, the load diffusion proxy can maintain the full accuracy of stream
joins. For example, let us consider a windowed stream join S1[W1]
�A S2[W2].
If the load diffusion proxy sends a tuple s1 to a server node vi, the correlated
data include those tuples s2 ∈ S2 such that s2 ∈ S2[s1.t − W2, t].

3 Replication-Assisted Single Stream Partition

The basic idea of the single stream partition (SSP) algorithm is to split one
stream for load distribution and replicate the other stream for preserving the
correlation constraint, which is illustrated by Figure 2. The partitioned stream
is called the master stream and the replicated stream is called the slave stream.
Each tuple of the slave stream is replicated on all the server hosts that are allo-
cated to the join operator. Thus, we can freely partition the master stream since
all the correlated tuples required by the partitioned stream are on the replicated
stream, which have replicas on all server hosts. Figure 3 shows the pseudo-code
of the SSP algorithm, which is described using an example as follows. Let us
consider a join operator Ji = S1[W1]
�A S2[W2] between the two streams S1
and S2 whose average arrival rates are r1 and r2, respectively. Suppose the sys-

S2

S1S1S1 S1 S1 S1 S1 S1 S1 S1

91 2 3 4 5 6 7 8

S2 S2 S2 S2 S2 S2 S2 S2 S2

1 2 3 4 5 6 7 8 9

time

tuple

time

tuple S2

S1

0

0

Replicated on all nodes

Tuples to
V1

Tuples to
V2

Tuples to
V3

Tuples to
V4

Fig. 2. The SSP example

Procedure SSP (S1, S2, {v1, ..., vk})
1. receive tuples for S1 and S2

3. ∀s1 ∈ S1, S1: master stream
4. send s1 to the least-loaded host vb

5. ∀s2 ∈ S2, S2: slave stream
6. send s2 to all server hosts

Fig. 3. The SSP algorithm

416 X. Gu and P.S. Yu

tem allocates the host set {v1, ..., vk} for executing the join operator Ji. Let us
assume that S1 is the master stream and S2 is the slave stream. For each tuple
s1 arriving at the stream S1, the SSP algorithm sends s1 to one of the server
hosts based on a certain selection policy (e.g., round-robin or least-loaded-first).
For each tuple s2 arrived at the stream S2, the SSP algorithm replicates s2
into k copies, each of which is sent to the k servers, respectively. By spreading
the tuples of stream S1 among all k servers, the workload of the join operator
Ji = S1[W1]
�A S2[W2] is diffused among all k servers since each server only
processes a subset of all required join operations.

We now formally prove the correctness of the SSP algorithm. We define
that a stream partition algorithm is correct if it executes the same set of join
operations as the original join operator. We use C(Ji) and C′(Ji) to denote
the sets of join operations performed by the original join operator and the join
operations performed by the diffused join operator, respectively. We prove the
correctness of the SSP algorithm by showing that C(Ji) = C′(Ji).

Theorem 1. Let C(Ji) and C′(Ji) denote the sets of join operations performed
by the original join operator and the new join operator diffused by the SSP al-
gorithm, respectively. We have C(Ji) = C′(Ji).

Proof. We first prove (1) C(Ji) ⊆ C′(Ji) by showing that ∀s1, if s1
�A S2[W2] ∈
C(Ji), then s1
�A S2[W2] ∈ C′(Ji), and ∀s2, if s2
�A S1[W1] ∈ C(Ji), then
s2
�A S1[W1] ∈ C′(Ji). Suppose the SSP algorithm sends s1 to the server vi.
Because SSP replicates the stream S2 on all servers, S2[W2] must be present
on the server vi, too. Thus, s1
�A S2[W2] ∈ C′(Ji). We now prove ∀s2, if
s2
�A S1[W1] ∈ C(Ji), then s2
�A S1[W1] ∈ C′(Ji). For any s2 ∈ S2, s2 needs
to join every tuple in S1[W1]. Suppose SSP sends s1 ∈ S1[W1] to the server vi.
Because s2 is also present at vi, we have s2
�A s1 ∈ C′(Ji). By aggregating all
the results of s2
�A s1, ∀s1 ∈ S1[W1], we have s2
�A S1[W1] ∈ C′(Ji). Thus,
we have C(Ji) ⊆ C′(Ji). We then prove (2) C′(Ji) ⊆ C(Ji) by showing that
∀s1, if s1
�A S2[W2] ∈ C′(Ji), then s1
�A S2[W2] ∈ C(Ji), and ∀s2, if s2
�A

S1[W1] ∈ C′(Ji), then s2
�A S1[W1] ∈ C(Ji). The proof is straightforward since
any join operation in C′(Ji) follows the windowed join definition, which thus
should appear in C(Ji), too. Because ∀s1 ∈ S1, s1 is only sent to one server,
two different servers do not perform duplicated join operations. Thus, we have
C′(Ji) ⊆ C(Ji). Combining (1) and (2), we have C(Ji) = C′(Ji). �

We now analyze the properties of the SSP algorithm. Since the number of to-
tal join operations is not changed by the SSP algorithm, each server in {v1, ..., vk}
only processes on average one k′th of the original join operations. One advan-
tage of the SSP algorithm is that it can achieve the finest-grained spreading
for the master stream at a per-tuple basis. By splitting the master stream S1
into k substreams, the SSP algorithm can reduce the resource requirements for
individual servers. Let r1 denote the arrival rate of the master stream S1. Each
sub-stream of S1 has an average arrival rate of r1/k. Thus, in addition to reduce
the processing workload, the SSP algorithm can reduce (1) memory requirement

Adaptive Load Diffusion for Stream Joins 417

for buffering tuples in the sliding windows and (2) bandwidth requirement for
receiving tuples.

Theorem 2. Let r1 and r2 denote the rates of the two joined streams S1 and S2.
Let W1 and W2 denote the sliding-window sizes of S1 and S2. Let m denote the
average tuple size. Let k denote the server number. Let ΔM and ΔB denote the
average memory reduction, average bandwidth reduction, and average processing
load reduction at each server node compared to the original join operator. We
have

ΔM =
k − 1

k
· m · r1 · W1 (1)

ΔB =
k − 1

k
· m · r1 (2)

Proof. Without load diffusion, the original join operator is executed on a single
server vi. The server needs a memory space for buffering the tuples in the two
sliding windows S1[W1] and S2[W2], which can be calculated as m · (r1 · W1 +
r2 ·W2). The server needs m · (r1 + r2) bandwidth for receiving the tuples. With
load diffusion, the tuple arrival rate of the stream S1 at each server is reduced to
r1
k . The memory space for buffering the tuples in the sliding windows at a single
server is reduced to m · (r1

k · W1 + r2 · W2). The bandwidth requirement at each
server is reduced to m · (r1

k + r2). Thus, the average memory reduction at each
server is ΔM = m · (r1 ·W1 + r2 ·W2)−m · (r1

k ·W1 + r2 ·W2) = k−1
k ·m · r1 ·W1.

The average bandwidth reduction at each server is ΔB = k−1
k · m · r1. �

We now analyze the overhead of the SSP algorithm. Since the SSP algorithm
replicates the tuples of the slave stream S2 on all allocated servers, the load
diffusion proxy pushes more tuples into the server cluster than the original input
streams. The system needs to spend part of CPU cycles on processing these extra
tuples such as receiving the tuple from the network, extracting the time stamp
and sequence number, dropping the tuple if not needed, inserting the tuple into
the queue if it is useful and memory is not full, and replacing an old tuple if
memory is full. We define the overhead of the SSP algorithm as the number of
these extra tuples. We can easily derive that the overhead of the SSP algorithm
is (k−1)·r2 since only S2 is replicated on (k−1) extra hosts. In order to minimize
the algorithm overhead, the SSP algorithm adaptively selects the stream with
lower rate as the master stream, and the other stream as the slave stream. The
load diffusion proxy estimates the arrival rate of each stream by counting the
number of arrived tuples on each stream within a sampling period. The average
arrival rate of the input stream can be estimated by dividing the tuple number
over the sampling period.

4 Experimental Evaluation

4.1 Experiment Setup

We have implemented the load diffusion middleware proxy that executes the
proposed stream partition algorithm. We conduct experiments to evaluate the

418 X. Gu and P.S. Yu

performance of the load diffusion proxy using a simulated stream processing
cluster and a variety of stream join workloads. The source streams first arrive the
load diffusion proxy and then directed to different server hosts for join processing.
Each server executes the sliding-window join algorithm described in Section 2.1.
The memory space of each server is randomly set in the range of [1000, 2000]
tuples. The CPU speed of each server is distributed in the range of [1000, 5000]
MIPS. Different values reflect the heterogeneity among different servers. The
average CPU cost to process a join operation is set as 50 MIPS. The average
CPU cost for processing each tuple upon receiving (i.e., insert the new tuple,
drop the new tuple, or replace an old tuple with the new tuple) is set as 10
MIPS. The tuples on the input streams Si, i = 1, 2 are generated at an average
rate of ri tuples per second. We use the same tuple arrival model as [7] where
the inter-arrival time is uniformly selected at random between 1/2ri and 2/ri

time units. Our experiments use different stream rates ri to represent dynamic
workloads. For comparison, we use the following metrics: (1) throughput that is
defined as the number of join operations finished by all servers over a period of
time, and (2) effective CPU utilization that is defined by the ratio between the
CPU cycles spent on the join processing at a server per second over the server’s
CPU capacity. We use LLF-Distribution to denote the traditional least-loaded-
first load distribution algorithm that instantiates a join operator on a single
least-loaded server. In all experiments, we use W1 = W2 = 10 seconds. Each
simulation run lasts 5000 seconds.

4.2 Results and Analysis

We first evaluate the scaling property of the SSP algorithm. The experiment
executes 10 join operators using a 100 node heterogeneous cluster. The stream
rates r1 and r2 of each join operator are randomly selected from the range of
[5,20] tuples/second. Figure 4 shows the throughput of different algorithms as we
gradually increase the number of servers allocated to each join operator. Each
throughput value represents the total number of join operations performed by the
system during the whole 5000-second simulation duration. The system randomly
selects k servers for each join operator given the number of servers allocated to
it. We observe that the SSP algorithm achieves best performance when each join
operator is allocated with about 15 servers. The reason is that the overhead of
the SSP algorithm increases proportionally to the number of allocated servers. In
contrast, the throughput of the LLF-Distribution algorithm is unchanged during
the above experiment since each join operator can only use one server. Figure 5
shows the average effective CPU utilization results as we gradually increase the
number of servers allocated to each stream join. We observe that in the SSP
algorithm, the average CPU utilization first increases as the algorithm spread
the workload among all servers, and then decreases when more than 15 servers
are used for each join operator since all servers are overwhelmed by excessive
overhead tuples.

We then evaluate the load balancing property of the SSP algorithm. This
experiment executes two stream join operators on a ten-node heterogeneous

Adaptive Load Diffusion for Stream Joins 419

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

server number per operator

th
ro

ug
ht

 (
M

 jo
in

op

er
at

io
ns

)

SSP LLF-Distribution

Fig. 4. Throughput results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 50

server number per operator

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n

SSP LLF-Distribution

Fig. 5. CPU utilization results

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

server ID

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n

SSP LLF-Distribution

Fig. 6. Load balancing results

49

50

51

52

53

54

55

50 550 1050 1550 2050 2550 3050 3550 4050 4550

time (second)

th
ro

ug
hp

ut
 (

K
 jo

in
 o

pe
ra

tio
ns

)

Adaptive SSP static SSP

Fig. 7. Adaptation results

cluster. Figure 6 shows the average effective CPU utilization of the ten server
nodes after the 5000 second simulation period. We observe that the SSP algo-
rithm can achieve more balanced load distribution than the LLF-Distribution
algorithm that can only perform load balancing at inter-operator level not at the
intra-operator level. Our last experiment evaluates the adaptation strategy. The
experiment runs ten stream join operators on a 100-node cluster. In the SSP
algorithm, each join is allowed to use 5 servers. The initial average stream rates
r1 and r2 are randomly selected from the range of [5,20] tuples/second. We then
dynamically change the average stream rates every 500 seconds. The throughput
value is sampled every 50 seconds. The throughput value at time t records the to-
tal number of join operations performed by the whole server cluster between time
[t−50, t]. Figure 7 shows the adaptation results of the SSP algorithm that dynam-
ically switches the master stream and the slave stream based on the rate changes.
We observe that the adaptive SSP consistently achieves better performance than
the static SSP algorithm that always uses the same master and slave streams.

5 Conclusion

In this paper, we presented a novel load diffusion middleware proxy to enable dis-
tributed execution of resource-intensive stream joins using a cluster of servers.
To the best of our knowledge, this is the first work that studied fine-grained

420 X. Gu and P.S. Yu

load management problem for sliding-window stream joins. We proposed a sim-
ple correlation-aware stream partition algorithm that is proved to preserve the
stream join accuracy while spreading the workload among distributed servers.
Our experimental results show that the load diffusion scheme can greatly improve
the system throughput and achieve balanced load distribution. For future work,
we will develop more efficient and sophisticated stream partition algorithms and
extend the system to support multi-way stream joins.

References

1. C. Amza, A. Cox, W. Zwaenepoel. Consistent Replication for Scaling Back-end
Databases of Dynamic Content Web Sites, Proc. of the ACM/IFIP/Usenix Mid-
dleware Conference, June, 2003.

2. M. Balazinska, H. Balakrishnan, M. Stonebraker: Contract-based Load Manage-
ment in Federated Distributed Systems, Proc. of 1st Symposium on Networked
Systems Design and Implementation (NSDI), March, 2004.

3. G. Cybenko: Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7(2):279-301, 1989.

4. X. Gu, P. S. Yu, K. Nahrstedt, Optimal Component Composition for Scalable
Stream Processing, Proc. of IEEE International Conference on Distributed Com-
puting Systems (ICDCS), June, 2005.

5. S. Krishnamurthy et al. TelegraphCQ: An Architectural Status Report. IEEE Data
Engineering Bulletin, 26(1):11-18, March, 2003.

6. Arvind Krishna, Douglas C. Schmidt, and Raymond Klefstad, Enhancing Real-
Time CORBA via Real-Time Java, Proceedings of the 24th IEEE International
Conference on Distributed Computing Systems (ICDCS), May 23-26, 2004.

7. U. Srivastava, J. Widom: Memory Limited Execution of Windowed Stream Joins,
Proc. of the 30th International Conference on Very Large Databases (VLDB),
August, 2004.

8. N. Tatbul and U. etintemel and S. Zdonik and M. Cherniack and M. Stonebraker:
Load Shedding in a Data Stream Manager, Proc. of the 29th International Con-
ference on Very Large Data Bases (VLDB), September, 2003.

9. Y. Xing, S. B. Zdonik, J.-H. Hwang, Dynamic Load Distribution in the Borealis
Stream Processor, Proc. of International Conference on Data Engineering (ICDE),
April, 2005.

10. M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, M. J. Franklin, Flux: An Adap-
tive Partitioning Operator for Continuous Query Systems, Proc. of the 19th Inter-
national Conference on Data Engineering (ICDE), March, 2003.

11. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin, 26(1):19-26, March 2003.

12. S. Zdonik et al. The Aurora and Medusa Projects. IEEE Data Engineering Bulletin,
26(1), March 2003.

Network Processing of Documents, for Documents,
by Documents

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan
ichiro@nii.ac.jp

Abstract. This paper presents a content-dependent and configurable framework
for the network processing of documents. Like existing compound document
frameworks, it enables an enriched document to be dynamically and nestedly
composed of software components corresponding to various content, e.g., text,
images, and windows. It also enables each component or document to migrate
over a network under its own control utilizing mobile agent technology and
uses components as carriers or forwarders because it enables them to carry or
transmit other components as first class objects to other locations. Since these
operations are still document components, they can be dynamically deployed
and customized at local or remote computers through GUI manipulations. It
therefore allows an end-user to easily and rapidly configure network processing
in the same way as if he/she had edited the documents.

1 Introduction

Document manipulation, such as editing, viewing, and distributing documents, is still a
crucial role in modern information processing. In distributed computing systems, docu-
ments are always transmitted passively over a network by external systems, such as elec-
tronic mail systems and http servers. As a result, they cannot determine where, when, or
how they should go next. However, there have been several applications whose network
processing depends on the content of the documents that are transmitted over the net-
work. For example, tasks in workflow management systems are required to be passed
among multiple destinations with specified itineraries. End-users often want to define
network processing for documents for them to accomplish their application-specific
tasks. However, the customization and management of networking processing is too
complex and difficult for end-users.

This paper addresses such a methodology and proposes a new compound document
framework, called MobiDoc. Like other existing compound document frameworks, the
framework enables an enriched document to be composed of visual components, e.g.,
text and images. It enables network protocols for documents to be implemented by a set
of active documents. By using mobile agent technology, documents or components can
define their own itineraries and migrate under their own control, like the programmable-
packet approach in active network technology [12]. Furthermore, documents can

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 421–430, 2005.
c© IFIP International Federation for Information Processing 2005

422 I. Satoh

transmit other documents and multimedia content as first-class objects to their destina-
tions such as with the programmable-node approach in active network technology. The
framework introduces components for network processing such as document-centric
components, so that it allows an end-user to easily and rapidly configure network pro-
cessing in the same way as if he/she had edited the documents.

This paper is organized as follows. We first describe the background and related
work (Section 2) and then outline our compound document framework (Section 3). Af-
ter this, we present component runtime systems for executing and migrating document
components (Section 4) and present our component model (Section 5). We also de-
scribes its prototype implementation (Section 6) and illustrates several applications of
the framework (Section 7). We conclude by providing a summary and discussing future
issues (Section 8).

2 Background

Several frameworks for compound document components have been developed, such as
COM/OLE [2], OpenDoc [1], and CommonPoint [6]. They enable one document to be
composed of various visible parts, such as text, image, and video, created by different
applications. However, existing compound documents are inherently designed as pas-
sive entities in the sense that they can be transmitted over a network by external network
systems such as electronic-mail and workflow-management systems, which cannot de-
termine where they should go next. There have been component-based technologies for
distributed computing, such as Enterprise JavaBeans (EJB) [11] and Distributed COM
(DCOM). However, our framework has been designed independently of these existing
component frameworks, because it requires to treat each component as autonomous,
mobile, and document-centric, in the sense that each component can migrate or dis-
tribute itself and other components over a network.

Several attempts have been made to support active documents, e.g., Active Mail
[4] and HyperNews [5], but these haves aimed at particular application-specific docu-
ments, such as electronic mail and newspapers, so that they have not supported edit-
ing or exchanging documents with varied and complex content. The fuseONE system
[13] composes GUI-based control panels for controlling appliances from active docu-
ments, i.e., GUI-based buttons and toggle switches. Like other compound document
frameworks, they cannot transmit codes for viewing and editing documents. Place-
less Document [3] provides a document management system for active documents.
It enables a document to delegate the properties of other components like our com-
ponent hierarchy, but it is not aimed at customizing the network processing of docu-
ments.

We constructed a mobile agent system, called MobileSpaces, which we discussed
in a previous paper [7]. We constructed a compound document framework based on the
MobileSpaces system [8,10]. Since the previous framework was inherently designed
based on a mobile agent system, there were serious mismatches between mobile agent-
based components and the requirements of document components. Moreover, the pre-
vious framework could not define or customize any network processing, because it was
proposed only as an application of the MobileSpaces system.

Network Processing of Documents, for Documents, by Documents 423

3 Approach

The key idea behind the framework was to enable network protocols for documents
to be implemented by a set of documents. That is, documents could define their own
itineraries, like the programmable packet approach in active networks. Furthermore,
documents can transmit other documents as first-class objects to their destinations such
as with the programmable node approach.

3.1 Component Model

Like other existing compound-document frameworks, this framework provides
document-centric components but enables them to define and manage network pro-
cessing. It also introduces two notions of components. The first is the notion of a self-
contained component, where the content of each component and its codes are insep-
arable even when it is migrated to another computer. Therefore, when a user receives
a document, he/she can view or edit it by using its code instead of any applications
deployed at its current computer. To our knowledge, no existing software component
frameworks, including compound document frameworks, make the code and state of
each component indivisible. The second is the notion of hierarchical components. Each
component can be contained by at most one component and it can dynamically mi-
grate to other components along with all its inner components. It can instruct its inner
components to move to other components, marshal, and destroy them, whereas it can-
not control its container component. Nevertheless, the former is still a self-contained
component so that it can be removed from the latter.

3.2 Configurable Network Processing

This framework provides two approaches for enabling components to customize their
own network processing. The first is to make components mobile in the sense that they
can define their itinerary and travel among multiple computers along the itinerary by
using mobile agent technology. The second enables components to define network pro-
cessing for themselves. The framework also introduces a container component, called
forwarder, that can treat its inner components as first-class objects and migrate them
to other components. Components can also carry or forward other components over a
network and visual components can not only contain visual components but also car-
rier and forwarder components. They can be customized and assembled through GUI
manipulations and embedded into a document as visual components. Therefore, end-
users can define and customize their application-specific network processing by comb-
ing components through GUI manipulations in the same way as if they were editing
visual components in documents.

4 Design

This framework consists of two parts: runtime systems and components. It can execute
components and migrate them to/from other runtime systems, even when underlying
systems, i.e., operating systems and hardware, are heterogeneous, since runtime sys-
tems and components are constructed on Java language and executed on Java VM.

424 I. Satoh

4.1 Component Runtime System

Each runtime system governs all the components inside it. It maintains the life-cycle
state of each component, e.g., creation, execution, migration, persistence, and termina-
tion. It establishes TCP connections with other systems and exchanges control messages
and components through the connection. Fig. 1 outlines the basic structure of a runtime
system. When a runtime system saves or migrates a component over a network, it mar-
shals the component, the component’s inner components, and information about their
containment relationships and visual layouts, called component nodes, into a bit-stream
and transmits the marshaled component to its destination through an extension of the
HTTP protocol. When a runtime system receives components, it unmarshals the com-
ponents and information from the bit-stream later. The current implementation uses the
Java object serialization package for marshaling the states of components. The package
does not support the capturing of stack frames of threads. Consequently, our system
cannot marshal the execution states of any thread objects. Instead, the runtime system
propagates certain events to components before and after marshaling and unmarshal-
ing them. To reduce the size of the bit-stream, the current implementation compresses
the bit-stream. If inner components embedded in a component share the same codes,
the runtime system can detect and remove such redundant codes from the bit-stream
corresponding to the marshaled component, including its inner components.

Runtime System

OS/Hardware

Java Virtual Machine

Network

Component
migration

Computer A Computer B

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Window
component

Program

Data

MDComponent
Text component
Program Data

Runtime System

OS/Hardware

Java Virtual Machine

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Document
component

Program

Data

MDComponent
Text component

Program Data

Program Data
Image component

MDComponent

Program Data
Image component

MDComponent

Fig. 1. Component migration between two computers

4.2 Component Hierarchy

As we can see Fig. 3, a hierarchy of components is maintained as a tree structure in
which each component can contained by at most one component node. Fig. 2 shows the
structure of hierarchical components. Each node is defined as a subclass of two com-
ponent layout manager classes, MDContainer or MDComponent, where the first
supports components, which can contain more than one component inside them and
the second supports components, which cannot contain any components. The runtime

Network Processing of Documents, for Documents, by Documents 425

Runtime system

Callback method

Callback method

Program

DataContext
object

Callback manager

Service
methods

Component (Java object)

Component tree node

Internal program

Component layout manager
Component Runtime System

Component execution manager

Program

Data

Component B

Component layout manager

Component tree node

Program

Data

Component C

Component layout manager

Component tree node

Program

Data

Component A

component layout manager

Component tree node

Fig. 2. Component hierarchy and structure of components

MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component

program
data

Component
tree node

program
data

MDComponent

Text Component

program
data

C

D

B

Image Component

MDComponent

Component
tree node

Component
tree node

Component tree node

Window Component

Image view

Box Frame

Text

Window

Fig. 3. Component Hierarchy

system basically provides a node derived from the MDContainer class for compo-
nents, except for the visual components that is designed to have no inner components,
e.g., text-viewer and sound-player components. For example, when a component has
two other components inside it, the nodes that contains the two inner components are
attached to the node that wraps the first component. Component migration in a tree
is only performed as a transformation of the subtree structure of the hierarchy. When
a component is moved over a network, on the other hand, the runtime system mar-
shals the node of the component, including the nodes of its children, into a bit-stream
and transmits the component and its children, and the marshaled component to the
destination.

4.3 Visual Layout Management

When a component contain components inside it, its MDContainer object is responsi-
ble for assigning its inner components and their rectangular estates within its estate, and
controlling the sizes, positions, offsets, and order of their estates. This framework pro-
vides an editing environment for manipulating the components for network processing
as well as for compound documents. The environment supports GUIs for manipulating

426 I. Satoh

components. It also deals with in-place editing services similar to those provided by
OpenDoc [1] and OLE/COM [2].

4.4 Components for Network Processing

Each component for network processing is designed to provide its service to its inner
components. A component can directly instruct its inner components to move to another
location, and can transform them. When a component wants a service, it migrates into
one of the components that can provide the service. We present four basic network
processing components for other components as outlined in Fig. 4.

– Forwarding: A forwarding component can redirect its inner components to other
places. When it receives a component, it automatically transfers the visiting com-
ponent to its specified destination.

– Duplication: A duplicator component can create copies of its inner components in-
cluding all instance variables. When receiving the original components, the cloned
components have the same content as the original components.

– Synchronization: A synchronizer component can strand its inner components until
it can satisfy specified conditions. Within the notion of barrier synchronization, a
typical synchronizer component defines a group of moving components. Until it
receives all the components within the group, it strands the visiting components
inside it.

– Carrier: A carrier component can carry its inner components to other places. When
it receives a component, it encapsulates the visiting component within it and carries
the component to its own destination or the visiting component’s destination.

– Linking: A reference component is a representative of another component, which
may be located at a remote computer. When it receives a component, it fetches its
referring component for the visiting component.

The above components have properties that customize their processing and provide
support to GUI editors.

Duplicator Component

Component A

Component A

Component A'

Synchronizer Component

Component A
Component B Component C

Forwarder Component

Component A
Component A

Component A

Component A

Component A

Component B

Component C

Carrier Component

Fig. 4. Basic components for network processing

4.5 Security

Security is essential in active documents as well as mobile agents, because such doc-
uments run their own programs and access resources within the computers they visit.

Network Processing of Documents, for Documents, by Documents 427

The current implementation uses the standard JAR file format for passing components
that can support digital signatures, allowing for authentication. It also relies on the Java
security manager like existing mobile agent systems. To protect components from mali-
cious computers, the runtime system provides an authentication mechanism for compo-
nent migration borrowed from mobile agent research, so that each runtime system host
can only send components to, and only receive from, trusted runtime systems.

4.6 Current Status

We implemented the framework using Java language (JDK1.4 or later version), and
we developed various components for compound documents and network processing.
Fig. 5 shows a screen-shot of this framework. The left window is a palette of part com-
ponents and the center and right windows are compound documents contained in the
components corresponding to GUI windows. When a user wants to place a compo-
nent on his/her editing compound document, he/she drags the wanted component from
the palette and then drops it on the estate of the document. Since the palette itself is
implemented as a container component of part components, it can migrate to another
computer and be saved in secondary storage. We can register new components, which
may be edited or modified, in the palette through GUI-based data-transfers, e.g., drag-
and-drop or copy-and-past operation.

Palette
component

Web-browser
component

Document
component

Rich-text
component

Image-viewer
component Carrier component

Box
component

Window
component

Clock
component

Text
component

Fig. 5. Examples of compound documents

428 I. Satoh

Even though our implementation was not built for performance, we conducted a
basic experiment on component migration with computers (Pentium III 1.2-GHz with
Windows XP and SUN JDK 1.4.2). The time for component migration measured from
one container to another in the same hierarchy was 10 ms, including the cost of draw-
ing the visible content of the moving component and checking whether the component
was permitted to enter the destination component. The cost of component migration
measured between two computers connected through a Fast-Ethernet was measured at
64 ms. The cost was the sum of marshaling, compression, opening a TCP connection,
transmission, acknowledgment, decompression, security and consistency verification,
unmarshaling, visual space layout, and drawing of content. The moving component
was a simple text viewer and its size (sum of code and data) was about 9 KB (zip-
compressed). The latency of component migration was reasonable for a Java-based vi-
sual environment for exchanging compound documents between computers.

5 Experiences

We developed a variety of components based on this framework. This section introduces
several components and their uses.

5.1 Compound Document Letter

Most electronic mail systems disallow letters from traveling among multiple destina-
tions along their own itinerary. We developed a legacy decision-making system, called
ringi, for group decision-making, which has been widely used throughout Japan. When
an employee proposes something to his/her company, he/she describes the proposition
on a workflow document, called a ringi-sho. The document must be handed over to
all sections involved with the proposed issue. When the managers of the sections con-
cerned deem the proposal to be adequate, they give it their hanko, or their stamp of
approval. Fig. 6 shows a ringi-sho component, which is a carrier component with mul-
tiple destinations. It has a destination table whose frames are the areas that its receivers
stamp with their own hankos, where each hanko is a component and cannot be removed
or modified once it is applied at the frame. The carrier can contain more than one visual
component inside it and itineraries between the computers of its receivers until all the
receivers stamp their hankos.

5.2 Application-Specific Document Distribution

The second example is an editing system for an in-house newsletter. Each newsletter is
edited by automatically compiling one or more text parts, which are written by different
people as we can see from Fig. 7. A newsletter compound document has one page com-
ponent, which can contain editor components for visual content, e.g., text and images.
When the newsletter is being edited, it forwards the page component to a duplicator
component to make as many replicas of the component as the number of writers. The
duplicator component then migrates the replicas to forwarder components so that each
of the page components is forwarded to a window component on its writer’s computer.
When it arrives at the destination, it displays a window for its editor program on the

Network Processing of Documents, for Documents, by Documents 429

Text viewer (read-only) components

Multiple destination table Stamp (hanko) component
Ringo-sho component

Fig. 6. Ringi-sho compound document

migration

step 1

Computer A

Editor Components

Computer C

Computer B

migration

migration

step 2

Computer A

Computer B

Editor components

Computer

Editor
component

Forwarding
components

Duplicator
component

duplications
Editor components

Forwarding
components

migration

migration

migration

Duplicator component

Computer C

Newsletter component
Newsletter
component

Fig. 7. Newsletter editing system

screen of the computer to assist the writer. Also, the writer can add his/her visual com-
ponents to the page component. It goes back to the document after the writer finishes
writing his/her text and then the document arranges the arriving components as a bound
set. Since the newsletter document, duplicator, and forwarder components are still mo-
bile, they can thus be easily deployed and coordinated according to the requirements of
applications.

6 Conclusion

We presented a framework for network-enabled documents, including hypermedia.
It offers five basic network processing operations for documents, i.e., forwarding,
duplication, synchronization, carrying, and linking. We can achieve various types
of network processing by combining these operations. Since the operations are
implemented as document components, they can be dynamically deployed at remote
computers. Moreover, the framework provides a GUI-based editor not only for editing

430 I. Satoh

documents but also for easily deploying document components for network processing
at remote computers.

To conclude, we would like to point out further issues that need to be resolved. Re-
source management and security mechanisms in the current system were incorporated
in a relatively straightforward way. These should now be designed to incorporate com-
pound documents. When a component migrates to another component or computer, its
visual resources, the size of its estate and colors, in the destination may not be the same
as those in the source. Although it must adapt its visibility to the resources available in
the current location, the current implementation relies on Java’s layout manager. The
programming interface for the current system is not yet satisfactory. We plan to design
a more elegant and flexible interface for programming components. We developed an
approach for the development and testing of software running on mobile computers.
We are interested in applying the framework to this approach [9]. This is because the
framework enables us to easily design and implement active and configurable graphical
user interfaces for mobile computers as well as stationary computers.

References

1. Apple Computer Inc. OpenDoc: White Paper, Apple Computer Inc, 1994.
2. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
3. P. Dourish et al, A Programming Model for Active Documents, Proceedings of 13th Sympo-

sium on User Interface Software and Technology (UIST’2000), pp.41-50, ACM Press, 2000.
4. Y. Goldberg, M. Safran, and E. Shapiro, Active Mail - A Framework for Implementing

Groupware, Proceedings of ACM CSCW’92, pp. 75-83, ACM Press, 1992.
5. J. Morin, HyperNews, a Hypermedia Electronic-Newspaper Environment based on Agents,

Proceedings of HICSS-31, pp.58-67, 1998.
6. M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.
7. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Using

a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April 2000.

8. I. Satoh, MobiDoc: A Mobile Agent-based Framework for Compound Documents, Informat-
ica, vol.25, no.4, pp.493-500, December 2001.

9. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

10. I. Satoh, A Compound Document Framework for Multimedia Networking, Proceedings
of 1st International Conference on Distributed Frameworks for Multimedia Applications
(DFMA’2005), pp.80-87, IEEE Computer Society, February 2004.

11. Sun Microsystems, Inc., Enterprise JavaBeans Technology (EJB) http://java.sun.com/
products/ejb, 2002.

12. D. L. Tennenhouse et al., A Survey of Active Network Research, IEEE Communication
Magazine, vol. 35, no. 1, 1997.

13. P. Werle, F. Kilander, M. Jonsson P. Lonqvist, C. G. Jansson, A Ubiquitous Service Envi-
ronment with Active Documents for Teamwork Support, Proceedings of 3rd International
Conference on Ubiquitous Computing (UBICOMP’2001), Lecture Notes in Computer Sci-
ence, vol. 2201 pp.139-155, Springer, 2001.

Fault-Tolerant Middleware and the Magical 1%�

Tudor Dumitraş and Priya Narasimhan

Carnegie Mellon University, Pittsburgh PA 15213, USA
tdumitra@ece.cmu.edu, priya@cs.cmu.edu

Abstract. Through an extensive experimental analysis of over 900 pos-
sible configurations of a fault-tolerant middleware system, we present em-
pirical evidence that the unpredictability inherent in such systems arises
from merely 1% of the remote invocations. The occurrence of very high
latencies cannot be regulated through parameters such as the number of
clients, the replication style and degree or the request rates. However, by
selectively filtering out a "magical 1%" of the raw observations of vari-
ous metrics, we show that performance, in terms of measured end-to-end
latency and throughput, can be bounded, easy to understand and con-
trol. This simple statistical technique enables us to guarantee, with some
level of confidence, bounds for percentile-based quality of service (QoS)
metrics, which dramatically increase our ability to tune and control a
middleware system in a predictable manner.

1 Introduction

Modern computer systems are perhaps some of the most complex structures ever
engineered. Together with their undisputed benefits for human society, their
complexity has also introduced a few side-effects, most notably the inherent
unpredictability of these systems and the increasing tuning and configuration
burden that they impose on their users. The fact that large distributed systems,
even under normal conditions, can exhibit unforeseen, complex behavior stresses
that we are facing a veritable “vulnerability of complexity”.

In this paper, we examine the unpredictability of fault-tolerant (FT) middle-
ware. Typically used for the most critical enterprise and embedded systems to
mask the effect of faults and to ensure correctness, FT middleware has higher
predictability requirements than most other systems. We naturally expect that
faults, which are inherently unpredictable, will have a disruptive effect on the
performance of the system. In this paper, we show that even in the fault-free
case it is impossible to enforce any hard bounds on the end-to-end latency of an
FT CORBA application.

Conventional wisdom about commercial-off-the-shelf (COTS) software is that
well designed and implemented ORBs behave in a sufficiently predictable man-
ner when running on top of certain real-time operating systems. However, re-
cent studies have independently reported that maximum end-to-end latencies of
� This work has been partially supported by the NSF CAREER grant CCR-0238381,

the DARPA PCES contract F33615-03-C-4110, and also in part by the General
Motors Collaborative Research Laboratory at Carnegie Mellon University.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 431–441, 2005.
c© ľ IFIP International Federation for Information Processing 2005

432 T. Dumitraş and P. Narasimhan

CORBA and FT-CORBA middleware can be several orders of magnitude larger
than the mean values and might not follow a visible trend [1,2,3]. At [3], Thaker
lists many examples of systems that produce few outliers which are several orders
of magnitude larger than the average: operating systems (Linux, Solaris, TimeSys
Linux), transport protocols (UDP, TCP, SCTP), group communication systems
(Spread), middleware and component frameworks (TAO, CIAO, JacORB, JDK
ORB, OmniORB, ORBExpressRT, Orbix, JBoss EJB, Java RMI), including
our own MEAD system. Our first goal in this paper is to evaluate how much
predictability we can obtain by carefully choosing a good configuration of FT
middleware components (operating system, ORB, group communication pack-
age and replication mechanism) and to analyze statistically the distribution of
end-to-end latencies in the resulting system.

Additionally, fault-tolerant middleware poses fundamental trade-offs between
dependability, performance and resource usage. Tuning the trade-offs is a delicate
and non-trivial task because in most cases, this re-calibration requires detailed
knowledge of the system’s implementation. We have previously advocated an
approach called versatile dependability [4], which consists in providing high-level
“knobs” to control the external properties, such as latency or availability, that are
relevant to the end-users of the system. However, the unpredictability observed
in COTS middleware systems poses a challenge for tuning these high-level prop-
erties, unless we can find a simple and efficient method for making deterministic
guarantees based on the configuration of the system. To reliably predict the av-
erage and maximum latencies based on specific configuration parameters (e.g.,
number of clients, request rates and sizes, replication styles and degrees), we dis-
card the highest 1% of the measured latencies. Then, we can establish bounds on
the 99th percentile of the metric monitored (e.g., “the end-to-end response time
will be less than 2s in 99% of the cases”). For a large class of applications, the
value added by bounding the maximum latencies instead of the 99th percentile
does not justify the increased efforts that are required to achieve it [5]; in this
paper, our second goal is to quantify, through an extensive empirical exploration,
the confidence that we can place on this kind of guarantees.

In summary, this paper makes two concrete contributions:

– We provide substantial evidence that, despite choosing a good system config-
uration (operating system, ORB, group communication package and replica-
tion mechanism), the remote invocation latencies of a fault-tolerant CORBA
infrastructure are difficult to bound and control, regardless whether or not
faults occur (Section 2);

– We show that, by filtering out 1% of the largest recorded latencies, we obtain
a set of measurements with predictable properties (Section 3); we call this the
“magical 1%” effect. This effect dramatically increases our ability to tune the
system in a predictable manner by specifying QoS guarantees based on the
99th percentile of the targeted metric (e.g., latency, throughput, reliability).

Fault-Tolerant Middleware and the Magical 1% 433

2 System Configuration for Achieving Predictability

In setting up the test bed for our empirical exploration, we aimed to select a
configuration for our FT middleware with some of the best open source compo-
nents available. We also provisioned the experimental environment to create the
most favorable conditions for achieving predictable behavior.

To ensure the reproducibility of our results, we our experiments ran on the
Emulab test bed [6]. We use the MEAD (Middleware for Embedded Adaptive De-
pendability) system [7], currently under development at Carnegie Mellon Univer-
sity, as our FT middleware. MEAD provides transparent, tunable fault-tolerance
to distributed middleware applications. The system is based on library interpo-
sition for transparently intercepting and redirecting system calls, and features
a novel architecture with components such as a tunable replicator, a decentral-
ized resource monitor and a fault-tolerance advisor, whose task is to identify the
most appropriate configurations (including the replication style and degree) for
the current state of the system. MEAD implements active and passive replica-
tion based on the extended virtual synchrony model [4]. This model mandates
that the same events (which can be application-generated as well as member-
ship changes) are delivered in the same order at all the nodes of the distributed
system, but without enforcing any timeliness guarantees. The extended virtual
synchrony guarantees are enforced by the Spread (v. 3.17.3) group communica-
tion toolkit [8]. We have carefully tuned Spread’s timeouts for our networking
environment, to provide fast, reliable fault detection and steady performance.
MEAD runs under the TAO real-time ORB (v. 1.4), which provide excellent
average remote invocation latencies [9,3]. Our Emulab experiment uses 25 hosts
connected with a 100 Mbps LAN. Each machine is a Pentium III running at 850
MHz (1697 bogomips), with 256 MB of RAM; the operating system is Linux
RedHat 9.0 with the TimeSys 3.1 kernel.1

Since our goal is to evaluate the predictability of this system configuration
(and not to assess or compare the overall performance), we believe that a micro-
benchmark specifically targeting this goal is the most suited for our purpose. We
have developed a micro-benchmark that measures the behavior of the system for
different styles and degrees of server replication, with up to 22 connected clients.
Each client sends a cycle of 10,000 requests, pausing a variable amount of time
(from 0 to 32 ms) between requests. The replies from the server can also vary in
size (from 16 bytes to 64 Kbytes). Each one of the physical nodes is dedicated
to a single client or server. There are no additional workloads and no additional
traffic imposed on the LAN to avoid interference with the experiments.

Admittedly, all these constraints imposed on the test bed make our setup
somewhat unrealistic. However, our purpose was to provision the system in the
best possible way for achieving predictable behavior. Since even this configura-
tion turns out to be unpredictable (as we show in Section 2.2), it is very unlikely
that a real-life industrial installation will prove to be more deterministic.
1 This kernel is fully preemptible, with protection against priority inversion, O(1)

task scheduling complexity, and a fine timer granularity. This allows us to simulate
request arrival rates with sub-millisecond precision.

434 T. Dumitraş and P. Narasimhan

Versatile Dependability. An important architectural feature of the MEAD
system is the provision of tuning knobs. Adopting an approach called versatile
dependability [4], MEAD defines a hierarchy of low-level and high-level knobs.
Low-level knobs control the internal fault-tolerant mechanisms of the infrastruc-
ture and typically correspond to discrete (e.g., the degree of replication) or even
non-countable sets (e.g., replication styles). In contrast, high-level knobs regulate
externally-observable properties (e.g., latency, availability) that are relevant to
the system’s users, and they should ideally have a linear transfer characteristic,
with unsurprising effects. High-level knobs control the QoS goals of the system,
and they are implemented based on low-level knobs; however, for defining trust-
worthy high-level knobs, the measured QoS values must be deterministically
linked to the settings of the low-level parameters.

2.1 Experimental Methodology

In our experiments, we vary the following low-level parameters:

– Replication style: either active or warm passive replication;
– Replication degree: 1, 2 or 3 server replicas;
– Number of clients: 1, 4, 7, 10, 13, 16, 19 or 22 clients;
– Request arrival rate: the clients insert a pause of 0 ms, 0.5 ms, 2 ms, 8 ms

or 32 ms. The lack of a pause (0 ms) represents bursty client activity;
– Size of the reply messages: 16 bytes, 256 bytes, 4 Kbytes or 64 Kbytes.

We have tested all 960 possible combinations of these parameters, collecting 9.1
Gbytes of data over a period of two weeks.2 We statistically analyze this raw
data to determine the probability distributions, the means, medians, standard
deviations, the maximum and minimum values as well as the 99th percentiles,
the confidence intervals and the numbers and sizes of the outliers.

2.2 Evidence of Unpredictability

Figure 1(a) shows the raw end-to-end latencies (as measured on the client side)
for a configuration with an unreplicated server and 4 clients, each sending 16
byte requests at the highest possible rate (no pause between requests). A few
spikes that are much larger than the average are clearly noticeable in the figure.
The effect of these spikes can be further analyzed by looking at Figure 1(b),
which shows the probability density function for the end-to-end latencies. The
distribution has a long tail, which indicates that there are a few samples, ac-
counting for a small percentage of the measured values, that are much larger
than the rest. The distribution is skewed only to the right because latency can-
not take arbitrarily low values.3 The same information can be represented in

2 The full trace is available online at www.ece.cmu.edu/~tdumitra/MEAD_trace.
3 MEAD’s latency is bounded by the round-trip time of a regular TAO invocation.

Fault-Tolerant Middleware and the Magical 1% 435

0 5 10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Time [s]

La
te

nc
y

[μ
s]

(a) End-to-end latencies

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−4

Latency [μs]

P
D

F

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

La
te

nc
y

[μ
s]

(b) PDF of the measured latencies

Fig. 1. Unpredictable behavior of end-to-end latency

a more concise way by the “box and whisker” plot on the right side of the fig-
ure.4 From the box plot, we can tell that the distribution is skewed to the right
because the median is closer to the lower end of the box and the upper whisker
is much longer that the lower one. But the most striking detail is the extent to
which the maximum value exceeds most of the measured samples.

Such distributions are hard to characterize with a single metric. Mean values
can describe well the average expected latency, but give no indication of the
jitter. Maximum values are hard to use because they are largely unpredictable.
Furthermore, the spikes seem to come in bursts, which breaks the defenses of
many fault-tolerant systems which assume only single or double consecutive
timing faults. This difference seems to be aggravated by an increasing number
of clients, but without revealing a clear trend. In Figure 2(a), we can see that
the maximum values are much higher that the means and that they increase and
decrease (note the exponential scale) in an uncorrelated way with respect to the
number of clients. The very large latencies are seen for only a few requests.

Table 1. Impact of each parameter on the number of outliers

Replication Style Replication Degree # Clients Request Rate Request Size
Active: 55.12% 1 replica: 28.51% 1: 9.26% 0 ms: 21.37% 16 b: 13.77%
Passive: 44.88% 2 replicas: 34.47% 4: 15.06% 0.5 ms: 20.69% 256 b: 12.10%

3 replicas: 37.02% 7: 13.35% 2 ms: 20.50% 4 Kb: 21.14%
10: 14.77% 8 ms: 20.16% 64 Kb: 52.99%
13: 14.83% 32 ms: 17.28%
16: 12.29%
19: 9.24%
22: 9.21%

4 The box represents the size of the inter-quartile range (the difference between the
75th and 25th percentiles of the samples in the data set), while the whiskers indicate
the maximum and minimum values. The mean and the median of the samples are
represented by the line and the cross inside the box.

436 T. Dumitraş and P. Narasimhan

1 4 7 10 13 16 19 22
10

3

10
4

10
5

10
6

10
7

La
te

nc
y

[μ
s]

clients

(a) Increasing the number of clients

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

800

Outliers [%]

E
xp

er
im

en
ts

(b) The percentage of outliers

Fig. 2. Empirical results

To determine which measurements are exceptional, we use the 3σ statistical
test: any sample that deviates from the mean with more than 3σ is considered
an outlier (σ is the non-biased standard deviation error). Figure 2(b) shows that,
in most of our 960 experiments, the number of outliers was under 1%, with a few
cases registering up to 2%, 3%, or 4%. Table 1 shows a breakdown of the numbers
of outliers recorded for each value of the five parameters that we varied in our
experiments. We notice that the outliers are almost uniformly distributed for all
the values of these parameters (with the exception of the request size, where the
64 Kb messages produced more than half of the high latencies). This emphasizes
that it is impossible to remove the outliers based on the system configuration
and, knowing that outliers can be several orders of magnitude greater than the
average (as shown above), we conclude that a sample of measured latencies that
includes these outliers will have unpredictable maximum values.

3 The Magical 1%

Figure 2(b) shows that, in most cases, eliminating only 1% of the latencies would
make all the remaining samples conform to the 3σ test. We now investigate what
happens in our experiments if we remove 1% of the samples, hoping that we
have isolated enough outliers to make the behavior of the system predictable.
Figure 3(a) shows the high discrepancy between the means and the maximum
values measured in all the experiments (in the figure, the experiments are sorted
by the increasing average latencies). Note that it is hard to find a correlation
between these two metrics, especially because the maximum values seem to be
randomly high. If we remove the largest 1% from all these cases and we plot the
data again, we get the “haircut” effect displayed in Figure 3(b): the randomness
has disappeared and the 99th percentiles do not deviate significantly from the
average values. Only 1% of the measured end-to-end request latencies are re-
sponsible for the unpredictable behavior; discarding this 1% when making QoS
guarantees results in a far more predictable system.

Fault-Tolerant Middleware and the Magical 1% 437

3.1 Expressing the Performance QoS Goals

The magical 1% is a simple, yet powerful approach for expressing QoS goals.
While providing performance guarantees based on some sort of compliance with
the 3σ test is quite difficult (because the test requires all the samples), using
the magical 1% approach leads to specifications of QoS objectives that guaran-
tee that 99% of the measured samples will fall within the stipulated bounds.
Such percentile-based guarantees are: (i) easy to understand and relevant to the
clients, since they reflect both the average and the sub-optimal behaviors, and
(ii) easy to implement by service providers because the behavior in this case
is predictable, as Figure 3 suggests. Other percentiles may be used (90% and
95% are quite common in the industry [5]) if more slack is desired, but for our
fault-tolerant middleware system 99% appears to work effectively.

Outlier elimination should not be haphazardly performed: when estimating
the percentile-based bounds for a certain performance metric, we must take into
consideration the semantics of that metric. Most metrics will have outliers on
only one side of the distribution (leading to a skewed distribution as shown in
Figure 1(b)) because there are natural bounds which prevent them from extend-
ing indefinitely in the opposite direction; however, the side where the real outliers
lie depends on the specific metric. For example, end-to-end latencies cannot be
arbitrarily small because they are bounded by the underlaying network delays;
therefore, outliers will be on the side of high end-to-end latencies. Conversely,
for throughput the outliers will be on the lower side because throughput cannot
become arbitrarily high. The magical 1% should only be trimmed on the side
that can become unbounded for the corresponding metric.

From low-level to high-level knobs. To implement a latency-tuning knob,
we must establish the connection between the low-level parameters and the 99th
percentile of the round-trip times. Our experiments reveal three trends: (i) la-
tency increases linearly with the number of clients connected, as shown in Sec-
tion 2.2; (ii) the latency decreases slightly with lower request rates; (iii) the

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Experiment

La
te

nc
y

[μ
s]

Average latency
Maximum latency

(a) Before

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Experiment

La
te

nc
y

[μ
s]

Average latency
99% latency

(b) After

Fig. 3. The “haircut” effect of removing 1% of the outliers

438 T. Dumitraş and P. Narasimhan

latency increases faster than linearly with growing reply sizes. The first and sec-
ond effects occur because less clients and reduced request rates alleviate the load
of the server; the severe dependence of the latency on the request size is likely
the result of additional work done by the operating system and by MEAD in the
fragmentation and reassembly of large messages.

3.2 Expressing the Dependability QoS Goals

Dependable systems should mask as many faults as possible without resulting
in failures. The reliability of the system is the probability of correct service for a
given duration of time [10]. A common metric used for representing reliability is
the mean time to failure (MTTF). MEAD automatically restarts crashed replicas
for improving the overall MTTF. The time between the restart and the instant
when the new replica processes the first message is called the recovery time.
Figure 4(a) shows the distributions of recovery times for a system with 3 replicas
in the active replication style, with a request period of 2000 μs and a reply size
of 4Kbytes. The recovery time depends on the number of clients connected,
because the recovery algorithm must transfer the state and all the backlog of
requests to the new replica. Figure 4(a) seems to indicate that recovery times are
not as unpredictable as the response times, except for the case with 22 clients
(compare with Figure 2(a)). This is a relatively surprising result, as the recovery
process needs to perform several remote invocations to update the state of the
new replica. Further investigation is needed to determine whether the “magical
1%” would be useful for making reliability guarantees.

We can convert the recovery times into mean times to failure using the for-
mula [10]: MTTF3 replicas, restart = 2μ2+7μλ+11λ2

6λ3 , where λ is the fault arrival
rate and the recovery rate μ is the inverse of the mean recovery time. For exam-
ple, at a constant rate of 1 fault per minute (which is unrealistically high), using
active replication style with 3 replicas will add only 50 seconds to the MTTF ;
using the recovery strategy will raise the MTTF up to 7313 hours (about 305
days). This is shown in Figure 4(b).

1 4 7 10 13 16 19 22
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
5

R
ec

ov
er

y
tim

e
[μ

s]

clients

(a) Recovery time

1 4 7 10 13 16 19 22
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

M
T

T
F

 [h
ou

rs
]

clients

3 replicas w/ recovery
3 replicas w/o recovery
Unreplicated

(b) MTTF for 1 fault/minute

Fig. 4. Using active replication with recovery to improve the system reliability

Fault-Tolerant Middleware and the Magical 1% 439

4 Discussion

The source of the apparently random behavior reported here cannot be easily
isolated to the operating system, the network, the fault-tolerant infrastructure,
the ORB, or the application. In fact, most operating systems exhibit seemingly
unbounded latencies – at least for network operations, but in some cases for
IPC and scheduling as well [3]. Furthermore, even systems built on top of the
best designed, hard real-time operating operating systems manifest the same
symptoms when combined with off-the-shelf ORBs and group communication
packages. This behavior is likely the result of combining COTS components
that: (i) were not built and tested jointly, and (ii) were designed to optimize
for the common case among a wide variety of workloads, rather than to enforce
tight bounds for the worst-case behavior.

Breaking the Magical 1%. Our empirical observations are clearly specific to
the configuration under test. While the unpredictability of maximum end-to-end
latencies has been reported for many different systems [3], the effectiveness of
our “magical 1%” approach remains to be verified for other settings. So far, we
have not tried running the application on a wide area network, using a different
OS, working in a an environment with intermittent network connectivity (e.g., a
wireless network), simulating flash crowds, having other workloads that compete
for CPU time and produce interfering traffic, or using virtual, rather than phys-
ical computing resources. Finally, certain applications (e.g., embedded systems)
will not be able to use percentiles; in such cases, nothing short of predictable
worst-case behavior will be sufficient to ensure safety.

5 Related Work

The Fault Tolerant CORBA standard [11] specifies ten parameters that can be
adjusted for achieving the required levels of performance and fault-tolerance for
every application object, but it does not provide any insight on how these pa-
rameters should be set and re-tuned over the application’s lifetime [12]. Even for
fixed values of these parameters, the end-to-end latencies are hard to bound be-
cause they have skewed and sometimes bimodal distributions [2] (a phenomenon
we have also observed). For the CORBA Component Model, it has been noted
that a small number of outliers (typically less than 1%) causes maximum la-
tencies to be much larger than the averages [1]. Thaker [3] reports that many
systems produce a few numbers of outliers several orders of magnitude larger
than the average: operating systems (Linux, Solaris, TimeSys Linux), transport
protocols (UDP, TCP, SCTP), group communication systems (Spread), middle-
ware and component frameworks (TAO, CIAO, JacORB, JDK ORB, OmniORB,
ORBExpressRT, Orbix, JBoss EJB, Java RMI), including our own MEAD sys-
tem. A percentile-based approach for specifying QoS guarantees is a common
practice in the IT industry for most systems outside the real-time domain [5]. In
this paper, we evaluate the virtues of such a percentile-based approach, with an

440 T. Dumitraş and P. Narasimhan

emphasis on extracting tunability out of complex systems, rather than simply a
risk-mitigation approach for service providers.

6 Conclusions

In this paper, we examine the predictability of a fault-tolerant, CORBA-
compliant system. We try to achieve predictable behavior by selecting a good
system configuration, but we show that, for almost all 960 parameter combina-
tions tested, the measured end-to-end latencies have skewed distributions, with
maximum values several orders of magnitude larger than the averages. These
high latencies are due to a few (usually less than 1%) outliers which tend to
come in bursts. The number of clients, the replication style and degree or the
request rates neither inhibit nor augment the number of outliers. While the exact
causes for this unpredictability are hard to pinpoint in every case, this seems to
be a generic side-effect of complexity and of system design goals that focus on
optimizing the average behavior (rather than bounding the worst case).

We also present strong empirical evidence of a “magical 1%” effect: by remov-
ing 1% of the highest measured latencies for each configuration, the remaining
samples have more deterministic properties. We show that the 99th percentile fol-
lows the trend of the mean and that it can be used for making latency guarantees.
The significance of this result is that it allows us to extract tunable, predictable
behavior (with respect to performance and dependability) out of fairly com-
plex, unpredictable systems. While this percentile-based guarantees are clearly
inappropriate for hard real-time systems, they can be of immense benefit to
enterprise service providers and customers, who want reasonable, quantifiable
and monitorable assurances. Since similar behavior has been reported for many
other systems, we believe that our “magical 1%” opens an interesting avenue for
further research in statistical approaches for handling unpredictability.

Acknowledgments. The authors would like to thank David O’Hallaron, Asit
Dan, Daniela Roşu, Jay Wylie and the anonymous reviewers for their invaluable
suggestions and ideas related to this topic.

References

1. Krishna, A.S., Wang, N., Natarajan, B., Gokhale, A., Schmidt, D.C., Thaker, G.:
CCMPerf: A benchmarking tool for CORBA Component Model implementations.
The International Journal of Time-Critical Computing Systems 29 (2005)

2. Zhao, W., Moser, L., Melliar-Smith, P.: End-to-end latency of a fault-tolerant
CORBA infrastructure. In: Object-Oriented Real-Time Distributed Computing,
Washington, DC (2002) 189–198

3. http://www.atl.external.lmco.com/projects/QoS/.
4. Dumitraş, T., Srivastava, D., Narasimhan, P.: Architecting and implementing ver-

satile dependability. In de Lemos, R. et al., ed.: Architecting Dependable Systems
III. Lecture Notes in Computer Science. Springer-Verlag (2005)

Fault-Tolerant Middleware and the Magical 1% 441

5. Alistair Croll: Meaningful Service Level Agreements for Web transaction systems.
LOOP: The Online Voice of the IT Community (2005)

6. White, B. et al.: An integrated experimental environment for distributed systems
and networks. In: Symposium on Operating Systems Design and Implementation,
Boston, MA (2002) 255–270

7. Narasimhan, P., Dumitraş, T., Paulos, A., Pertet, S., Reverte, C., Slember, J.,
Srivastava, D.: MEAD: Support for real-time, fault-tolerant CORBA. Concurrency
and Computation: Practice and Experience 17 (2005) 1527–1545

8. Amir, Y., Danilov, C., Stanton, J.: A low latency, loss tolerant architecture and
protocol for wide area group communication. In: International Conference on De-
pendable Systems and Networks, New York, NY (2000) 327–336

9. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the TAO real-time Object
Request Broker. Computer Communications 21 (1998) 294–324

10. Siewiorek, D., Swarz, R.: Reliable Computer Systems. 2 edn. Digital Press (1992)
11. Object Management Group: Fault Tolerant CORBA. OMG Technical Committee

Document formal/2001-09-29 (2001)
12. Felber, P., Narasimhan, P.: Experiences, approaches and challenges in build-

ing fault-tolerant CORBA systems. IEEE Transactions on Computers 54 (2004)
497–511

Author Index

Agrawal, Divyakant 21, 124
Alvisi, Lorenzo 184

Bacon, Jean 1
Baehni, Sébastien 205
Balan, Rajesh Krishna 390
Behnel, Stefan 401
Blair, Gordon S. 334
Bromberg, Yérom-David 164
Buchmann, Alejandro 401

Candan, K. Selçuk 124
Cao, Fengyun 292
Castro, Paul 390
Chanda, Anupam 42
Chen, Yuan 354
Chhabra, Chirdeep Singh 205
Colmenares, Juan A. 225
Cooper, Brian F. 82
Coulson, Geoff 334
Cox, Alan L. 42

Dahlin, Mike 184
Druschel, Peter 270
Dumitraş, Tudor 431

Ebling, Maria 390
El Abbadi, Amr 21
Elmeleegy, Khaled 42
Emekci, Fatih 21
Eyers, David 1

Fernandes, Rohit 144

Gao, Dapeng 314
Gao, Lei 184
Grace, Paul 334
Gu, Xiaohui 411
Guerraoui, Rachid 205

Harmon, Trevor 225

Issarny, Valérie 164
Iyengar, Arun 184

Jacobsen, Hans-Arno 249, 314

Klefstad, Raymond 225
Krishnamurthy, Arvind 102

Li, Guoli 249

Mansour, Mohamed 375
Michel, Sebastian 60
Misra, Archan 390
Moody, Ken 1

Nandi, Animesh 270
Narasimhan, Priya 431
Ngan, Tsuen-Wan “Johnny” 270

Panahi, Mark 225
Pesonen, Lauri 1
Po, Oliver 124
Porter, Barry 334

Raghavachari, Mukund 144
Raman, Krishna 225

Satoh, Ichiro 421
Sawires, Arsany 124
Schwan, Karsten 354, 375
Singh, Atul 270
Singh, Jaswinder Pal 102, 292

Tatemura, Junichi 124
Triantafillou, Peter 60

Wallach, Dan S. 270
Wang, Randolph Y. 102
Weikum, Gerhard 60

Yu, Philip S. 411

Zhang, Charles 314
Zhang, Chi 102
Zhang, Yue 225
Zheng, Jiandan 184
Zwaenepoel, Willy 42

	Frontmatter
	Securing Publish/Subscribe for Multi-domain Systems
	ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing Across Private Data Warehouses
	Causeway: Support for Controlling and Analyzing the Execution of Multi-tier Applications
	MINERVA∞: A Scalable Efficient Peer-to-Peer Search Engine
	An Optimal Overlay Topology for Routing Peer-to-Peer Searches
	Combining Flexibility and Scalability in a Peer-to-Peer Publish/Subscribe System
	WReX: A Scalable Middleware Architecture to Enable XML Caching for Web-Services
	Inflatable XML Processing
	INDISS: Interoperable Discovery System for Networked Services
	Dual-Quorum Replication for Edge Services
	Frugal Event Dissemination in a Mobile Environment
	RTZen: Highly Predictable, Real-Time Java Middleware for Distributed and Embedded Systems
	Composite Subscriptions in Content-Based Publish/Subscribe Systems
	Scrivener: Providing Incentives in Cooperative Content Distribution Systems
	MEDYM: Match-Early with Dynamic Multicast for Content-Based Publish-Subscribe Networks
	Generic Middleware Substrate Through Modelware
	Deep Middleware for the Divergent Grid
	Opportunistic Overlays: Efficient Content Delivery in Mobile Ad Hoc Networks
	I-RMI: Performance Isolation in Information Flow Applications
	Matrix: Adaptive Middleware for Distributed Multiplayer Games
	Overlay Networks -- Implementation by Specification
	Adaptive Load Diffusion for Stream Joins
	Network Processing of Documents, for Documents, by Documents
	Fault-Tolerant Middleware and the Magical 1\%
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

